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Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex.
Their production is controlled by circadian rhythm and stress, the latter of which includes
physical restraint, hunger, and inflammation. Importantly, GCs have various effects on
immunity, metabolism, and cognition, including pleiotropic effects on the immune system.
In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed,
they suppress inflammatory cytokine expression and cell-mediated immunity, leading to
increased risks of some infections. However, recent studies have shown that endogenous
GCs induced by the diurnal cycle and dietary restriction enhance immune responses
against some infections by promoting the survival, redistribution, and response of T and B
cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to
reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated
immunity in some stress conditions. Taken together, GCs have both immunoenhancing
and immunosuppressive effects on the immune system.
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INTRODUCTION

Glucocorticoids (GCs) are a class of steroid hormones with multiple functions. GCs not only
regulate functions of the brain, liver, muscle, and bone, they also exert immunoregulatory effects (1).
In general, they have strong anti-inflammatory and immunosuppressive effects and are commonly
used to treat allergies, autoimmunity conditions, and inflammation by suppressing the expression of
inflammatory cytokines, increasing immunosuppressive proteins, and inducing the apoptosis of
lymphocytes (1–3). Especially, GCs strongly inhibit cell-mediated immune responses against cancer
and infection (4–6). However, recent studies have reported that GCs, when driven by the diurnal
cycle or dietary restriction (DR), enhance immune responses by inducing lymphocyte homing to the
lymphoid organs (7, 8). Furthermore, stress-induced GCs have the potential to aggravate
inflammation by promoting the differentiation and function of Th17 cells (9, 10). Thus, GCs
play important roles both in immune responses against infection and cancer and in triggering
inflammation. In this review, we will discuss the immunoenhancing and immunosuppressive
functions of GCs, which depend on the immune microenvironment.
org October 2021 | Volume 12 | Article 7069511

https://www.frontiersin.org/articles/10.3389/fimmu.2021.706951/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.706951/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.706951/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:shimba.akihiro.7w@kyoto-u.ac.jp
mailto:ikuta.koichi.6c@kyoto-u.ac.jp
https://doi.org/10.3389/fimmu.2021.706951
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.706951
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.706951&domain=pdf&date_stamp=2021-10-08


Shimba et al. Pleiotropic Effects of Glucocorticoids
PRODUCTION AND ACTION OF GCs

In steady state, GC production is controlled by circadian rhythm
through multiple steps (1). First, the suprachiasmatic nucleus
(SCN) stimulate the paraventricular nucleus (PVN) of the
hypothalamus, which secretes corticotropin-releasing hormone
(CRH). The circadian rhythm of the SCN is regulated by
transcriptional-translational feedback loop (TTFL) of the
molecular circadian clock comprising positive, negative, and
accessory loops (11). In addition, light input from retina
controls the TTFL in the SCN to synchronize the intrinsic
circadian rhythm with environmental light/dark cycle. Next,
CRH goes on to stimulate the anterior pituitary to produce
adrenocorticotropic hormone (ACTH) into the blood. ACTH
induces the expression of the enzyme 11b-hydroxylase, which
catalyzes the synthesis of corticosterone and cortisol in the
adrenal cortex. Lastly, secreted GCs suppress CRH production
from PVN by negative feedback (12). Due to the induction and
suppression of GC production, serum GC levels exhibit diurnal
oscillation, with a peak at early morning and a nadir at night in
diurnal animals like humans, but the opposite in nocturnal
animals like rodents. Moreover, psychological, physical, and
nutritional stresses induce high levels of GCs. Adrenergic
neurons in the locus coeruleus (LC) of the brain stem sense
the stress and produce noradrenaline to stimulate CRH-releasing
neurons (13, 14). In addition to neuronal signals, inflammatory
cytokines such as IL-1, IL-2, IL6, IL-12, TNF-a, and IFN-g
stimulate the hypothalamus-PVN axis and induce GC
production (15).

After the production of GCs from the adrenal cortex,
bioavailability of GCs is regulated via corticosteroid binding
globulin (CBG) and corticosteroid 11b-dehydrogenase (11b-
HSD) in peripheral organs (16). Because GCs are hydrophobic
molecules, GCs require a transporter and CBG acts as a buffer
and carrier. Neutrophil elastase induces cleavage of CBG to lead
the delivery of GCs to cells. As the expression level of CBG also
follow the circadian rhythm (17), this might contribute to the
circadian oscillation of bioavailability of GCs. After delivery of
GCs, active cortisol and inactive cortisone are interconverted by
two isozymes of 11b-HSD, 11b-HSD1 and 11b-HSD2, in each
organ (16). The 11b-HSD1 mainly metabolizes cortisone to
cortisol, while the 11b-HSD2 converts cortisol to cortisone.
Several papers reported that inflammation induced 11b-HSD1
expression in tissues via TNF-a in rheumatoid arthritis (RA),
colitis, and chronic kidney disease, suggesting that inflammation
augments effects of GCs by induction of 11b-HSD1 (18–21).
Taken together, not only the hypothalamus-PVN axis but also
CBG and 11b-HSD control the effects of GC via circadian
rhythm and inflammation.

