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Abstract
Background: When creating mechanistic mathematical models for biological signaling processes
it is tempting to include as many known biochemical interactions into one large model as possible.
For the JAK-STAT, MAP kinase, and NF-κB pathways a lot of biological insight is available, and as
a consequence, large mathematical models have emerged. For large models the question arises
whether unknown model parameters can uniquely be determined by parameter estimation from
measured data. Systematic approaches to answering this question are indispensable since the
uniqueness of model parameter values is essential for predictive mechanistic modeling.

Results: We propose an eigenvalue based method for efficiently testing identifiability of large
ordinary differential models and compare this approach to three existing ones. The methods are
benchmarked by applying them to models of the signaling pathways mentioned above. In all cases
the eigenvalue method proposed here and the orthogonal method find the largest set of identifiable
parameters, thus clearly outperforming the other approaches. The identifiability analysis shows that
the pathway models are not identifiable, even under the strong assumption that all system state
variables are measurable. We demonstrate how the results of the identifiability analysis can be used
for model simplification.

Conclusion: While it has undoubtedly contributed to recent advances in systems biology,
mechanistic modeling by itself does not guarantee unambiguous descriptions of biological
processes. We show that some recent signal transduction pathway models have reached a level of
detail that is not warranted. Rigorous identifiability tests reveal that even if highly idealized
experiments could be carried out to measure all state variables of these signaling pathways, some
unknown parameters could still not be estimated. The identifiability tests therefore show that the
level of detail of the investigated models is too high in principle, not just because too little
experimental information is available. We demonstrate how the proposed method can be
combined with biological insight, however, to simplify these models.
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Background
Several large and detailed mathematical models for signal
transduction pathways exist in the literature. Lipniacki et
al. [1] model the NF-κB pathway using 15 state variables
and 29 parameters. Yamada et al. [2] introduce a system
of ordinary differential equations that describe the JAK-
STAT pathway with 31 state variables and 52 parameters,
and Schoeberl et al. [3] describe the EGF pathway with a
model that comprises 103 variables and 98 parameters.
Models of this kind can provide a concise and unambigu-
ous representation even of very complex signaling path-
ways. However, since usually some of their parameters are
not known, these models pose demanding parameter esti-
mation problems. Two fundamental problems must be
considered in this context: 1) the larger the number of
unknown parameters in a model, the larger the amount of
quantitative data necessary to determine meaningful val-
ues for these parameters. 2) Even if appropriate experi-
mental data are available, model parameters may not be
uniquely identifiable [4]. Ultimately, reliable predictive
mathematical models can only be created after addressing
these two problems.

Parameter identifiability has been paid little attention to
in the recent systems biology literature. Exceptions exist,
however. Swameye et al. [5] carefully check the identifia-
bility of their JAK-STAT model. The authors propose a
small model (four state variables and six parameters) and
demonstrate that the model provides quantitatively relia-
ble predictions despite its small size. In the field of HIV/
Aids modeling differential algebraic techniques have been
used to prove identifiability [6-8] for models of similar
size. Other examples can be found in [9,10].

The problem of testing identifiability amounts to answer-
ing the following question: given a mathematical model
of a system together with system input and output data,
are the model parameters uniquely determined? The iden-
tifiability tests investigated here can be carried out before
experimental data are available. To this end a model is
used first to generate simulated data. Subsequently, it can
be checked whether the model parameters are uniquely
defined by the simulated data. Only if identifiability can
be assured for the model and the simulated data it is rea-
sonable to continue with lab experiments, identifiability
tests with experimental data, and, eventually, parameter
estimation. In the present paper we exclusively use simu-
lated data.

Several notions of identifiability exist. We attempt a brief
and informal summary of the essential ideas here. Stricter
terminology is introduced in subsequent sections. Essen-
tially, a model is called globally identifiable if a unique
value can be found for each model parameter such that
the model reproduces the measured or simulated output

data. If, in contrast, a finite number of points in the model
parameter space can be found, for which the model repro-
duces the output data the model is called locally identifi-
able. Finally, if an infinite number of parameter values
exists that reproduce the model input-output behavior,
the model is considered to be unidentifiable. Independ-
ently of these three notions we need to distinguish
between at-a-point identifiability on the one hand and
structural identifiability on the other hand [11,12]. These
two concepts distinguish two classes of methods for iden-
tifiability testing from one another. Methods for at-a-
point identifiability testing can only be applied if candi-
date values for the model parameters are known a priori.
This situation arises, for example, when parameter values
for a model have already been published in the literature,
as is the case for the signaling pathway models investi-
gated here. In contrast, all mathematically and biologi-
cally possible parameter values must be considered as
candidate values, if no information on the model param-
eter values is known a priori. In this case we speak of struc-
tural identifiability testing.

Several techniques exist for analyzing structural identifia-
bility. These methods are based on power-series expan-
sion [13], transfer function analysis [14], differential
algebra [6,12,15], interval arithmetics [16], state isomor-
phisms [17-19] or semi-infinite programming [20,21].
These methods are, however, either restricted to linear
models or to models with less than 10 states and parame-
ters in the nonlinear case [22].

For large nonlinear models only methods for testing local
at-a-point identifiability are feasible. A number of meth-
ods to test local at-a-point identifiability have been pro-
posed in the literature. Some of these aim at determining
the largest subset of identifiable parameters [23,24], other
methods are tailored to finding the unidentifiable param-
eters [25,26], or to finding parameters that do not affect
the input-output behavior of the model [27,28]. All these
methods are based on the sensitivity matrix of the model
responses (for details see section Methods for local at-a-
point identifiability testing). In contrast to the approaches
mentioned so far the method introduced in [29] does not
depend on sensitivity information. This method repeat-
edly estimates parameters with randomly chosen start val-
ues and extracts dependencies between parameters with a
statistical method. The data used for the parameter esti-
mation steps is created by simulating the model at a nom-
inal parameter point. The approach does not belong to
the class of methods for at-a-point identifiability testing,
since it is delocalized by using the above mentioned ran-
dom multistart approach for parameter estimation. Con-
sequently, the method is more rigorous than the discussed
at-a-point identifiability tests, but not as rigorous as the
structural methods.
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The examples treated here turn out not to be locally at-a-
point identifiable, therefore it is not reasonable to con-
sider stricter concepts of identifiability. In the sequel the
term identifiability will refer to local at-a-point identifia-
bility if not noted otherwise.

We compare the methods for identifiability testing intro-
duced by Yao et al. [24], Jacquez and Greif [25], and
Degenring et al. [27], which for ease of reference we refer
to as the orthogonal method, the correlation method, and
the principle component analysis (PCA) based method,
respectively. Specifically, we would like to establish which
of these approaches is the method of choice for identifia-
bility testing of large signal transduction pathway models.
We omit the method published by Brun et al. [23] due to
its combinatorial complexity. Similarly, the method pro-
posed by Hengl et al. [29] is omitted, because it proved to
be too computationally demanding for the examples
treated here. The method was tested with default settings.
When applied to the smallest of the models treated here,
the wall clock computation time was about 15 hours in
contrast to wall clock computation times of less than a
minute for the methods compared here. When applied to
the JAK-STAT model, the method proposed by Hengl et al.
[29] did not finish within a week. It was therefore not
included in the comparison. Finally, we note an interest-
ing approach has only very recently been proposed by
Chu and Hahn [30]. Since this approach solves a problem
that is similar to, but after all different from, the identifia-
bility tests addressed here, it is not included in the com-
parison. All results are compared to results found with our
own method [31], which we refer to as the eigenvalue
method for short. The eigenvalue method is an extension
of an approach published by Vajda et al. [26]. We note the
eigenvalue method has independently appeared in a
recent paper by Schittkowski [32].

This paper has three contributions: 1) we reveal that three
well established models of signal transduction are not
identifiable, and demonstrate how results from identifia-
bility studies can be used to simplify these models. 2) We
suggest an efficient numerical method for identifiability
testing of large nonlinear systems of ordinary differential
equations in general, and 3) we compare our method to
three previously published methods.

