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Abstract

Recently, sparse representation, which relies on the underlying assumption that samples

can be sparsely represented by their labeled neighbors, has been applied with great suc-

cess to image classification problems. Through sparse representation-based classification

(SRC), the label can be assigned with minimum residual between the sample and its syn-

thetic version with class-specific coding, which means that the coding scheme is the most

significant factor for classification accuracy. However, conventional SRC-based coding

schemes ignore dependency among the samples, which leads to an undesired result that

similar samples may be coded into different categories due to quantization sensitivity. To

address this problem, in this paper, a novel approach based on self-supervised sparse

representation is proposed for image classification. In the proposed approach, the manifold

structure of samples is firstly exploited with low rank representation. Next, the low-rank

representation matrix is used to characterize the similarity of samples in order to establish a

self-supervised sparse coding model, which aims to preserve the local structure of codings

for similar samples. Finally, a numerical algorithm utilizing the alternating direction method

of multipliers (ADMM) is developed to obtain the approximate solution. Experiments on sev-

eral publicly available datasets validate the effectiveness and efficiency of our proposed

approach compared with existing state-of-the-art methods.

Introduction

Sparse representation has attracted great interest recently due to its powerful ability to model

images, where it is assumed that an image can be represented by a linear combination of a few

atoms of a basis set called a dictionary. It has achieved impressive performance on many com-

puter vision tasks, such as image restoration, compressive sensing, tracking and classification

[1–5]. In this paper, we focus on the sparse image classification problem. Many studies have

been performed on sparse-based image classification in recent years. J. Wright [6] et al origi-

nally proposed the general sparse representation-based classification framework for face
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recognition. In their method, the sparse representation of a test sample can be computed by

taking the training samples as a dictionary, and recognition is viewed as classifying among the

multiple linear regression models by the representation errors. The promising results show the

robustness of their method to occlusion and disguise. L. Zhang et al pointed out that the good

performance of SRC profited not only from sparsity but from the collaboration among samples

as well, and proposed the collaborative representation classification (CRC) method to obtain

more accurate recognition results [7]. Moreover, they also suggested that sufficient samples

were another essential factor affecting the recognition rate in an SRC-based framework. To

reveal the intrinsic classification mechanism, a probabilistic collaborative representation

method (ProCR) was proposed by Cai et al [8], in which the probability that a test sample

belongs to the collaborative subspace of all classes was defined. Consequently, a ProCR-based

classifier was designed to achieve excellent performance. Based on the idea of bag-of-features,

[9] proposed an effective locality-constraint linear coding (LLC) scheme. Unlike the SRC, LLC

projected the descriptor into its local-coordinate systems and the max pooling was performed

on the projected codes to generate the final representation. To mitigate the performance deg-

radation on datasets consisting of images with various camera orientations, a discriminative

sparse coding approach was proposed to extract an affine-invariant feature and a classifier

using AdaBoost was developed by taking affine sparse codes as the input. Fang et al [10] pro-

posed a model to learn a non-negative sparse graph (NNSG), by which the classification is real-

ized with an iterative supervised learning model to propagate the label information. To further

improve representation ability, several extensive works on dictionary learning are studied for

pattern classification. In [11], the discriminative KSVD (DKSVD) algorithm was first pre-

sented to unify the dictionary and classifier learning into the same framework. Next, a label

consistent KSVD (LCKSVD) method was proposed by Z. L. Jiang to realize more discrimina-

tive sparse coding [12]. In LCKSVD, the label information of atoms was considered to enforce

discriminability during dictionary learning. Similar to the DKSVD, classifier learning was also

combined with the reconstruction error of dictionary learning to form a unified objective

function. In [13], fisher discriminative dictionary learning was proposed for image classifica-

tion in which, with the fisher criterion, not only was the representation residual used to distin-

guish the difference among classes, but also both of the scatters within-class and between-class

are optimal. However, computational complexity and insufficient samples are two main draw-