GCs exert their effects through complicated mechanisms (22).
In general, GCs bind to glucocorticoid receptor (GR) in the
cytoplasm (23), which induces the dimerization of GR and its
translocation into the nucleus. There, GR acts as a transcription
factor that promotes or suppresses the transcription of target
genes by binding to specific DNA sequences known as
glucocorticoid-response elements (GREs). In some cases, GR
represses transcription by binding to negative GREs (nGREs).
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Binding of GR monomer to nGRE recruits transcriptional co-
repressors, which suppresses transcriptional activation by NF-kB
nearby, without direct interaction to NF-kB (22). In other case,
GR monomer directly interacts with DNA-bound NF-kB and
AP-1 and tethers transcriptional corepressors, without DNA
binding of GR (24, 25). Transcriptional induction by GR,
however, might be more important than transcriptional
repression via nGREs and tethering. First, GCs induce the
transcription of IkBa, A20, DUSP1, and GILZ, negative
regulators of NF-kB and AP-1, which inhibits macrophage
activation by LPS (26). Second, GC-induced transcription
might snatch transcriptional coactivators and chromatin
remodeling factors from the enhancers in target genes of
inflammatory cytokines and reduce their transcription (2).
REGULATION OF IMMUNE-RELATED
GENE EXPRESSION BY GR

GR represses the production of inflammatory cytokines and
proteins such as IL-6, C3, and TSLP by binding to nGREs and
recruiting the corepressors NCOR2 and HDAC2 (27). In
addition, GR induces the expression of immunosuppressive
molecules such as IkBa, A20 (TNFAIP3), DUSP1, and GILZ.
IkBa binds to NF-kB and blocks the activation of NF-kB (28).
The A20/TAX1BP1 deubiquitinase complex inhibits the
ubiquitination and degradation of RIP1 and enhances the
degradation of E2 enzyme Ubc13, which suppresses NF-kB
activation (28). The phosphatase DUSP1 suppresses the MAPK
pathway including p38, JNK, and ERK (29, 30). DUSP1
dephosphorylates ERK and inhibits the activation of p38 and
JNK, which reduces the expression of inflammatory cytokines
and chemokines such as IL-1b, IL-6, GM-CSF, CCL2, CXCL1,
and CXCL2. GILZ suppresses NF-kB by preventing nuclear
transport of NF-kB p65 subunit and inhibits MAPK signaling
by directly binding to Ras and Raf-1 (31–33). Thus, these
molecules induced by GCs attenuate inflammation by
inhibiting NF-kB and MAPK cascades.

Furthermore, NF-kB and GR might cooperatively control
gene expression. Vollmer et al. reported that induction of DUSP-
1 by GR agonist was enhanced by LPS stimulation in
macrophages (34). In addition, Kadiyala et al. reported that GR
and NF-kB cooperatively bound to the enhancer of the A20 locus
and induced A20 expression (35). However, Rao et al. reported
that increase of GR-binding sites in HeLa cells after stimulation
with TNF-a and a GR agonist (~1,000 sites) was much smaller
than all GR-binding sites after GR agonist stimulation (~8,700
sites) and NF-kB binding sites after TNF-a stimulation (~12,000
sites), suggesting that GR-NF-kB interaction might be partial in
GR repression mechanisms (36).

On the other hand, Oh and colleagues suggested that
inflammation is not critical for immunosuppressive functions
of GR. They analyzed the transcription and chromatinscape of
macrophages with dexamethasone (DEX) treatment before and
after LPS-stimulation (26). They found that DEX treatment after
LPS stimulation showed similar gene expression profile to DEX
October 2021 | Volume 12 | Article 706951
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treatment before LPS stimulation. DEX treatment before and
after LPS stimulation showed the upregulation of NF-kB and
AP-1 inhibitors such as IkBa, A20, DUSP1, GILZ, which were
critical for extinguishing inflammation. Thus, these results
suggest that the induction of immunoregulatory factors by GR
is important for immune regulation, independently of nGREs
and tethering.