This paper is structured as follows. We start by reviewing
the theory of identifiability and introduce the four meth-
ods for local at-a-point identifiability testing compared
here. Subsequently, the three pathway models used in the
case studies are introduced and each of the models is ana-
lyzed with each of the methods. Insight from this analysis
is used to simplify the models.

Methods
In this section we will first introduce the mathematical
system class and give a more concise definition of identi-
fiability. We focus on local at-a-point identifiability and
describe the four methods for testing local at-a-point iden-
tifiability compared here. Finally, we summarize the three
signaling pathways and the corresponding models.

System Class
The concept of identifiability applies to a large system
class. Here we treat models of the form

since many biological signaling pathways can be repre-

sented by systems of this form. In equation (1) ,

,  and  denote the state variables,

the parameters, the inputs, and the outputs of the dynam-
ical system, respectively. A biological parameter, for exam-
ple a kinetic constant, corresponds to a component pk of

the parameter vector. The functions f and h map from an

open subset  onto 

and , respectively, and are assumed to be smooth.
Note both a lab experiment and a simulation are uniquely
defined by the initial conditions x(0) = x0 and the values

of the inputs u(t) from t = 0 to the final time t = tf. Both an

experiment and a simulation result in values of the out-

puts y(t) at successive points  in time

where nt denotes the number of measurements or stored
simulation results, respectively. In the present paper, out-
put data of the form (2) is obtained from simulations with
models that have been adjusted to experimental data by
other authors before [1-3].

The solution of equation (1) that results for a particular
choice of initial conditions x0, parameters p, and inputs
u(t) is denoted by

The solution of equation (1) and its derivatives with
respect to the parameters are computed with the integra-
tor DDASPK [33]. The output behavior of the model is
given by the response function
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Concept of identifiability
Here we summarize the notions of identifiability as neces-
sary for the paper (see [4] for a review). Assuming that the
inputs u(t), the initial conditions x0, and the measurement
times ti are given, the different notions of identifiability
can be defined as follows.

Definition 1: The parameter pk of the model (1) is called

globally structurally identifiable if, for all admissible val-

ues  and all ,

implies

Definition 2: The parameter pk of the model (1) is called

locally structurally identifiable if, for all , there

exists a neighborhood  such that for all

, equations (5) imply equation (6).

The parameter vector p is called globally structurally or
locally structurally identifiable if all its components pk are
globally structurally or locally structurally identifiable,
respectively. Global and local at-a-point identifiability are
defined as follows.

Definition 3: Let  be a point in the parameter space

of the model (1). The parameter pk of the model (1) is

called globally at-a-point identifiable at the point p* if, for

all , equations (5) imply equation (6).

Definition 4: Let  be a point in the parameter space

of the model (1). The parameter pk of the model (1) is

called locally at-a-point identifiable at the point p* if there

exists a neighborhood  such that for all

, equations (5) imply equation (6).

The following subsection will introduce the four methods
for at-a-point identifiability testing compared in this
work.

Methods for local at-a-point identifiability testing
The compared numerical methods for local at-a-point
identifiability testing are based on the sensitivity of the
model outputs at discrete time points tk, k ∈ {1,..., nt},
with respect to the parameters. The sensitivity information
is stored in the ny nt × np dimensional sensitivity matrix S.
S is a block matrix that consists of time dependent blocks
s(ti) of size ny × np [34]:

The entries of s(ti) are called sensitivity coefficients. For a
nominal parameter vector p*, given x0, and fixed time tk
with k ∈ {1,..., nt}, they are defined as

Essentially, the sensitivity coefficients describe how sensi-
tive the system output is to changes in a single parameter.
If the model output is highly sensitive to a perturbation in
one parameter we can consider this parameter to be
important for the system behavior. In contrast, a parame-
ter that has no influence on the outputs is a candidate for
an unidentifiable parameter. Linearly dependent columns
of the sensitivity matrix imply that a change in the system
outputs due to a change in one parameter, say pj, can be
compensated by changing some or all of the dependent
parameters pk, with k ≠ j. If dependencies exist, parameter
estimation will fail or result in non-unique parameter val-
ues [26]. The correlation and orthogonal method are
based on this idea.

For ease of presentation, we first give a detailed introduc-
tion to the eigenvalue method proposed here. The
remaining methods are summarized briefly only, and the
reader is referred to the appendix for more details. Since
all methods analyze at-a-point identifiability, nominal
values for the parameters are required. For the test cases
treated here parameter values are available from the liter-
ature [1-3] and denoted by plit.

Eigenvalue method
The eigenvalue method is similar to the method pub-
lished by Vajda et al. [26]. The eigenvalue method pro-
posed here differs from the approach proposed by Vajda
and coworkers in that a manual inspection of eigenvalues
and eigenvectors is not necessary here. As a result, an auto-
matic analysis of large models becomes feasible. We first
describe the eigenvalue method and subsequently
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describe differences to the method published by Vajda et
al. [26] in more detail.

We consider the least squares parameter estimation prob-
lem that amounts to minimizing cost functions of the
form

with respect to p, where the yi (tj) are the measured or sim-
ulated data introduced in equation (2). In Gaussian
approximation, the Hessian matrix H of equation (9) has
the entries

for k, l ∈ {1,..., np}. As indicated in equation (10), H can
be expressed in terms of the sensitivity matrix S intro-
duced in equation (7). H is a symmetric matrix and there-
fore its eigenvalues are real. Furthermore, H is positive
semi-definite.

In order to study the identifiability of the system in equa-
tion (1) for given x0, u(t) and for nominal parameters

 we first solve equation (1) by numerical integra-

tion and subsequently calculate H as given by equation
(10). We set p* to parameter values taken from the litera-
ture plit in all calculations. All identifiability tests carried
out in the present paper therefore amount to asking
whether the investigated signaling models are identifiable
at the literature parameter values plit. As pointed out
already in the Background section, identifiability tests of
this type clarify whether a given model is reasonably
detailed even before experiments are carried out. In this
sense, the identifiability of a model at nominal or litera-
ture values for its parameters is considered to be a neces-
sary condition for its practical identifiability with
measured data.

Let λj and uj denote the jth eigenvalue and the correspond-
ing eigenvector of H, respectively. Assume the eigenvalues

to be ordered such that , assume the
eigenvectors uj to be normalized such that ujT uj = 1, and
assume p* to minimize equation (9). Consider the change

of ϕ when moving from p* in a direction αuj for some real

α. Gaussian approximation yields

where the linear order is zero, since p* is is a minimum by
assumption. Since Huj = λj uj and ujT uj = 1, the last equality
in equation (11) holds. Equation (11) implies that ϕ does
not change when moving from p* to p* + Δp if Δp = αuj for
any eigenvector uj with λj = 0 and any real α. In words, the
directions uj corresponding to λj = 0 are those directions in
the parameter space along which the least squares cost
function is constant. We call these directions degenerate
for short. In the particular case of

where the entry 1 is in position k, the model is not identi-

fiable with respect to the kth component . The

approach proposed here will therefore remove this

parameter from consecutive calculations by fixing  to

. In general however, uj will not be of the special

form (12), but uj will be a vector with more than one non-
zero entry, therefore the choice of k is not obvious. In this
case, we select a k such that

, and remove the kth

component of p* from the parameter estimation problem
by fixing it to its literature value. In the examples treated
below this choice of k turns out to be appropriate in all
cases. In general, this might not be the case, however.

There might be entries of , l ≠ k, with an absolute value

 close or equal to the maximal value . We call

such entries  and the corresponding parameters co-

dominant, since together with  they dominate the

degenerate direction. A simple example for a system with
co-dominant parameters is given in Appendix A. We will
discuss the issue of co-dominant parameters for the exam-
ples treated here in the Results section.

In practical applications the smallest eigenvalue will typi-
cally not be zero but close to zero. In this case an eigen-
value cut-off value e ≈ 0, e > 0 needs to be specified. An
eigenvalue λ1 < e is considered to be small enough to be
treated as zero. Note λj ≥ 0 for all j since H is positive semi-
definite.
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The proposed algorithm splits the set of parameter indices
{1,..., np} of a given model into two disjoint subsets which

we denote by I and U. Upon termination, the sets I and U
= {1,..., np} - I contain the indices to the identifiable and

the unidentifiable parameters, respectively. We denote the
current number of elements in I by nI and the current ele-

ments in I by . The algorithm proceeds as

follows.