backs of the aforementioned dictionary learning algorithms. From another view, classification

can be seen as a task to separate the samples lie in different linear subspaces. Therefore, the

model that can capture the subspace structure among the samples is believed to be very helpful

in pattern classification. Recently, the low rank representation (LRR) has attracted more and

more interest with applications to image classification tasks [14]. It is noted that the LRR

exhibits a remarkable ability in exploring the global manifold structure of data, which is a use-

ful technique to analyze data drawn from multiple subspaces. C. Chen [15] proposed a low

rank-based decomposition model with structural incoherence. It enforced the incoherence

among the low rank matrix of different classes with an extra regularization, which helps to

remove the noise from the contaminated data and provides additional discrimination for clas-

sification. Zhang et al [16] established a model with joint LRR and sparse representation, in

which both the sparsity and low rank spatial consistency are exploited simultaneously. The

preserved local structural information in the coding vector is more helpful for classification.

Next, a structured LRR (SLRR) was further learned in a supervised way by [17]. In [17], an

ideal LRR matrix was constructed to guide dictionary learning. Then, a simple linear classifier

on the low rank representation matrix under the learned dictionary can also obtain promising

results. Based on the viewpoint of supervised learning, a low rank and sparse representation

(LRSR) model was studied by Zhuang et al [18], where the global mixture of subspace and
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local liner structure were both captured to construct a non-negative graph embedded in the

semi-supervised classification.

Based on the above observations, here we propose a novel self-supervised sparse coding

scheme for image classification. The main drawback of the conventional SRC-based methods

is that it codes the samples independently and the mutual dependence among samples is con-

sequently ignored. In our method, considering the advantages of LRR and sparsity in charac-

terizing the manifold structure and local feature respectively, the test dataset is represented

with joint sparse and low rank constraints to explore the consistency of similar samples. Next,

the representation matrix is used to construct an effective regularization constraint to extend

the SRC-based framework and provide maximal preservation of the similarity of features of

similar samples. Furthermore, a numerical algorithm based on the alternating direction

method of multipliers (ADMM) is developed to solve the novel objective function in our pro-

posed sparse coding scheme.

The remainder of this paper is organized as follows. The overall framework of the proposed

method is detailed in the next Section. The ‘Numerical algorithm’ section presents the

numerical scheme designed for solving the novel objective function. Experimental results on

several publicly available datasets and analysis are reported in ‘Experiments and discussion’

section to validate the effectiveness of the proposed scheme. Conclusions are given in the final

section.

Self-supervised sparse coding scheme

Self-supervised matrix construction

Given Y = [Y1,Y2,Y3,� � �] 2 Rd×N (Yi 2 Rd), whose columns are the test samples drawn from

independent subspaces (different classes), each sample of Y can be represented with the LRR

model by a linear combination of atoms in dictionary D 2 Rd×n as follows

min
Z
ðrankðZÞÞ ; s:t: Y ¼ DZ ð1Þ

where Z 2 Rn×N and rank(Z) denote the coefficient matrix and its rank. The purpose of the

above objective function is to seek a representation matrix to capture the low-dimensional

intrinsic structure of the dataset Y. However, the minimization in (1) cannot be solved directly.

Generally, rank(Z) is replaced by its relaxed version as the following formulation.

min
Z
kZk

�
; s:t: Y ¼ DZ ð2Þ

where k•k� denotes the nuclear norm as kZk� ¼
X

i

siðZÞ, the sum of the singular values of

the matrix Z.

Nevertheless, in real applications, the datasets are often inevitably contaminated. Hence, to

make the model more robust, an extra noise term could be introduced into the model in (2) as

min
Z;E
fkZk

�
þ lkEk

1
g

s:t: Y ¼ DZ þ E
ð3Þ

where E 2 Rd×N denotes the noise term, and the l1-norm is forced on it with the sparsity

assumption, and λ is a scalar to balance the two terms in the objective function.