To induce transcription, GR binding to palindromic GRE
might not be necessary. Schiller et al. performed ChIP-seq
analysis with a human osteosarcoma cell line expressing GR
with a mutation in dimerization domain and found that DNA-
binding of the mutant GR was mostly overlapped with that of
wild-type GR (37). It suggests that GR monomer and widespread
GRE half-sites are enough for effects of GR. Sasse et al. performed
global run-on sequencing (GRO-seq) in human airway epithelial
cells to detect nascent RNA and found that GR repressed
transcription within 10 minutes (38). By integrating the results
of ChIP-seq and GRO-seq, they found that rapid repression of
TNF-induced genes by GR did not require local GR-binding to
canonical GREs in TNF-induced gene loci. Moreover, GR rapidly
changed the accessibility of TNF-induced gene enhancers. Based
on these observations, Gerber et al. proposed the squelching
model that GR binding to GREs might snatch transcriptional
coactivators and chromatin remodeling factors from the
enhancers of TNF-induced genes and reduce their
transcription of the TNF-induced genes (2). Taken together,
transcriptional regulation mediated by GR is highly diversified.
IMMUNOSUPPRESSIVE EFFECTS OF GCs

Endogenous GCs suppress inflammatory responses via innate
immune cells and stromal cells in mouse disease models. As for
the innate immune cells, GR-deficient macrophages express
higher levels of inflammatory molecules, such as IL-6, TNF-a,
and COX-2, through the overactivation of p38 MAPK after
stimulation with LPS, leading to higher mortality (39). In
contrast to the suppression of inflammatory macrophages, GCs
enhance the differentiation of tissue-repair macrophages (40, 41).
Galuppo et al. reported that LysM-Cre GR-deficient mice
exhibited higher mortality and impaired tissue repair in a
myocardial infarction model (42). In addition, Ly6Clow

monocyte-derived macrophages in the infarcted myocardium
of GR-deficient mice were reduced in number and expressed
lower levels of genes related with neovascularization, collagen
degradation, and scar formation. At the same time, the
expression of the inflammatory chemokine CCL5 was
upregulated. Thus, endogenous GCs suppress inflammatory
macrophages but enhance suppressive macrophages.

Endogenous GCs suppress the maturation and function of
dendritic cells (DCs). Li et al. reported that GR-deficient DCs
secrete large amounts of inflammatory cytokines, such as IL-1b,
IL-12, and TNF-a, which increased IFN-g production in NK cells
and caused higher mortality of GR-deficient mice (43). Elftman
et al. showed that the expression of B7 and MHC class II, the
maturation markers of DCs, was attenuated by GC treatment in
Frontiers in Immunology | www.frontiersin.org 3
vitro and in vivo, suggesting that GCs suppress DC maturation
(44). Thus, GC-treated DCs failed to activate CD8 T cells in
herpes simplex virus infection. On the other hand, DEX
promotes the differentiation of IL-10-producing tolerogenic
DCs (45). Hodrea et al. reported that DEX enhances
phagocytosis of human DCs by inducing the expression of the
apoptophagocytic genes, ADORA3 (adenosine receptor guiding
macrophages to apoptotic cells), CD14, and MERTK (phagocytic
receptor for apoptotic cells) (46). Therefore, endogenous and
exogenous GCs suppress immunoenhancing function but
enhance immunosuppressive function of DCs.

Like innate immune cells, GCs suppress cytokine production
in stromal cells and alleviate colitis and asthma. Aranda et al.
showed that intestinal epithelial cell-specific villin-Cre GR-
deficient mice exacerbated DSS-induced colitis by increase of
the neutrophil-recruiting chemokines, CXCL1, CXCL5, and
CCL5 (47). Klassen et al. reported that OVA-induced allergic
asthma in the lung was alleviated by DEX but that GR deficiency
in the airway epithelium (SPC-Cre GR-deficient mice), but not in
T cells nor DCs, canceled the suppressive effect of DEX (48).
Gibbs et al. reported that GR represses the expression of the
neutrophil-recruiting chemokine CXCL5 via nGRE in the
CXCL5 promoter in an LPS-induced lung inflammation model
(49). Indeed, adrenalectomized mice exhibited higher levels of
CXCL5 at night, when the GC concentration is high, with a loss
of circadian changes in the neutrophil accumulation in the lung.
By contrast, Ince et al. reported that airway club cell-specific GR-
deficient mice showed normal oscillations of LPS-induced
neutrophil homing to the lung despite the loss of the circadian
rhythm of CXCL5 and IL-6 (50). In addition, macrophage-
specific LysM-Cre GR-deficient mice showed no diurnal
change of CXCL5 and TNF-a but normal change in neutrophil
count in the lung. These findings demonstrate that GCs at
physiological concentrations suppress inflammation by
affecting both immune cells and stromal cells. However,
further studies are needed to understand how GCs control
neutrophil homing to the lung. In contrast to suppression by
GCs, it was also reported that DEX promoted the expression of
TLR2 and soluble leukocyte protease inhibitor (SLPI), an
antimicrobial molecule, in airway epithelial cells, suggesting
that exogenous GCs contribute to immune response against
bacterial infection (51–53). Interestingly, DEX-induced DUSP1
promoted IL-1b-driven TLR2 induction by inhibiting p38- and
JNK-mediated negative feedback of TLR2 expression (52, 54, 55).
Furthermore, DEX-induced DUSP1 maintained IL-1b-induced
IRF1 upregulation and IRF-dependent CXCL10 expression.
Thus, endogenous and exogenous GCs might support the first
defense of lung epithelium but suppress excessive inflammation
after infection.