1. Choose Δt, tf, e. Set p* = plit. Set I = {1,..., np}, nI = np,
and U = ∅.

2. If I is empty, stop. The model is not identifiable with
respect to any parameter in this case.

3. Fix the parameters pk, k ∈ U to their literature values

and consider only the pk, k ∈ I to be variable. Formally,

this corresponds to setting p to  and

treating all remaining parameters pk, k ∈ U as fixed

numbers.

4. Calculate ϕ(p*) according to equation (9). Calcu-

late the Hessian matrix of ϕ with respect to the param-

eters pk with k ∈ I and evaluate it at p = p*. Calculate

the eigenvalues λj and corresponding eigenvectors uj of
the Hessian matrix. Assume the eigenvalues to be

ordered such that . Assume the
eigenvectors to be normalized.

5. If λ1 ≥ e, stop. The model is identifiable with respect
to the parameters pk for all k ∈ I.

6. If λ1 ≥ e, select k such that

. Remove k from the

set I, add k to the set U, set nI to the current number of

elements in I, and return to step 2.

The order in which parameters are removed from I deter-
mines the ranking of parameters from least identifiable to
most identifiable.

The method is similar to the approach introduced by
Vajda et al. [26]. These authors also analyze the eigenvec-
tors that correspond to small eigenvalues of the Hessian
matrix, but they focus on the dependencies between
eigenvectors that arise due to special parameter combina-
tions of the form p1/p2 or p1·p2 in the model. In a two step
procedure Vajda et al. first decide which parameters to

lump together (for example, pnew = p1·p2) and subse-
quently recalculate the eigenvalues and eigenvectors for
the system with the new lumped parameters. These two
steps are repeated until the smallest eigenvalue is suffi-
ciently large. The lumping step requires manual inspec-
tion of the eigenvalues and eigenvectors of the Hessian
matrix. While the approach proposed by Vajda et al.
worked very well for their example with 5 parameters, it
becomes infeasible for models with considerably more
parameters. The examples treated in the next section dem-
onstrate that our approach, in contrast, can be applied to
models with up to at least a hundred parameters. Moreo-
ver, our approach can be carried out automatically, while
the approach suggested by Vajda et al. was never intended
for this purpose.

Correlation method
The correlation method was first introduced by Jacquez
and Greif [25] who compared identifiability results
achieved with the correlation method to analytical results
obtained with a transfer function method (see [14] for a
review). Jacquez and Greif [25] consider only small linear
compartmental models with up to 3 states and 5 parame-
ters. In most of the examples the correlation and the trans-
fer function method were in agreement.

In the systems biology literature the correlation method
was applied by Zak et al. [9] to investigate identifiability
of a large genetic regulatory network (nonlinear, 44 states
and 97 parameters). More recently, Rodriguez-Fernandez
et al. [10] embedded the correlation method into their
framework for robust parameter estimation in order to
exclude unidentifiable parameters from parameter esti-
mation.

The central idea of the correlation method is to find uni-
dentifiable parameters by investigating the linear depend-
ence of the columns of S (for details see Appendix B). The
correlation method approximates linear dependence by
calculating the sample correlation [35] of two columns

 of S. The sample correlation is given by

where

I i inI
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In equations (13)–(16) corr(S.i, S.j), cov(S.i, S.j), σ (S.i),

and  denote the sample correlation between S.i and S.j,

the sample covariance between S.i and S.j, the sample

standard deviation of S.i, and the mean of the entries of

S.i, respectively.

Two linearly dependent columns S.i and S.j of the sensitiv-
ity matrix give rise to an absolute value of the correlation
corr(S.i, S.j) = 1. In the examples treated here, none of the
parameters exhibit a correlation of exactly ± 1, however. In
the numerical implementation of the method, two col-
umns of S are considered correlated if the absolute value
of their correlation is equal to or larger than 1 –ec, where
ec ∈ [0, 1] is a parameter of the algorithm. We stress that
while ec is a tuning parameter, the comparison of the iden-
tifiability methods is not affected by the choice of ec. As
explained below, we systematically vary ec over its entire
range 0 ≤ ec ≥ 1 in the comparison.

When applying the correlation method to the pathway
model examples, two problems arise regularly that have
not been discussed by Jacquez and Greif [25]. For one, the
method detects pairs of correlated parameters, but there is
no criterion which one of the parameters from a pair to
consider unidentifiable. Moreover, if more than one pair
of correlated parameters is detected, there is no criterion
to choose among the pairs.

In order to mitigate these ambiguities we introduce the
total correlation

where

and L denotes the set of indices of those parameters that
have not been found to be unidentifiable in any previous
iteration. We select the parameter with the highest total
correlation for removal. Some cases remain, however, in

which two parameters have the same total correlation. In
these cases we pick one parameter at random.

In order to be able to compare results to those of the other
methods, we use the correlation method to rank model
parameters from least identifiable to most identifiable.
More precisely, we initially set ec = 0 and L = {1... np} and
calculate the total correlations (17) for all parameters in L.
If parameters with nonzero total correlations exist we
select the parameter with highest total correlation to be
unidentifiable and remove its index from L. If no such
parameter exists we increase ec until nonzero total correla-
tions occur. The order in which parameters are removed
from L creates a ranking of parameters from least to most
identifiable. The algorithm is described in detail in
Appendix B. Based on the ranking of parameters the
method is compared to the other three approaches. The
comparison is explained in detail in the subsection enti-
tled Method comparison.

Principal component analysis (PCA) based method
Degenring et al. [27] introduce three criteria based on PCA
that rank the influence of parameters on model output.
Parameters that do not affect the model outputs are uni-
dentifiable by definition and can be removed from the
model equations. Degenring et al. successfully use their
approach to simplify a complex metabolism model of
Escherichia coli K12. A complete description how to get a
full ranking using the three criteria can be found in [28].
A pseudo code description of the method can be found in
Appendix C.

The PCA based method differs from the other methods
described here in that it does not use the sensitivity matrix
S as defined in equation (7) but a truncated matrix which

we refer to by . This matrix  is defined as

where i ∈ {1,..., ny}. While the sensitivity matrix S as

defined in equation (7) describes all responses in one

matrix,  is created for each response ri separately.

Three PCA based criteria are applied to each of the ny

matrices . As a result 3ny parameter rankings are cre-

ated, which we represent by 3ny lists
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of integers , where j ∈ {1, 2, 3} and i ∈

{1,..., ny}. The first ranking position  and the last

ranking position  contain the index of the parameter

with the lowest and the highest influence on the model

output ri, respectively. The lower index j ∈ {1, 2, 3}

denotes the criterion by which the ranking is calculated.
We will explain one of the criteria in more detail in order
to give the reader an idea of the method. The remaining
two criteria are summarized in Appendix C. All 3ny rank-

ings are integrated into one ranking by applying a strategy
described in [28], which we briefly summarize below.

Let,  and  denote the jth eigenvalue and corre-

sponding eigenvector of , respectively, and assume
the eigenvalues to be ordered such that

. For each i ∈ {1,..., np} evaluate the

first criterion as follows.

1. Set L1 = {1,..., ny}.

2. For q from 1 to np do:

• Find rl such that .

• Set  = rl.

• Set Lq+1 = Lq - {rl}.

The first criterion loops over the eigenvectors starting with
the eigenvector that belongs to the smallest eigenvalue. It
identifies the largest absolute entry of each eigenvector
and selects the corresponding parameter for removal, if
this parameter has not been selected yet. The index of the
kth parameter selected for removal is ranked at position k,
where k ∈ {1,..., np}.

The remaining two criteria of the PCA based method are
similar but differ with respect to the process for chosing rl.
For brevity we omit details and refer the reader to Appen-
dix C. A final ranking J that incorporates all 3ny previously
calculated rankings is obtained as follows. Set Nq = ∅, for
all q = 1,..., np. Set J to an empty list.

For q from 1 to np do:

• For all j ∈ {1, 2, 3} and all i ∈ {1,..., ny} set

.