Specially, when D is identity matrix, the model in Eq (3) is the convex relaxation version of

the so-called robust principal component analysis(RPCA) model in [19], which aims to

recover the low-rank and sparse components embedded in the observation matrix Y
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respectively. To further improve the performance of numerical solution, Gu et al[20] proposed

a pursuit algorithm based on alternating minimization to solve the model as follows.

arg min
U;V;S

�
1

2
kY � DðUVT þ SÞk2

F

�

s:t: kSk0 � s
ð4Þ

where UVT (U 2 Rd×r, V 2 RN×r) denotes a automatically satisfied low-rank component, and S
2 Rd×N denotes the sparse error matrix. s is a tuning parameter to constrain the sparsity

degree.

As pointed out by [21], a low-rank constraint is good for seeking a representation matrix,

which reveals the relationship between each sample and bases in dictionary from the global

manifold structure. However, the locality structure is ignored, which generates the imperfec-

tion on the feature selection from the perspective of independent samples. To address this

issue, a joint low-rankness and sparse representation model was established as follows

min
Z;E
fkZk� þ gkZk1 þ lkEk1g

s:t: Y ¼ DZ þ E
ð5Þ

where the additive second term is used to constrain the sparsity on the representation coeffi-

cient matrix, by which the model in Eq (5) can preserve the global manifold structure and

locality structure simultaneously in a unified framework. Furthermore, replacing D with data-

set Y itself, it is believed that the representation matrix can better reveal the relationship

between the samples from both global and local perspective.

In fact, RPCA and the model in Eq (4) are the methods for component separation. It is

worth noting that the solutions of the these two models are two irrelevant components that

represent different structures embedded in the observation matrix. They are constrained with

low-rank and sparsity respectively, which is a popular method in the low-rank recovery prob-

lems. Nevertheless, different from them, for the classification task in this paper, the model in

Eq (5) aims to constrain both of the low-rank and sparsity on the same matrix Z but not two

separate superposition components, which will make the coefficient matrix Z not only explore

the global relevant structure but also select the local sparsity structure. That is, the coefficient

matrix Z can meet the two constraints simultaneously, which is believed to help to present the

correlation of samples more effectively. In other words, only with the low-rank constraint, Z
can capture the global latent subspace structures but cannot guarantee the sufficient local spar-

sity of its column vectors. Hence, the extra sparsity constraint enforces Z to obtain higher coef-

ficients with respect to samples from the same subspace but lower ones with respect to the

samples from other irrelevant subspaces.

With the recently developed linearized alternating direction method [22], the optimization

problem in Eq (5) can be solved iteratively. An auxiliary variable is introduced to make the

objective function separable as the following form

min
Z;P;E
fkZk

�
þ gkPk

1
þ lkEk

1
g

s:t: Y ¼ YZ þ E; P ¼ Z
ð6Þ

The augmented Lagrangian function of Eq (6) is defined as

LmðZ; P;E;M1;M2Þ ¼ kZk� þ gkPk
1
þ lkEk

1
þ hM1;Y � YZ � Ei

þ hM2; P � Zi þ
m

2
ðkY � YZ � Ek2

F þ kP � Zk2

FÞ
ð7Þ
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where hA,Bi = tr(ATB), tr(•) denotes the sum of diagonal elements, and M1 and M2 are the

Lagrangian multipliers.

Eq (7) can be rewritten as

LmðZ; P; E;M1;M2Þ ¼ kZk� þ gkPk
1
þ lkEk

1
þ HmðZ; P;E;M1;M2Þ

�
1

2m
ðkM1k

2

F þ kM2k
2

FÞ
ð8Þ

where HmðZ; P; E;M1;M2Þ ¼
m

2
ðkY � YZ � E � M1=mk

2

F þ kP � Z � M2=mk
2

FÞ.

With some algebra, the update scheme based on the gradient term of Hμ(•) at the k-th itera-

tion can be shown as follows

Zkþ1 ¼ arg min
bmk

2
Z � Zk þ

� YTðY � YZk � Ek � Mk
1
=mkÞ

þðPk � Zk � Mk
2
=mkÞ

 !