GCs strongly impair the cell-mediated immunity mediated by
IFN-g-producing type-1 helper T (Th1) cells, CD8 T cells, and
NK cells. Blotta et al. reported that DEX suppressed IL-12
production in human monocytes and impair IFN-g production
in NK cells (56). Moreover, Quatrini et al. reported that
endogenous GCs directly suppressed the immune response of
NK cells (57). GR-deficient NK cells from NK cell-specific Ncr1-
October 2021 | Volume 12 | Article 706951
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Cre GR-deficient mice produced higher amounts of IFN-g after
stimulation with IL-12 and IL-18 in vitro. In addition, these mice
exhibited increased IFN-g production and higher lethality after
the administration of LPS without any change in IL-6 or TNF-a.
Furthermore, GR-deficient NK cells induced excessive
inflammation and the lethality of mice with mouse
cytomegalovirus (MCMV) infection, because GR deficiency
decreased PD-1 expression and elevated IFN-g production (4).

Like NK cells, endogenous GCs suppress the differentiation and
IFN-g expression of T cells. They also reduce the expression of IL-
12R in T cells (58, 59). In addition, GR interacts with T-bet to
inhibit its DNA-binding activity (59). Kugler et al. reported that, in a
Toxoplasma infection model, T cell-specific Lck-Cre GR-deficient
mice exhibited Th1 cells that had normal differentiation but also
produced abnormally high levels of IFN-g and TNF-a, leading to
higher mortality (5). Thus, GCs suppress IFN-g production by Th1
cells and thereby prevent excessive inflammation. GCs also cause
dysfunctional CD8 T cells. Acharya et al. found that monocyte-
macrophage lineage cells in tumors expressed the enzyme for
steroidogenesis, Cyp11a1. and produced local GCs (60). In
addition, exhausted CD8 T cells in tumors showed higher
expressions of GR. In a MC38-OVA tumor model, GR-deficient
CD8 T cells expressed higher IL-2, TNF-a, and IFN-g; blocked
tumor-growth and were less exhausted. These data suggest that GCs
produced by monocyte-macrophage lineage cells promote the
exhaustion of CD8 T cells and impair the immune surveillance
against tumors. Taken together, endogenous GCs suppress excessive
inflammation and cell-mediated immunity via innate and cytotoxic
immune cells.
THE CIRCADIAN RHYTHM OF T CELL
IMMUNITY IS CONTROLLED BY
ENDOGENOUS OSCILLATING GCs

Although GCs strongly repress inflammatory cytokine
production, past studies have reported that GCs induced the
expression of receptors for IL-2, IL-6, IFN-g, GM-CSF, and TNF-
a, implicating positive effects by GCs on immunity (61). In
addition, Franchimont et al. reported that human blood T cells
stimulated with DEX increased the transcription of genes related
with cell proliferation (Mt1l, Mt1e, andMt1b), metabolism (Sat1,
Vdr), oxidation damage (Ido1), and cell surface receptors (Il1r2,
Il7r) (62). IL-7 is a member of the common g-chain cytokine
family and binds to the complex of the IL-7Ra-chain and
common g-chain. IL-7 supports the development, survival, and
proliferation of T cells, B cells, and innate lymphoid cells (ILCs)
(63–65). In addition, IL-7R signaling protects T cells from the
apoptosis induced by GCs (62). Indeed, DEX administration
increased IL-7Ra expression in human T-acute lymphoblastic
leukemia cells and augmented Bcl-2 expression by IL-7, which
protected leukemia cells from apoptosis (66). Like IL-7Ra, GCs
also induce CXCR4 expression in immune and stromal cells. GCs
elevated the CXCR4 expression in T and B lymphocytes,
granulocytes, and monocytes in mouse and human (67–71).
Frontiers in Immunology | www.frontiersin.org 4
Interestingly, Leigh et al. reported that GCs enhanced CXCR4
expression in human bronchial cells, whereas Carolina et al.
showed that GCs reduced CXCR4 expression in lung endothelial
progenitors, implying a complicated regulation of CXCR4
expression by GCs (72, 73). Thus, GC may enhance T cell
immunity by inducing IL-7Ra and CXCR4.