• Set .

• Only if Nq ≠ ∅ append the Nq to the list J.

First note that an iteration q might exist, in which no Nq is
appended to J. Therefore the final number nJ of elements
in J is not necessarily equal to but might be smaller than
np. Further note that entries of J do not necessarily corre-
spond to indices of single parameters but to sets of param-
eter indices. Therefore, a ranking position Ji might contain
several parameter indices an internal ranking of which
cannot be obtained. This ambiguity hampers not only the
interpretation of the ranking result but also the compari-
son with the rankings produced by the other methods. We
describe a strategy to deal with the latter problem in sec-
tion entitled Method comparison.

Orthogonal method
The orthogonal method was developed by Yao et al. [24]
to analyze parameter identifiability of an Ethylene/Butene
copolymerization model with 50 parameters. In the field
of systems biology the method has been applied in a
framework for model identification [36] and in the iden-
tifiability analysis of a NF-κB model [37].

We summarize the concept of the method and refer the
reader to Appendix D for details. The method iterates over

the columns S.k of the sensitivity matrix S, with k ∈ {1,...,

np}. Those columns of S that correspond to identifiable

parameters are collected in a matrix Xq where q is the iter-
ation counter. The algorithm starts by selecting the col-
umn of S with highest sum of squares in the first iteration.
In iteration q + 1, q columns of S have been selected. In the
order of their selection these columns form the matrix Xq.
The next step essentially amounts to selecting the column
S.k that exhibits the highest independence to the vector

space V spanned by the columns of Xq. More precisely, an

orthogonal projection  of S.k onto V is calculated and

 is interpreted as the shortest connection

from V to S.k. The squared length of  is used as measure

of independence. If the length of  is near zero, S.k is

nearly linearly dependent to the columns of Xq. Con-

versely, a large value of  indicates that parameter

pk is linearly independent to the columns of Xq. In the

orthogonal method the parameter pl where
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 is selected as the next identifiable

parameter.

Essentially, the orthogonal method finds those columns
of S that are as independent as possible. The quantity

 can be interpreted as a measure of independence

that has been freed from dependencies on previously
selected parameters. Therefore not only the influence of a
parameter on the outputs, but also the dependencies
between the parameters are accounted for by using

 as a measure. A visualization of the orthogonal

method can be found in Appendix D.

Yao et al. [24] stop the selection process once the length

of the maximal  drops below a cut-off value o ≈ 0, the

choice of which is rather arbitrary. In the present paper we
do not apply this cut-off criterion but merely rank all
parameters from most to least identifiable where the
terms most identifiable and least identifiable are used in
the same sense as in the correlation method. A compari-
son to the results of the other methods is therefore not
affected by the choice of o. Our approach to comparing the

methods is explained in the section entitled Method com-
parison.

Method comparison
The central idea behind our comparison of the methods is
the equivalence between the local identifiability of a
model and the local positive definiteness of the Hessian
matrix (10) at a minimum of the least squares parameter
cost function (9) for this model. Due to this theoretical
result, which has been established by Grewal and Glover
[38], we can test local identifiability at a point in the
model parameter space by testing the Hessian matrix (10)
for positive definiteness at this point. Since the Hessian
matrix is positive definite if and only if all its eigenvalues
are strictly positive, we consider a model to be identifiable
if the eigenvalues are bounded below by a small strictly
positive number . Note the eigenvalue method proposed
here is based on the same idea in that it selects those
parameters to be unidentifiable that cause eigenvalues
smaller than .

By virtue of the relation between local at-a-point identifi-
ability and the eigenvalues of the Hessian matrix we can
compare all four identifiability testing methods to one
another with the same criterion and an unique parameter
value . For a given model we first create a ranking of the
parameters from least to most identifiable with each
method as described in the previous four sections. For

each parameter ranking we then fix the parameter consid-
ered to be the least identifiable to its literature value, cal-
culate the Hessian matrix (10) with respect to the
remaining parameters, and determine the smallest eigen-
value. In all following steps we additionally fix the next
least identifiable parameter and recalculate the Hessian
and smallest eigenvalue. This process is carried out until
the smallest eigenvalue exceeds . The parameters that need
to be fixed in order for the smallest eigenvalue to exceed
are considered to be the unidentifiable parameters.
Clearly, the smaller the set of unidentifiable parameters,
the larger the set of identifiable parameters or, equiva-
lently, the larger the number of parameters for which the
least squares parameter estimation problem can be
solved. In this sense we consider the method to be the best
one that results in the smallest number of unidentifiable
parameters in our comparison.

Note in contrast to the other methods, the ranking created
with the PCA based method does in general not contain
one but several parameters. In such a case we fix all
parameters ranked at the same position at once and
reevaluate the smallest eigenvalue of the Hessian matrix.

The last ranking position  created by the PCA based

method contains the indices of all parameters that have
not been ranked previously. Fixing of parameters pk, with

k ∈ , would therefore not leave any parameter unfixed.

For this reason we consider the PCA method to have

failed, if fixing of all parameters with indices in 

does not lead to a value of the smallest eigenvalue larger
than or equal to .

Pathway model description
Having introduced the methods to be compared, we
briefly summarize the three pathways and the correspond-
ing models used for the identifiability studies.

JAK-STAT pathway
The Janus Kinase (JAK) – signal transducer and activator
of transcription (STAT) pathway is triggered by cytokines
and growth factors. The pathway has an impact on the
expression of genes that regulate diverse cellular proc-
esses, such as cellular proliferation, differentiation, and
apoptosis. A detailed model of the Interferon-induced
JAK-STAT pathway is given by Yamada et al. [2]. This
model describes the following signal transducing steps.
Upon ligand binding the receptor dimerizes thus trigger-
ing the activation of receptor-associated JAK. Activated
JAK immediately phosphorylates the receptor complex,
enabling the binding and subsequent phosphorylation of
cytoplasmic STAT. Phosphorylated STAT can dimerize,
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and finally, dimerized STAT is imported into the nucleus.
Here it activates target genes, one of which is the suppres-
sor of cytokine signaling 1 (SOCS1), an important medi-
ator of negative feedback.

EGF induced MAP kinase pathway
Mitogen-activated protein (MAP) kinases are involved in
mitosis and the regulation of cellular proliferation. The
Epidermal Growth Factor (EGF)-induced MAP kinase
pathway is centered on a three kinase cascade that termi-
nates with the dual phosphorylation of the third, so-
called MAP kinase. EGF stimulation leads to dimerization
of the EGF receptor. The dimerized EGF receptor triggers
the phosphorylation of Raf, the first kinase of the cascade.
Raf, in turn, phosphorylates the mitogen extracellular
kinase, MEK, the second kinase in the cascade, which
finally phosphorylates the MAP kinase (extracellular sig-
nal-related kinase, ERK). Phosphorylated ERK regulates
several proteins and nuclear transcription factors and con-
trols the expression of target genes. The model published
by Schoeberl et al. [3] additionally includes the internali-
zation of EGF receptor and two further modules: an SH2-
domain containing protein (SHC) dependent module
and an SHC independent one.

NF-κB pathway
Nuclear Factor-κB (NF-κB) is a transcription factor, which
regulates genes involved in inflammation, immune
response, cell proliferation, and apoptosis. In the unstim-
ulated cell NF-κB is captured in the cytoplasm by the pro-
tein inhibitor of NF-κB (IκBα). Upon stimulation by
pathway activating signals such as the Tumor Necrosis
Factor (TNF), the IκB kinase (IKK) is activated. Activated
IKK phosphorylates IκBα thus inducing its degradation.
As a consequence NF-κB is released, translocates into the
nucleus and regulates effector genes. NF-κB induces its
own downregulation by inducing the production of two
proteins: 1) IκBα that inhibits NF-κB by relocating it to
the cytoplasm and 2) the zink-finger protein A20 that
represses IKK and consequently indirectly inhibits NF-κB.