=b













2

F

þkZk�

( )

ð9Þ

Pkþ1 ¼ arg min
1

2
kP � Zkþ1 � Mk

2
=mk

2

F þ
g

mk
kPk

1

� �

ð10Þ

Ekþ1 ¼ arg min
1

2
kE � ðY � YZkþ1 � Mk

1
=mÞk

2

F þ
l

mk
kEk

1

� �

ð11Þ

Assuming that,

Zk �
� YTðY � YZk � Ek � Mk

1
=mkÞ

þðPk � Zk � Mk
2
=mkÞ

 !�

b ¼ ULVT ð12Þ

The nuclear norm minimization problem in Eq (9) can be solved by

Zkþ1 ¼ UStðLÞV
T ð13Þ

where Sτ(Λ) = sgn(Λ)max(|Λ|−τ,0), and τ is the shrinkage parameter as t ¼ 1

bmk
.

The two subproblems in Eqs (10) and (11) are the classical l1 norm minimization, which

can be easily solved with the soft shrinkage operator (SSO) Sτ(•) on their observation matrix

respectively.

As for the Lagrangian multipliers, the following update formulation can be used:

Mkþ1

1
¼ Mk

1
þ mkðY � YZkþ1 � Ekþ1Þ ð14Þ

Mkþ1

2
¼ Mk

2
þ mkðP

kþ1 � Zkþ1Þ ð15Þ

The detailed scheme for solving problem in Eq (6) is outlined in Table 1 as follows.

Table 1. Algorithm for solving objective function in Eq (6).

Algorithm 1

Initial: Dataset Y, Z0 ¼ P0 ¼ E0 ¼ M0
1
¼ M0

2
¼ 0;

while k< K
1. Compute Zk+1 by solving subproblem (9) with Eq (13);

2. Compute Pk+1 by solving subproblem (10) with SSO;

3. Compute Ek+1 by solving subproblem (11) with SSO;

4. Update the Lagrangian multipliers with Eqs (14) and (15);

5. k k + 1;

end while

https://doi.org/10.1371/journal.pone.0199141.t001
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With Algorithm 1, the low-rank and sparse representation coefficient matrix Z is obtained,

which can better simultaneously preserve both the global manifold and locality structure of

test dataset Y. Considering the symmetric property of sample consistency and the non-nega-

tive requirement on the regularizer, a self-supervised matrix can be constructed as follows:

W ¼
jZj þ jZT j

2
ð16Þ

where |•| denotes the element-wise absolute value operation. Due to the revealed intrinsic

structure of matrix Z, W can be utilized as an effective self-supervised mechanism on the con-

sistency of similar samples, which is helpful to enforce the mutual dependency among samples

to further improve the classification accuracy. The details will be discussed in the next

subsection.

Detailed coding scheme

Given the training dataset X = [X1,X2,� � �Xi,� � �], the conventional SRC-based model is pre-

sented as

min
A

1

2
kY � XAk2

F þ ZkAk
1

� �

ð17Þ

where Xk denotes the subset samples in the k-th class, and A represents the coding coefficient

matrix. Then, the following reconstruction residual error is used to classify the samples:

rðYiÞ ¼ arg min
k

n
kYi � XkA

k
i k

2

F

o
ð18Þ

where Ak
i denotes the subset of Ai corresponding to class k, and r(Yi) denotes the final classifi-

cation result about Yi.