In general, how GCs induce IL-7Ra expression on T cells is
well studied. There exists a non-coding conserved sequence 1
(CNS-1) 3.6 kb upstream of the IL-7Ra promoter, the deletion of
which prevented the IL-7Ra induction by GCs in mice (74, 75).
The CNS-1 region contains two GRE motifs conserved between
human and mouse. To investigate the biological significance of the
IL-7R induction by GCs, mice harboring point mutations in the
two GREs of CNS-1 (GREm mice) as well as T cell-specific CD4-
Cre GR-deficient mice have been generated (7). The IL-7R
expression on T cells was elevated at night and reduced at
daytime in control mice, consistent with the diurnal fluctuation
of GCs. Moreover, T cells in the control mice accumulated in the
spleen, lymph nodes, and Peyer’s patches at nighttime, but
circulated more in peripheral blood at daytime. However, the
diurnal fluctuation of IL-7R expression and T cell numbers in the
blood and lymphoid organs was abolished in CD4-Cre GR-
deficient mice and GREm mice. This oscillation seems to be
regulated partly by CXCR4, because CXCR4 expression was also
induced by GCs and IL-7R. Therefore, the GC-IL-7R axis controls
the diurnal oscillation of T cell distribution between the blood and
lymphoid organs by regulating CXCR4 expression (Figure 1).

The accumulation of T cells in the lymphoid organs by GCs
and IL-7R may enhance immune responses. The infection of
control mice with Listeria monocytogenes at nighttime induced
antigen-specific effector CD8 T cells more efficiently than at
daytime (7). By contrast, the increase of effector CD8 T cells
with nighttime infection was not observed in CD4-Cre GR-
deficient or GREm mice, suggesting that the diurnal surge of
GCs at night enhances the CD8 T cell response against bacterial
infection. Similarly, immunization with soluble antigens at night
enhanced the generation of follicular helper T (Tfh) cells, germinal
center B cells, and class-switched B cells, an effect lost in the
mutant mice. Furthermore, previous studies reported that GR
affects the differentiation and function of helper T cell subsets (76).
GCs strongly suppress the function of Th1 cells but promote the
function of Th2 cells. Ramirez et al. found that primed CD4 T cells
pretreated with DEX in vitro produced a large amount of IL-4 and
IL-13 (77). Consistently, GR-deficient CD4 T cells produced lower
levels of IL-4 and IL-13 in Th2-skewed culture (7). Thus,
endogenous GCs promote the differentiation and function of
Th2 cells. Taken together, oscillating GCs induced by the
circadian rhythm have immunoenhancing effects on immunity.

Like T cells, GCs induced by the circadian rhythm enhance B
cell responses. Cain et al. reported that the diurnal induction of
CXCR4 in B cells was impaired in B cell-specific mb1-Cre GR-
deficient mice, which attenuated B cell homing into the bone
marrow (69). Additionally, B cell numbers in the blood of GR-
deficient mice lost their normal diurnal change, indicating that
GCs control the diurnal change of B cell recirculation between
the bone marrow and blood via CXCR4 induction. IgG
October 2021 | Volume 12 | Article 706951
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production after immunization with the T-independent antigen
NP-Ficoll was impaired in GR-deficient mice, suggesting that
endogenous GCs per se might promote the activation of B cells.
Furthermore, it is reported that adrenergic signaling and the
clock gene Bmal1 control the diurnal change of B cell
recirculation between the blood and lymph nodes and that B
cell retention in the lymph nodes enhances B cell responses (78,
79). Therefore, CXCR4 induction by GCs might trigger B cell
homing to the lymph nodes and bone marrow and elevate the
responses of B cells. Taken together, GCs induced by the
circadian rhythm enhance B cell responses through the
Frontiers in Immunology | www.frontiersin.org 5
accumulation of lymphocytes in lymphoid organs and the
induction of Th2 and Tfh cell differentiation (Table 1).
GCs UNDER DIETARY RESTRICTION
(DR) PROMOTE MEMORY CD8
T CELL RESPONSE

DR contributes to longevity and reduces inflammation and
cancer (80, 87). Because immune cells consume large amount
TABLE 1 | A summary of the pleiotropic effects of glucocorticoids in different conditions.