Results
In this section the results of the identifiability analysis are
reported. All simulations are carried out with literature
values plit for the model parameters, which are taken from
the original publications of the models [1-3]. We assume
that all state variables are available as outputs, i.e. y(t) =
x(t) and ny = nx. Clearly, it is far from realistic to assume all
state variables could be measured in an actual experiment
for any of the signaling pathways. Since even under this
strong assumption the models turn out not to be identifi-
able, however, it is not reasonable to investigate the iden-
tifiability with fewer outputs. In fact our identifiability
results show that the models are overparameterized even
under the very strong assumption of all state variables

being measurable. The algorithmic parameter  is set to  =
10-4. While this value is motivated by our experience with
numerical parameter estimation problems, we admit that
it is somewhat arbitrary. Note, however, the comparison
of the identifiability testing methods is consistent in that
the same value  = 10-4 is used throughout. Output values
y(t) are recorded from the simulations at equidistant
points in time. The JAK-STAT model is simulated for
28800 seconds (8 hours) and the response function is
recorded with a time step of Δt = 360 s. The corresponding
values for the MAP kinase and NF-κB models are 3600 s
(1 hour), Δt = 120 s, and 21600 s (6 hours), Δt = 360 s,
respectively. These values are not critical. Similar results
are obtained with other values of tf and Δt (data not
shown).

JAK-STAT pathway analysis
Figure 1 summarizes the results of the analysis of the JAK-
STAT model. The figure shows the value of the smallest
eigenvalue as a function of the number of fixed parame-
ters. Before discussing the parameters that are considered
to be unidentifiable by the various methods in detail,
some results can already be inferred from Figure 1. In iter-
ation i = 0, i.e. before any parameter is fixed in the model,
the smallest eigenvalue λ1 equals 1.3·10-5. This implies
the model is not identifiable even if all state variables x(t)
are assumed to be available. The smallest eigenvalue
exceeds  = 10-4 after the first three parameters regarded as

Results of the methods applied to the JAK-STAT modelFigure 1
Results of the methods applied to the JAK-STAT 
model. The graph illustrates how the value of the smallest 
eigenvalue changes, when one parameter is fixed in each iter-
ation. The y-axis shows the value of the smallest eigenvalue 
of the Hessian matrix H. Parameters are fixed until the value 
of the smallest eigenvalue is larger than  = 10-4.
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unidentifiable by the eigenvalue and the orthogonal
method are fixed (specifically, kb7, kb30, and kb5). In
contrast, the first 13 parameters ranked by the correlation
method need to be fixed to obtain a smallest eigenvalue
larger than the threshold  = 10-4. Since the eigenvalue and
orthogonal method find an identifiable model by fixing a
much smaller subset of the parameters, we conclude these
methods outperform the correlation method in this par-
ticular case. The PCA based method fails for this example.

Some of the results generated by the four methods are
worth inspecting more closely. In the first and second iter-
ation of the eigenvalue method there exists more than one
dominant contribution to the degenerate direction, cf.
Table 1. In the first iteration there are two co-dominant
entries (last column in Table 1). The corresponding
parameters are kb5 and kb30. In the second iteration
there exists one co-dominant entry, which corresponds to
the parameter kb5. In the last iteration no co-dominant
entries exist and the parameter kb5 is solely responsible
for the degenerate direction. It turns out that selecting the
parameter corresponding to the maximum entry of |u1| as
done here is sufficient to find a minimal set of identifiable
parameters. Interestingly, we can see in this example that
after three iterations our method finds the parameters cor-
responding to the co-dominant entry of all previous itera-
tions.

The correlation method indicates that 13 parameters need
to be fixed in order for the model to be locally identifiable
(Figure 1). The sets of parameters removed by the eigen-
value and orthogonal method have only kb7 in common
with the parameters selected by the correlation method.
In the correlation method, the removal of parameter kb7
occurs in the last iteration and results in a clear increase of
the smallest eigenvalue by a factor of about 100 (from
3.3·10-5 to 2.2·10-3, see Figure 1). Surprisingly, previous
iterations of the correlation method hardly have an effect
on the minimum eigenvalue.

Table 2 shows ranking J as produced by the PCA based
method for the JAK-STAT model. Each ranking position Ji

corresponds to a set of parameter indices, the size of
which is shown in the table. The major problem of the

PCA based method becomes apparent here. Ranking J has
5 positions. Fixing the 15 parameters of the first four posi-
tions of J is not sufficient to get an identifiable model. Fix-
ing the set of 36 parameters at the last ranking position
would not leave any parameter unfixed. Therefore the
method has failed in finding a set of identifiable parame-
ters. The ambiguity of the method is apparent from posi-
tions four and five of the ranking. The sets J4 and J5 contain

8 and 36 parameters, respectively, which cannot be
ranked internally by the PCA based method. It is interest-
ing to note that the first ranking position of J is not filled
until iteration 45 (data not shown), six iterations before
the last iteration. No nonempty intersection of the first 44

positions of all rankings  with j ∈ {1, 2, 3} and i ∈

{1,..., ny} exists. This indicates that large parts of the three

different rankings , j = 1, 2, 3 do not agree with respect

to the order of parameters.

The parameters removed by the eigenvalue and orthogo-
nal methods point the way to possible simplifications of
the pathway models. The parameter kb7 describes the dis-
sociation of phosphorylated STAT from the activated
receptor complex. This reaction, however, is not the disso-
ciation that immediately follows the phosphorylation of
STAT by the activated receptor (Figure 2, kf6). Apart from
the association of unphosphorylated STAT to the receptor
(Figure 2, kf5), the phosphorylation of STAT by the acti-
vated receptor and the subsequent dissociation of phos-
phorylated STAT from the activated receptor (Figure 2,
kf6), the model also permits the reassociation of already
phosphorylated STAT from the cytoplasm to the activated
receptor (Figure 2, kf7). The dissociation described by
parameter kb7 is the reverse reaction to the reassociation
described by kf7. We claim these steps are less important,
since the key event is the phosphorylation of cytoplasmic
STAT by the activated receptor. Removing kb7 alone cre-
ates a sink for phosphorylated STAT and activated recep-
tor, since the dissociation of both species does not exist
anymore. Therefore the model can only be simplified by
removing both the reaction kb7 is involved in and the
reaction kf7 is involved in. The main effects of these reac-

Mj
i

Mj
i

Table 1: Results of the eigenvalue method for the JAK-STAT model

iteration removed parameter max. entry of |u1| co-dominant entries of |u1|

1 kb7 0.725 0.56, 0.4

2 kb30 0.728 0.68

3 kb5 0.997 -
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tions are 1) to reduce the amount of free phosphorylated
STAT and 2) to reduce the amount of free activated recep-
tor. After removing both reactions, effect 1) can be imi-
tated by appropriately decreasing those rate constants
involved in reactions with free phosphorylated STAT.
Effect 2) can be compensated by appropriately decreasing
those rate constants that are involved in reactions with
free activated receptor.

The second fixed parameter, kb30, corresponds to the rate
of dissociation of STAT from the complex formed by
SOCS1 and the activated receptor complex. In order to get
a simplified model that is identifiable, we may remove
this step. This is justified, because the key function of

SOCS1 is not its binding to STAT, but its inhibition of the
activated receptor complex [39]. The latter is still ensured
in the simplified model.

The third fixed parameter, kb5, describes the dissociation
of receptor-bound unphosphorylated STAT. Assuming
that STAT binds irreversibly to the activated receptor, the
model can be simplified. In this scenario, STAT dissociates
from the receptor only after STAT phosphorylation has
occurred. Due to the presence of PPX, which can dephos-
phorylate cytoplasmic STAT, this change to the model
need not result in an increase of the concentration of
phosphorylated STAT.

We stress that the fact that kb7, kb30, and kb5 render the
model unidentifiable does not imply the corresponding
reactions do not exist. Our results imply, in contrast, that
the model is too complex in the sense that these parame-
ters cannot be determined by model based parameter esti-
mation. Note that this result holds true even if we assume
data for all the state variables to be available.

Map Kinase pathway analysis
Before any parameter of the MAP kinase model is fixed,
the smallest eigenvalue of the Hessian matrix (10) equals
3.3·10-13. This implies the model is not identifiable. The
eigenvalue and the orthogonal method again outperform
the correlation method in that they find a significantly
smaller set of parameters to be responsible for the uniden-
tifiability of the model. The PCA based method does not
lead to an identifiable method.