From Eqs (17) and (18), it can be observed that the coding Ai of each sample has significant

influence on the classification result. Naturally, a better coding scheme will improve the final

accuracy. Nevertheless, the model in Eq (17) ignored the mutual dependency among the sam-

ples and coded each sample independently. It is noted that the model in Eq (17) may lead to an

undesired fact that a similar sample may lie in different atoms of different classes, due to the

sensitiveness of the sparse coding process. To address this problem, we propose a self-super-

vised coding scheme as follows:

min
A

1

2
kY � XAk2

F þ ZkAk1 þ x
X

i

X

j

WijkXAi � XAjk
2

2

( )

ð19Þ

where Wij presents the element in the (i,j) location of the self-supervised W obtained Eq (16), η
and ξ are scalars to control the balance among the three terms. The first term in Eq (19) evalu-

ates the reconstruction error, and the second term is the sparsity constraint on the coding

matrix to preserve the locality structure of the sample. The purpose of the third term is to

propagate the locality information of similar samples, which is used to preserve the consistency

of features of similar samples. For each pair of samples (Yi,Yj), inspired by the excellent perfor-

mance of W on capturing the intrinsic subspace structure of data, a larger Wij means less dis-

tance between the two samples in the intrinsic subspace.

Sparse representation for image classification
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Numerical algorithm

To handle the proposed model in Eq (19), we reformulate it as

min
A

1

2
kY � XAk2

F þ ZkAk1 þ xtrðXASðXAÞTÞ
� �

ð20Þ

where tr(•) is the sum of diagonal elements of matrix, and S = L−W, L is a diagonal matrix

with Lii ¼
X

j

Wij. Then, we introduce a slack variable to make the objective function separa-

ble as

min
A;U

�
1

2
kY � XAk2

F þ ZkAk1 þ xtrðUTSUÞ
�

s:t: XA ¼ UT

ð21Þ

Introducing the auxiliary matrix H, the Lagrangian function of Eq (21) is

LrðA;U;HÞ ¼
1

2
kY � XAk2

F þ ZkAk1 þ xtrðUTSUÞ þ hH;XA � UTi þ
r

2
kXA � UTk

2

F

¼
1

2
kY � XAk2

F þ ZkAk1 þ xtrðUTSUÞ þ
r

2
kXA � UT � Hk2

F �
1

2r
kHk2

F

ð22Þ

Through ADMM, with some algebra, the variables can be updated as follows:

Akþ1 ¼ arg min
1

2
kY � XAk2

F þ ZkAk
1
þ

r

2



XA � ðUkÞ

T
� Hk





2

F

� �

ð23Þ

Ukþ1 ¼ arg min
r

2



U � ðXAkþ1 � HkÞ

T




2

F
þ xtrðUTSUÞ

� �

ð24Þ

Hkþ1 ¼ Hk þ rðXAkþ1 � ðUkþ1Þ
T
Þ ð25Þ

With gradient descent, the optimization in (23) can be reformulated as

Akþ1 ¼ arg min
rz

2
kA � Akk

2

F þ hrQAðA
k;Uk;HkÞ;A � Aki þ ZkAk

1

� �

ð26Þ

where QðA;Uk;HkÞ ¼ 1

2
kY � XAk2

F þ
r

2



XA � ðUkÞ

T
� Hk





2

F
. Further,

Akþ1 ¼ arg min
rz

2



A � Ak þ

1

rz
rQAðA

k;Uk;HkÞ





2

F
þ ZkAk1

� �

ð27Þ

whererQA(Ak,Uk,Hk) = −XT (Y−XAk)+ρXT (XAk−(Uk)T−Hk). And then, the problem can be

easily solved with the aforementioned SSO method.

Enforcing the first order derivative of formulation (21) to be zero, we can obtain

Ukþ1 ¼ rðrI þ zSÞ� 1
ðXAkþ1 � HkÞ

T
ð28Þ

With the solved coding matrix A, in our algorithm, a simple classification with reconstruc-

tion error is employed. Different from formulation (18), to be more adaptive to our proposed

coding scheme, the reconstruction error is designed as follows:

rðYiÞ ¼ arg min
k
fkXAi � XkA

k
i k

2

Fg ð29Þ
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where sample Yi is replaced by its reconstruction version. The overall algorithm is summarized

in Table 2.