Suppression of immune responses Enhancement of immune responses

Exogeneous glucocorticoids • Suppression of inflammatory cytokine production (1–3)
• Induction of lymphocyte apoptosis (3)
• Suppression of function and development of Th1, NK, and CD8 T
cells (4, 5, 56–60)

• Promotion of differentiation of Th2 and Th17 cells (7, 9,
77, 85, 86)

Circadian rhythminduced
glucocorticoids

• Suppression of CXCL5 production and neutrophil recruitment in
lung inflammation (49, 50)

• Induction of IL-7R and CXCR4 (7, 61, 74, 75)
• Homing of T cells to lymphoid organs (7)
• Enhancement of Immune response of CD8 T and Tfh cells
(7)

Dietary restrictioninduced
glucocorticoids

• Suppression of inflammatory cytokine level in serum (80) • Migration of memory CD8 T cells into bone marrow (8)
• Induction of Bcl2 expression to enhance the survival of
memory CD8 T cells (8)
• Enhancement of anti-cancer response by memory CD8 T
cells (8)

Stressinduced glucocorticoids • Suppression of IFN-g production in Th1 and CD8 T cells (81–84)
• Inhibition of CD8 T cell response against cancer and viral infection
(81–84)

• Increase of IL-17 and neutrophil recruitment in sickle cell
disease model (10)
References are shown in parentheses.
FIGURE 1 | Glucocorticoids in circadian rhythm and dietary restriction induce the migration of naïve and memory T cells into the spleen and bone marrow. GCs
induced by circadian rhythm promote the homing of naïve T cells into secondary lymphoid organs from peripheral blood by inducing the expression of IL-7R and
CXCR4. The T cell accumulation induces strong immune responses by activated CD8 T and follicular helper T (Tfh) cells against bacterial infection and soluble
antigens. GCs induced by dietary restriction trigger the egress of memory CD8 T cells from secondary lymphoid organs and homing into the bone marrow. The
accumulation in the bone marrow enhances the survival and response of memory CD8 T cells.
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of energy in inflammation, M1 macrophages and effector T cells
activate glycolytic and lipogenic metabolic pathways for rapid
ATP synthesis (88). Thus, the undernutrition might impair the
maintenance and response of leukocytes. DR reduced the mass of
thymus and spleen and induced reversible lymphopenia of T, B,
and NK cells (89, 90). DR also suppressed the PI3K/Akt/mTOR
signaling via activation of AMPK and sirtuin, which impaired
the function of effector T cells and M1 macrophages (91). In
addition, Yang et al. reported that serum TNF-a levels decreased
with elevated cortisol under calorie restriction (CR), suggesting
that CR suppresses inflammation by inducing GC production
(80). On the other hand, DR enhances the cytotoxicity of CD8 T
cells. Di Biase et al. reported that a fasting-mimicking diet
increased common lymphoid progenitors in the bone marrow
and tumor-infiltrating CD8 T cells in a breast cancer model (92).
Therefore, DR promotes lymphopoiesis and cell-mediated
immunity. In line with that study, it is reported that diet
affects cell-mediated immune responses by inducing GCs.
Collins et al. reported that GCs induced by DR enhanced the
maintenance and function of memory CD8 T cells (8). DR
triggered the migration of memory CD8 T cells from
secondary lymphoid organs into the bone marrow, but this
effect was abolished in adrenalectomized mice and T cell-
specific Lck-Cre GR-deficient mice. In addition, the
accumulation of memory CD8 T cells in the bone marrow by
DR was impaired in CXCR4- and S1PR1-deficient mice,
suggesting that GCs might induce the egress of memory CD8
T cells from secondary lymphoid organs via S1PR1 and drive
homing to the bone marrow via CXCR4 (Figure 1).
Interestingly, DR reduced mTOR signaling in memory CD8 T
cells and changed gene expressions associated with heat-shock
protein chaperone binding and the regulation of protein folding.
It also induced amino-acid deprivation and the cellular response
to rapamycin, suggesting that DR changes the metabolic state of
memory CD8 T cells to quiescent. In addition, DR and DEX
increased Bcl-2 expression in memory CD8 T cells. Finally,
memory CD8 T cells efficiently responded to bacterial
infection and tumors during DR. Together, these reports
demonstrate that GCs induced by DR enhance the long-term
maintenance of memory CD8 T cells, which promotes cytotoxic
responses against infection and tumors.