In the eigenvalue method the maximal components of the
respective eigenvectors are near 1 (data not shown) in
both iterations. As a result, two parameters, k15 and k1,
can unambiguously be fixed in the first and second itera-
tion, respectively.

The correlation method needs to fix 36 parameters to
arrive at an identifiable model. Fixing the first 35 parame-
ters does not significantly increase the smallest eigenvalue
(Figure 3). Only when the last parameter is fixed a dra-
matic increase of the smallest eigenvalue from about
4.0·10-13 to 4.3·102 results. The parameter k15 is also
removed by the eigenvalue and the orthogonal method,
which indicates the importance of k15 for identifiability.
The other parameter removed by the eigenvalue method,
k1, is selected in the 2nd iteration of the correlation
method. Therefore, the set of 36 parameters found by the
correlation method is a superset of the 2 parameters
selected by the eigenvalue and the orthogonal method.
Closer inspection of the first iteration in the correlation

method reveals a high maximal total correlation, , ofci
tot

Table 2: Ranking created by the PCA based method for the JAK-
STAT model

ranking position i size of Ji

1 1

2 2

3 4

4 8

5 36

Part of the JAK-STAT model to be simplifiedFigure 2
Part of the JAK-STAT model to be simplified. The 
activated receptor is denoted by actR. The encircled P indi-
cates that STAT is phosphorylated.
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7.98. This high value is caused by couplings of the selected
parameter with eight other parameters. Despite this high
total correlation value of 7.98, the removal of the corre-
sponding parameter does not cause a significant increase
of the smallest eigenvalue. Just as in the previous example,
removing parameters with high correlations does not nec-
essarily improve identifiability.

The ranking found by the PCA based method has five
positions (Table 3). When the 17 parameters that corre-
spond to J1, J2, J3, and J4 are fixed, the model remains uni-
dentifiable. Fixing the parameters that correspond to J5 is
not reasonable, since doing so would not leave any
parameters unfixed. Due to this result, we consider the
PCA based method to have failed.

In summary, the eigenvalue method and the orthogonal
method identify the smallest set of parameters that needs
to be fixed in order to create an identifiable model. The
first parameter, k15, is involved in internalization proc-
esses represented by more than twenty reactions [3]. Com-
prehensive changes to this part of the model that are
necessary to ensure identifiability cannot be addressed
here. The second parameter, k1, describes the binding of
EGF to its receptor. This essential step cannot be simpli-
fied. However, experimental data on this reaction exists in
the literature [40,41]. Our analysis suggests using this
kind of independent information to fix the value of k1
before attempting to determine the remaining parameters
by parameter estimation.

NF-κB pathway analysis
For the NF-κB pathway model, the smallest eigenvalue λ1

= 1.9·10-5 results if no parameters are fixed (Figure 4).
This indicates that the model is not identifiable for the
published parameter values [1]. The eigenvalue and the
orthogonal method again find the same 3 unidentifiable
parameters, c4a, c4, and t1. The correlation method
selects a considerably larger set of 21 parameters. The PCA
based method fails.

In the first three iterations of the eigenvalue method, the
largest components of u1 have absolute values close to one
(data not shown). The method therefore selects these
parameters unambiguously.

The correlation method needs to fix 21 parameters until
the smallest eigenvalue is greater than . The last parame-

Results of the methods applied to the MAP kinase modelFigure 3
Results of the methods applied to the MAP kinase 
model. Until iteration number 17 the green curve lies below 
the red curve.
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Table 3: Ranking created by the PCA based method for the MAP 
kinase model

ranking position i size of Ji

1 1

2 1

3 3

4 12

5 78

Results of the methods applied to the NF-κB modelFigure 4
Results of the methods applied to the NF-κB model.
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ter, the fixing of which leads to an identifiable model
(Table 4), has been selected with a value of c = 0.55. This
is not reasonable anymore, since two columns of S with a
correlation of 1 - c = 0.45 can hardly be considered corre-
lated. Therefore we conclude that the correlation method
fails for this example.

The PCA based method creates a ranking J with six posi-
tions (Table 5). Fixing the parameters that correspond to
J1 to J5 does not result in an identifiable model. Fixing the
parameters corresponding to J6 will not leave any param-
eters unfixed. Therefore the method has failed in produc-
ing an identifiable model. After fixing all parameters from
J1 to J5 the resulting smallest eigenvalue λ1 = 9.5·10-5 is
close to . Having a look at the parameters in the ranking J
we can see that J1 contains parameter t1, and J5 contains
parameter c4. Both parameters are also found by the
eigenvalue and the orthogonal method.

The three parameters selected for removal by the eigen-
value and the orthogonal method indicate how to sim-
plify the model. The first two parameters, c4a and c4,
describe the only two translation steps in the model: the
translation of IκBα mRNA and A20 mRNA, respectively.
By lumping together transcription and translation into
one protein synthesis step the two unidentifiable parame-
ters c4a and c4 can be removed from the model. The third
parameter selected by the eigenvalue and orthogonal
method, t1, describes the dissociation of activated IKK

from Iκα. Since this reaction is a key step of the model the
only option for simplifying this part of the model is to
remove IKK entirely. As a consequence A20 becomes
obsolete, since the only function of A20 is the regulation
of IKK. If we also remove A20, the resulting simplified
model closely resembles the minimal model proposed by
Krishna et al. [42].

Discussion
The eigenvalue, orthogonal, and correlation methods find
the desired subset of identifiable parameters and the
desired subset of unidentifiable parameters in all cases.
The eigenvalue and orthogonal methods give the same
results for each of the models. The subsets of unidentifia-
ble parameters that result from the correlation method are
larger than those that result from the eigenvalue or
orthogonal method in all cases. The PCA based method
fails for all three examples.

The four identifiability testing methods use different
approaches to finding unidentifiable parameters. In order
to carry out a meaningful comparison of the methods, we
need a single identifiability criterion that can be applied
to all methods. The positive definiteness of the Hessian
matrix (10) of the least squares parameter estimation
problem (9) is an appropriate and concise criterion for
this purpose. Ultimately, the use of this criterion is justi-
fied by the equivalence between local at-a-point identifia-
bility and the positive definiteness of the Hessian matrix
(10). This equivalence was established by Grewal and
Glower [38].

Since the Hessian matrix is positive definite if and only if
all its eigenvalues are strictly positive, we consider a
model to be identifiable if the eigenvalues of the Hessian
matrix (10) are bounded below by a small strictly positive
number . Based on experience with parameter estimation
problems we set  = 10-4. While this choice is arguably arbi-

Table 4: Results obtained with the correlation method for the 
NF-κB model

rank removed parameter*
| |·10-05

1 c1(0.99) 1.90 1.000
2 c1a(0.99) 3.98 1.000
3 c3(0.99) 3.99 0.998
4 a3(0.97) 4.06 1.958
5 c3a(0.96) 4.07 0.967
6 c3c(0.93) 4.07 1.874
7 c4a(0.93) 4.61 0.938
8 c4(0.92) 4.62 0.930
9 c1c(0.92) 4.62 0.927
10 kdeg(0.84) 4.65 0.849
11 c2a(0.81) 4.96 0.819
12 c2(0.80) 4.96 0.805
13 c5a(0.74) 5.34 0.743
14 a2(0.72) 6.54 0.727
15 a1(0.64) 6.64 0.643
16 i1(0.56) 6.64 0.565
17 c6a(0.50) 6.82 0.506
18 k2(0.50) 7.31 0.503
19 e2a(0.46) 7.42 0.470
20 e1a(0.45) 7.79 0.459
21 kv(0.45) 10.08 0.455

* The value of 1 – c is given in brackets. See the text for a discussion.

uk
1 ci

tot

Table 5: Ranking created by the PCA based method for the NF-
κB model

ranking position i size of Ji

1 1

2 2

3 3

4 1

5 10

6 12
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trary, the comparisons of the methods are meaningful
since the same value of  is applied in all comparisons.