Experiments and discussion

In our experiments, we evaluate the proposed algorithm on five publicly available datasets,

including three face datasets: Extended YaleB, AR, ORL, one object dataset: COIL-20, and a

handwritten dataset: USPS. The comparison classification methods include SRC in [6], LLC in

[9], LLE+SVM in [23], ProCR in [8], and NNSG in [10]. Considering the computational cost,

two dimensional reduction methods are used in our experiment. "Eigenface", proposed in

[24], is used for the face dataset, and PCA is implemented for the others. In our experiments,

30, 40 and 50 percent of the dataset are taken randomly as training samples respectively, and

the remaining ones are used as test samples. Also, the test experiment is implemented five

times for each method, and the average accuracy is reported as the final classification result,

which is shown in Figs 1–5. The detailed description for dataset and setting is listed as follows.

Table 2. Overall algorithm for proposed coding scheme.

Algorithm 2

Initial: test dataset Y, training dataset X, A0 = U0 = H0 = 0;

1. Learning self-supervised matrix W by Algorithm 1.

While k< K
2. Compute Ak by solving formulation (27);

3. Compute Uk with formulation (28);

4. Update Hk with formulation (25);

5. k k + 1;

end while

https://doi.org/10.1371/journal.pone.0199141.t002

Fig 1. Classification accuracy of comparison methods on Extended YaleB.

https://doi.org/10.1371/journal.pone.0199141.g001
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Fig 2. Classification accuracy of comparison methods on COIL20.

https://doi.org/10.1371/journal.pone.0199141.g002

Fig 3. Classification accuracy of comparison methods on AR.

https://doi.org/10.1371/journal.pone.0199141.g003
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Fig 5. Classification accuracy of comparison methods on USPS.

https://doi.org/10.1371/journal.pone.0199141.g005

Fig 4. Classification accuracy of comparison methods on ORL.

https://doi.org/10.1371/journal.pone.0199141.g004
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Datasets description and setting

Face dataset. The Extended YaleB face dataset includes 2414 frontal image of 38 persons,

and each person has about 64 images with different lighting conditions. The ORL dataset con-

tains 400 images of 40 persons, where 10 images with varying illumination, disguise, and facial

expression, are provided for each person. As for the AR dataset, it consists of 3120 faces from

120 persons, and provides about 26 images for each person also with different lighting condi-

tions, facial expression and occlusion (glasses or scarf). The samples of the Extended YaleB

and ORL are cropped and resized to 32 × 32. The size of AR used in our experiments is

55 × 40. The dimension is reduced to 200.

Object dataset. The COIL20 contains 1440 images from 20 objects, and each object has

72 images obtained from continuous angles at intervals of five degree. In our experiments, the

images are also cropped and resized to 32 × 32. The dimension is reduced to 100.

Handwritten dataset. The USPS dataset has 9298 handwritten digit images for ten digits

from 0 to 9 and the size of each image is 16 × 16. In our experiments, the dimension of data is

reduced to 100.

Results analysis

From the results depicted in Figs 1–5, it can be seen that LLE+SVM, in which only few neigh-

bors are used for structural embedding, achieves the worst results. Furthermore, all the com-

parison methods achieve a lower accuracy on ORL than on other datasets, which is due to the

insufficient number of samples in each category of ORL. Therefore, it can be concluded that

the collaborative dependency of samples is very important to preserve the structural informa-

tion among the different categories. On the other hand, LLC takes the relationship between

the sample and atom as the coding constraint, which weakens the collaboration of samples. So,

LLC has poor classification results on face datasets (even worse than the conventional SRC),

but shows some superior performances on the object category. By constructing a graph with

non-negative sparse representation to control the labels consistency, NNSG shows competitive

classification results. However, alternation between graph construction and supervised learn-

ing demands huge computation cost with the increasing number of samples. By exploiting the

mutual dependency among the samples, the ProCR and our proposed method achieve better

performance than others. Nevertheless, unlike ProCR, our proposed method aims to explore

the relationship from both test samples and training samples. Moreover, better manifold struc-

ture and locality are explored by the sparse low-rankness model to propagate the self-super-

vised constraint mechanism between samples’ coding. As a direct result, our proposed coding

scheme consistently achieves the best classification accuracy.