As described above, GCs produced by monocyte-macrophage
lineage cells in the tumor microenvironment suppress the
function of effector CD8 T cells, whereas DR-induced GCs
enhance the maintenance and response of memory CD8 T
cells (8, 60). Thus, GCs seem to exert different effects on
immune cells, probably by factors supplied from the
microenvironment. Circadian rhythm- and DR-induced GCs
trigger the homing of IL-7R-positive CD8 T cells into
lymphoid organs, which supply pro-survival factors and
enhance the maintenance and response of T cells. By contrast,
GCs produced in the tumor microenvironment accelerate the
dysfunction of IL-7R-negative effector CD8 T cells. Therefore,
the supply of IL-7 from the microenvironment may determine
whether the GC effects are positive or negative.
Frontiers in Immunology | www.frontiersin.org 6
STRESS SUPPRESSES CELL-MEDIATED
IMMUNITY BUT ENHANCES
INFLAMMATORY DISEASES
Because stress-induced GCs suppress cell-mediated immunity,
stress might exacerbate viral infection and tumor growth.
Steelman et al. reported that restraint stress reduced IFN-g-
expressing CD4 T and CD8 T cells and their T-bet expression
following Theiler’s murine encephalomyelitis virus (TMEV)
infection (81). In addition, treatment with a GC antagonist
alleviated the clinical manifestations induced by the restraint
stress. Elftman et al. found that restraint stress impaired the
expression of granzyme B and IFN-g in CD8 T cells following
herpes simplex virus (HSV) infection (82). However, this effect
was alleviated if the infection was in T cell-specific Lck-Cre GR-
deficient mice, suggesting that stress-induced GCs suppress the
production of granzyme B and IFN-g by CD8 T cells via GR.
These findings indicate that stress exacerbates the viral infection
by suppressing cell-mediated immunity via GCs. Like viral
infection, stress caused by chronic sleep restriction, forced
swimming, and abdominal surgery promoted the progression
of cancers (83, 84). Hong et al. reported the relationship between
perinatal stress and cell-mediated immunity (6). The perinatal
exposure of fetal mice to DEX as a stress model diminished CD8
T cell response against tumors in adulthood. Thus, exposure to
stress-induced GCs during pregnancy appear to cause
dysfunction of anti-tumor response by CD8 T cells in offspring
after birth. Overall, stress-induced GCs might impair cell-
mediated immunity over the lifetime.

Although stress suppresses cell-mediated immunity, it also
triggers chronic inflammation and autoimmunity. Qiu et al.
reported that restraint stress enhanced tissue destruction in a
DNBS-induced colitis model (93). The colitis was ameliorated in
CD4-deficient mice, suggesting that helper T cell function is
critical for the stress-induced tissue destruction. Arima et al.
reported that wet bedding and restraint stress triggered upper
gastrointestinal bleeding in mice transferred with myelin
oligodendrocyte glycoprotein (MOG) peptide-primed
pathogenic T cells (94). Because Th17 cells play a critical role
in experimental autoimmune encephalomyelitis (EAE), the stress
might enhance Th17 cell function. de Castro Kroner et al.
reported that GCs elevated RAR-related orphan receptor C
(RORC) expression by inhibiting IL-2 secretion in human T
cells (85). In addition, GCs induced the expression of defensins
and CCL20. In mouse T cells, GCs promoted the IL-23-
dependent differentiation of Th17 cells in vitro but not if IL-6
and TGF-b were also present (9). In addition, Marchetti et al.
reported that transgenic (Tg) mice expressing GR antisense RNA
exhibited less severe neurological inflammation (86). Thus, GCs
have the potential to enhance the function of Th17 cells.
Furthermore, Xu et al. showed that restraint stress increased
serum IL-17 and aged neutrophils, which exacerbated vaso-
occlusive episodes via microbiota in a sickle cell disease model
(10). Treatment with metyrapone, an inhibitor of GC
production, alleviated the leukocyte recruitment and
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inflammation under stress. Overall, stress-induced GCs
aggravate inflammation by promoting the differentiation and
function of Th17 cells via microbiota.

Although GCs exert some anti-inflammatory effects in
neutrophils, such as reduction in COX-2 and iNOS expression
and superoxide release (95–97), GCs also promote the
development and function of neutrophils. First, GCs enhanced
the development and proliferation of neutrophils in bone
marrow and induced neutrophilia in peripheral blood (98, 99).
Second, GCs promote survival of neutrophils. GCs inhibited
spontaneous apoptosis of human neutrophils in vitro (100, 101).
Chang et al. reported that DEX treatment reduced the expression
of Fas and caspase-8 in neutrophils (102). Furthermore, Bouterse
et al. found that the expression of a pro-apoptotic factor Bak was
reduced in DEX-treated neutrophils (103). Third, GCs elevated
the expression of the IL-1R in neutrophils and enhanced IL-1b-
triggered inflammation (104). Thus, GCs might augment tissue
inflammation by enhancing the functions of neutrophils.