The numbers of unidentifiable parameters are summa-
rized in Figure 5 for the four methods and the three mod-
els. More precisely, the Figure shows how many
parameters are selected by each method to be fixed in
order to obtain a Hessian matrix with all eigenvalues
larger than  = 10-4. From Figure 5 it is apparent that fewer
parameters need to be fixed than those selected by the cor-
relation method to obtain a positive definite Hessian
matrix or, equivalently, an identifiable model in all exam-
ples. In this sense we conclude that the eigenvalue and
orthogonal method outperform the correlation method.
Since the PCA based method fails in all three examples,
we consider it to be inferior to the other methods.

In the remainder of the section we discuss the differences
between the methods.

Eigenvalue method vs. orthogonal method
The eigenvalue method can be motivated in two different
ways. For one, it can be interpreted as a convexity analysis
of the minimization of the least squares cost function ϕ
(9) at a nominal point p*, in parameter space. If ϕ is too
flat at p*, the method identifies the parameters that cause
this flatness. Secondly, the method can be looked upon as
an approach to identifying linearly dependent columns of
S. If ST S has zero eigenvalues it is not invertible, which
implies that S has linearly dependent columns. By fixing
those parameters that cause ST S to be not invertible, the
linear independence of columns of S can be ensured. The

orthogonal method selects those columns of S that have
the largest possible orthogonal distance to previously
selected columns. This way linearly independent columns
are found. Essentially, the eigenvalue and orthogonal
method use the same criterion, but the eigenvalue meth-
ods discards those parameters that render a model uni-
dentifiable while the orthogonal method selects the
identifiable parameters. Both methods give the same
results for the examples treated here.

A formal analysis of the two methods reveals the compu-
tational complexity to depend on the magnitudes of ny nt

and np (see Appendix E). If , as is the case in the

JAK-STAT and the NF-κB example, the eigenvalue method
is an order of magnitude in the number of parameters
faster than the orthogonal method. If we assume

, as is the case for the MAP kinase exam-

ple, the eigenvalue method is slightly faster than the

orthogonal method. If ny nt ≈ np, both methods have the

same computational complexity. We stress the complexity
analysis is carried out under assumptions that are unfavo-
rable for the eigenvalue method in that the eigenvalue
method is assumed to require a full ranking to separate
the identifiable from the unidentifiable parameters. In the
three examples treated here this is clearly not the case,
however. In fact the eigenvalue method stops after three,
two, and three iterations in the JAK-STAT, the MAP kinase,

and the NF-κB case, respectively, and therefore turns out
to be far less computationally expensive than under the
worst case assumption used in Appendix E.

Technical drawbacks of the correlation method
From a technical point of view, the correlation method
suffers from two drawbacks. These drawbacks cause the
differences between the number of unidentifiable param-
eters found by the correlation method as compared to the
orthogonal and eigenvalue method. First, the correlation
corr(S.i, S.j) is only an approximation of the linear
dependency of columns of S. While two columns that are
linearly dependent result in a correlation of ± 1, columns
that have a correlation of ± 1 need not necessarily be line-
arly dependent (see Appendix F for an example). There-
fore, the correlation method may find false positive
unidentifiable parameters. Secondly, the correlation
corr(S.i, S.j) is only a pair wise measure for any two col-
umns S.i and S.j of S. Linear dependence of a set of more
than two columns, which does not contain a linearly
dependent pair, is not detected.

n n ny t p≈ 2

n n n np y t p≤ << 2

Summary of the method comparisonFigure 5
Summary of the method comparison. Since the PCA 
based method fails in all three cases, it is not included here.
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Technical drawbacks of the PCA based method
The PCA based method differs from the three other meth-
ods in several aspects. The PCA based method does not
use the sensitivity matrix S, but a sensitivity matrix is cal-
culated for each component ri of the response function
separately. In contrast to the other methods, couplings
between the components ri are therefore not considered. A
second important difference is that the PCA based
method does not use a single criterion, but a combination
of criteria which all must hold for a parameter to be con-
sidered unidentifiable. Due to this combination of crite-
ria, the method does not select a single parameter in each
iteration but a set of parameters. Finally, some parameters
that cause S not to have full rank are not found by the PCA
based method in all three examples. For this reason, we
consider the PCA based method to be inappropriate for
the identifiability testing of the three treated pathways.

Conclusion
We proposed a new approach to finding identifiable and
unidentifiable parameters of large mechanistic models.
The method, which we refer to as the eigenvalue method,
was applied to existing models of the JAK-STAT, the MAP
kinase, and the NF-κB pathways. All three pathway mod-
els turned out not to be identifiable. In fact our results
show that the models would not be identifiable even if all
state variables could be measured precisely at a high fre-
quency. The models must therefore be considered to be
severely overparameterized. Note state identifiability
investigated here is a necessary condition for output iden-
tifiability. Since the models turn out not even to be state
identifiable, we refrained from further investigations of
output identifiability.

The identifiability analysis reveals how to simplify the
models in order to arrive at identifiable systems. For the
JAK-STAT pathway an identifiable model can be obtained
by simplifying only three reactions. For the NF-κB path-
way model the results lead to a simplified model that
closely resembles the minimal model published by
Krishna et al. [42].

We presented a detailed comparison of the proposed
eigenvalue approach to three established methods for
identifiability testing, namely, the correlation method
[25], the PCA based method [27], and the orthogonal
method [24]. These three methods and the new approach
suggested are of general interest, because they can be
applied to a broad class of nonlinear systems of ordinary
differential and algebraic equations. Essentially, the meth-
ods were compared with respect to their ability to find an
identifiable subset of model parameters for each of the
three pathway models. Despite algorithmically different,
the eigenvalue and the orthogonal method result in the
same subsets of identifiable parameters for each of the

examples. Moreover, these two methods outperform the
other methods in that they find the largest subsets of iden-
tifiable parameters.

Authors' contributions
TQ and MM developed the eigenvalue method. The dis-
cussed method were implemented and compared by TQ.
TQ and MM wrote the article.

Appendix
A: Example with co-dominant parameters

We present an illustrative example to motivate the notion
of co-dominant parameters. Consider the trivial system

 = (p1 + p2)·x1 with y1 = x1. Using the notation intro-

duced below equation (10), the eigenvalue λ1 equals 0
(independent of the choice of p1, p2, sampling times, and

initial condition) with |u1| = (0.707, 0.707)T. From the
simple model equation it is apparent that p1 and p2 are not

identifiable separately, but only their sum p1 + p2 can be

estimated from data. As a result, p1 and p2 are co-dominant

as indicated by the result . Fixing either one of the

parameters renders the other one identifiable.

B: Correlation method
We first summarize theoretical aspects of the correlation
method and subsequently give a detailed description of
the algorithm.

Theory
Let Δp = p - p* describe the deviation of a parameter vector
p from the true parameter vector p*. For sufficiently small
||Δp||2 the response function (4) can be approximated by
its linearization at p*:

for all i ∈ {1,..., ny} and j ∈ {1,..., nt}. The sum of squared
errors of the linearized response functions and the meas-
ured outputs yi (tj) reads
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The last equality holds, because the yi (tj) are assumed to
be noise free measurements and p* are the true parameter
values by assumption. Therefore ri(tj, p*, x0) - yi(tj) = 0 for
all i ∈ {1,..., ny} and j ∈ {1,..., nt}.

Let  denote the least squares

estimates of Δp, i.e. the particular values of Δp that mini-
mize equation (20). The necessary condition for optimal-

ity  is equivalent to the so called normal

equation ST S Δp = 0. Solving the normal equation for Δp

therefore results in the least squares estimate .

If ST S has full rank, the normal equation only admits the

solution Δp = 0. This implies Δp = 0, or equivalently  =

p*, is the unique minimizer of the least squares function

R(Δp). Consequently, the model parameters p are locally
identifiable by definition. Note only local identifiability
can be inferred, since an approximation by linearization
was introduced. If, on the other hand, ST S does not have

full rank, there exists a non-trivial solution  ≠ 0 of the

normal equation. As a consequence, a parameter vector 

≠ p* exists that results in the same model response as p*.
Therefore the model parameters p are not identifiable by
definition.