To further verify the performance, the coding matrices of SRC, LLC, ProCR and the pro-

posed scheme are shown in Fig 6. They are obtained under the experiments on Extended

YableB with 50 percent training samples. Also, though the test samples are chosen randomly in

the experiments, we reorder them here in terms of their category to present the structure more

clearly. From Fig 6, it can be observed that the proposed coding scheme has obvious block-diag-

onal structure, which means that our method can better preserve the structural and locality

information of similar samples in the same category to produce more discriminative results.

For more clarity, we take Extended YaleB as example to show some ability of our proposed

model versus illumination varying. To visualize the results, we don’t reduce the dimensionality

of sample and take the original image as training and test sample. Similarly, 32 images of each

class are randomly selected as the training data X and remaining are used as Y for testing.

With our proposed model, the self-supervised coding matrix A for test samples can be ob-

tained. We randomly select 30 test images from the 6 classes(5 images for each class) as
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examples to show their synthesis results in Fig 7. For each test sample yi, its synthesis sample ŷs
i

can be obtained as ŷ s
i ¼ XAi.

From Fig 7, it can be observed that the synthesis sample partly remove the illumination lim-

itation. Actually, these promising results are obtained due to the collaborative representation

among training samples. Furthermore, though the fidelity term kY � XAk2

F in the proposed

model enforces the synthesis sample close to the test sample, the residual component is still

existed between them. Hence, some undesired components, such as illumination limitation in

face, or appearance varying of object will be left in the residual errors.

Finally, we will give some discussion on the computational complexity and convergence of

our method. It can be observed that the computational cost of proposed model is mainly deter-

mined by Eqs (27) and (28). Without loss of generality, we assumes that the size of X and A are

d1 × n and n × n respectively. In each iteration, the we firstly employ the SSO method whose

complexity is O(n2). And then, a matrix pseudo inverse operation is applied for U whose com-

plexity is O(d1n2). So, the total cost of our algorithm is O(d1n2 + n2), that is, the computational

complexity is at most O(d1n2). For the convergence, we take the Extended YaleB as example to

plot its objective function value versus the iterative steps in Fig 8. From Fig 8, we can see that

the convergence curve of our proposed algorithm is decreased monotonically and enjoys the

approximate inverse proportion convergence rate.

Fig 6. The coding matrices of Extended YaleB with different coding scheme. Top row: visulization of coding matrices of SRC(left) and LLC

(right). Bottom row: visulization of coding matrices of ProCR(left) and our proposed method(right). The visualization results are obtained under

the experiments with 50 percent of training samples.

https://doi.org/10.1371/journal.pone.0199141.g006
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Conclusions

To address the image classification problem, in this paper we propose a discriminative sparse

coding approach, in which a representation matrix is first computed by joint low-rankness

Fig 7. Visualization results on Extended YaleB. The original face samples are shown in the left, the synthesis face samples are shown in the middle and the residual

errors are shown in the right.

https://doi.org/10.1371/journal.pone.0199141.g007

Fig 8. The convergence curve of Extended YaleB.

https://doi.org/10.1371/journal.pone.0199141.g008
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and sparse representation model to preserve the latent manifold structure and locality of test

samples. Next, by incorporating the representation matrix, a self-supervised sparse coding

model is established to improve the classification performance. Through this coding scheme,

the mutual dependency between similar samples can be better explored and propagated,

which will generate self-supervised mechanism to enforce the close coding for similar samples.

Meanwhile, a more suitable reconstruction error is designed as the classification criterion.

Moreover, we also provides an iterative numerical algorithm to solve the novel objective func-

tion in the proposed model based on ADMM. Several experiments on five public datasets

clearly show that our proposed method outperforms existing state-of-the-art classification

methods.
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