Stress-induced GCs control inflammation also via Treg cells.
Harpaz et al. found that chronic variable stress reduced the
number of Treg cells and increased the susceptibility to EAE
(105). In addition, the administration of mifepristone, an
antagonist of GCs, blocked the stress-induced exacerbation of
EAE. On the other hand, it is reported that GCs also promote
Treg cell function. GC stimulation upregulates the expression of
Foxp3, IL-10, TGF-b, and CTLA4 (106–108). Rocamora-Reverte
et al. reported that GR-deficient Treg cells failed to suppress tissue
damage in a colitis model in Treg-specific Foxp3-Cre GR-
deficient mice (109). Furthermore, Engler et al. reported that
the onset of EAE was delayed in pregnant mice, because
progesterone binding to GR increased the number of Treg cells
(110). Treatment with a GC antagonist and T cell-specific Lck-
Cre GR-deletion blocked the activation of Treg cells. However, it
remains unknown whether stress enhances inflammation by
blocking Treg cells even though GCs enhance Treg function.
One possibility is that an unknown factor might block the GC-
enhanced Treg function to promote inflammation under stress.
Thus, because stress-induced GCs may affect both Th17 and Treg
cells, it remains unclear whether GCs enhance inflammation via
Th17 cells or suppress it via Treg cells. Taken together, stress-
induced GCs seem to have pleiotropic effects either to attenuate
cell-mediated immunity or to aggravate inflammation, depending
on the cell types and the disease models (Table 1).
GC RESISTANCE IN INFLAMMATORY
DISEASES

GCs are well used for therapy of allergic and autoimmune
diseases. GCs mitigate the symptoms in psoriasis and multiple
sclerosis, whereas some patients with ulcerative colitis (UC) and
asthma are refractory to treatment with GCs (111, 112).
However, the mechanism of this GC resistance is unclear. One
explanation is that GCs might promote survival of immune cells
and enhance immune responses. As explained above, GCs have
the potential to augment immune responses of Th2 cells, Th17
Frontiers in Immunology | www.frontiersin.org 7
cells, and neutrophils, which exacerbates tissue damage. Second,
some immune cells escape from the suppressive effects of GCs by
reducing the amounts of GCs and GR in the cytoplasm. Ramesh
et al. reported that human Th17 cells expressed multiple drug
resistance 1 (MDR1), a membrane efflux pump with broad
substrate specificity, which reduces the sensitivity to GCs
(113). Paugh et al. found that caspase-1 activated by NLRP3
inflammasome cleaved GR (114). Third, some inflammatory
cytokines such as IFN-g, IL-17, IL-4, and TNF-a canceled the
suppressive effects of GCs (115–119). These cytokines diminish
GC-induced apoptosis of immune cells and blunt the repression
of inflammatory cytokine production by GCs. Thus, both the
enhancing effects of GCs and the cancelation of GC effects might
contribute to the GC resistance in the treatment of inflammatory
diseases. Manipulation of these mechanisms will facilitate to
overcome the GC resistance and contribute to cure allergic and
autoimmune diseases.
CONCLUSIONS

This review summarizes the immunoenhancing and
immunosuppressive effects of GCs (Table 1). Exogeneous and
stress-induced GCs suppress the IFN-g production and
exhaustion of CD8 T cells, whereas GCs under circadian
rhythm or DR enhance the maintenance and activation of
naïve and memory CD8 T cells. In addition, GCs strongly
suppress the function of Th1 cells and enhance the
differentiation of Th2 and Th17 cells. Thus, the effects of GCs
on immunity can be positive or negative depending on the tissue
and cell type. The immunoenhancing effects of GCs possibly
depend on the microenvironment because GCs trigger T cell
homing to lymphoid organs, which supply pro-survival
cytokines. Further studies are required to understand how GCs
control the interaction between immune cells and the
microenvironment. Moreover, the effects of GCs might depend
on different GR-target genes in different cell types. To address
this question, it is necessary to investigate GR-induced changes
in gene transcription, DNA binding, and chromatin accessibility
in immune and stromal cells. Revealing the pleiotropic effects of
GCs will help understand how GCs trigger immune dysfunction
and chronic inflammation and maximize the therapeutic effects
of GCs in refractory allergies and autoimmune diseases.
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