The matrix ST S has full rank if and only if the columns of
S are linearly dependent [43]. The central idea of the cor-
relation method is to detect linear dependence of two col-
umns of S by calculating the correlation of these columns.
Parameters corresponding to columns of S with a correla-
tion of ± 1 are considered unidentifiable.

Algorithm for the correlation method
Let C denote the matrix that contains those absolute cor-
relation values between columns of S that exceed the
threshold 1 - c. C is given by:

where S.j denotes the jth column of S and corr* (S.i, S.j) is
defined in equation (18). The algorithm proceeds in the
following way:

1. Choose Δt and an initial guess p*. Set c = 0, I = {1,...,
nt}, and initialize U to an empty list. Calculate the sen-
sitivity matrix S.

2. Calculate the matrix C.

3. For all i ∈ I calculate (I) as defined in equation

(17).

4. If I is empty, stop. The list U contains the parameter
indices in the order of the least to most identifiable
parameter.

5. Find rq such that .

6. If  = 0, increase c by 0.01 and return to step 2.

Otherwise, remove rq from I, append rq to the list U,

and return to step 3.

The list U contains the desired result as explained in step
4. Note c is incremented in steps of Δc = 0.01. The choice
of this increment is not critical as long as it is small
enough. If Δc is chosen smaller than necessary the same
ranking of parameters will be obtained but the algorithm
may require more computation time.

C: PCA based method
We explain the second and third PCA based criterion and
present the algorithm for the PCA based method. The first
criterion is explained in the section entitled Methods.

Description of the second and third criterion of the PCA based 
method

Let  and  denote the jth eigenvalue and corre-

sponding eigenvector of , respectively, and assume
the eigenvalues to be ordered such that

. For each i ∈ {1,..., np} evaluate the

second and third criterion as follows.

• Second criterion:

Set L1 = {1,..., ny}.

For q from 1 to np do:

- Find rl such that .

- Set  = rl.

- Set Lq+1 = Lq - {rl}.
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The second criterion is based on the sum of squared
eigenvector entries

Note in this sum, i and j are fixed, therefore the sum is
not carried out over components of a particular eigen-
vector, but the lth entries of all eigenvectors are
summed. The parameter with the largest value of (21)
is selected.

• Third criterion:

Set L1 = {1,..., ny}.

For q from 1 to np do:

- Find rl such that .

- Set .

- Set Lq+1 = Lq - {rl}.

The third criterion loops over the eigenvectors but, in
contrast to the first and second criterion, starts with
the eigenvector that belongs to the largest eigenvalue.
As in the first criterion, parameters are selected based
on the absolute value of the eigenvector component.
The index of the parameter selected first will be placed

last in ranking , the index of the parameter selected

second will be placed at position np - 1, and so on.

Algorithm for the PCA based method

1. Choose Δt and an initial guess p*. For all i ∈ {1,...,

ny} let , , and  be empty lists. For all q ∈

{1,..., np} set Nq = ∅. Set J to an empty list.

2. For all i ∈ {1,..., ny} calculate , its eigenvectors

, and the corresponding eigenvalues , j ∈
{1,..., np}.

3. For i ∈ {1,..., ny} calculate , , and  by

applying ranking criterion one to three as described in

the Method section. Let  denote the kth entry of

.

4. For q from 1 to np do:

• For j ∈ {1, 2, 3} and i ∈ {1,..., ny} set

.

• Only if Nq ≠ ∅ append Nq to the list J.

The final ranking that combines the PCA results of all

 and all three criteria is given by J, where the first
position in J corresponds to the least and the last position
in J corresponds to the most identifiable parameter.

D: Orthogonal method
In this part we present a geometric interpretation the
orthogonal method, followed by a description of algorith-
mic details.

Visualization of the concept of the orthogonal method

The orthogonal method is visualized in Figure 6 for q = 3.
Two columns of S have already been selected and repre-

sent the first and the second column of X2 denoted by 

and , respectively. These two columns span the vector

space V2. Without restriction this vector space is assumed

to be the xy plane and k is the next parameter to be chosen.

u j
i k

k

np

, .( )
=

∑ 2

1

(21)

| | max(| |), ,
u ur

i q

j L j
i n q

l
q

p=
∈

+ −1

m rn q
i

lp3 1, + − =

Mi
3

Mi
1 Mi

2 Mi
3

S SiT i

ui j, λ i j,

Mi
1 Mi

2 Mi
3

m j k
i
,

Mj
i

W q m k qj
i

j k
i( ) { | { , , }},= ∈ 1…

i …∩N W q N Nq j
i

q
j

i ny

= − −−
≤ ≤
≤ ≤

( ) 1 1
1 3

1

S SiT i

X1
2

X2
2

Visualization of the concepts of the orthogonal methodFigure 6
Visualization of the concepts of the orthogonal 
method.

S.k

X1
2

X2
2

x

y

z

S.kproj

S.k
Page 18 of 21
(page number not for citation purposes)



BMC Systems Biology 2009, 3:50 http://www.biomedcentral.com/1752-0509/3/50
Algorithm for the orthogonal method
Algorithmic details for the orthogonal method are given
below.

1. Choose Δt and an initial guess p*. Initialize

 to a list of zeros.

2. Calculate the sensitivity matrix S.

3. Find r1 such that , set

, and L1 = {1,..., np} - {r1}.

4. For q from 1 to np do:

• Calculate Pq as given by equation (22).

• Find rq such that , with

 corresponding to the kth column of Pq.

• Set  ≥ o:

set ,

set ,

and set Lq+1 = Lq - {rq}.

The ranking is given by Wortho. The shown implementation
ignores the stopping criterion applied in the original liter-
ature, to ensure a complete ranking.

E: Computational complexity of the orthogonal and the 
eigenvalue method
The numerical operations of the two methods that domi-
nate the number of necessary numerical operations are 1)
matrix inversions and eigenvalue/eigenvector calcula-
tions, which both require O(N3) operations for N × N
matrices, and 2) matrix multiplications, which require
N·M·L operations for the multiplication of an N × M by
an M × L matrix.

In what follows, we assume the eigenvalue method is used
to rank all model parameters. This overestimates the com-
putational cost of the eigenvalue method, since the
method stops once an identifiable set of parameters has
been found.

Computational complexity of the orthogonal method
In compact notation the orthogonal projection in itera-
tion i, where i ∈ {1,..., np} is arbitrary but fixed, can be
written as:

The major runtime costs result from the computation 1)
of Y and 2) of Y S' in equation (22). The number of oper-
ations necessary to calculate Y is:

where all iterations i = 1,..., np have been accounted for.
The first and second term in the sum of equation (23)
account for the multiplication of Xi by (XiT Xi)-1 (ny nt × i
matrix times i × i matrix) and the inversion of the matrix
XiT Xi (i × i matrix), respectively. The third term accounts
for the cost of multiplying XiT by Xi (i × ny nt matrix times
ny nt × i). This term reduces from i2 ny nt to iny nt, the cost or
calculating the last row of XiT Xi, since Xi-1T Xi-1 is available
from the previous iteration:

Here  denotes the ith column of Xi. The last row is

equal to the last column, since XiT Xi is symmetric. The cost

for i vector multiplications  with 1 ≤ k

≤ i amounts to iny nt, which gives rise to the last term in the

sum in equation (23).

The number of operations necessary to calculate Y S' is:
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The first term in the sum accounts for the multiplication
of Y by S' (ny nt × i matrix times i × np matrix). The second
term accounts for the calculation of S' from the product
XiT S (i × ny nt matrix times ny nt × np matrix). The latter
reduces to the cost ny nt np for calculating the last row of S',
since Xi-1T S is vailable from the previous iteration:

where  denotes the last column of Xi and S.i denotes the

ith column of S.

The subtraction of S from Y S' (ny nt × np matrix minus ny
nt × np matrix) in equation (22) requires O(ny nt np) opera-
tions and therefore can be neglected.

In summary the dominant parts in equation (24) and
(25) result in a computational complexity of order

.

Computational complexity of the eigenvalue method

For ease of presentation the description of the algorithm
in the Methods section slightly differs from the actual
implementation. In the implemented version the Hessian
matrix H = ST S has to be calculated only once at the begin-

ning of the algorithm, which requires  opera-

tions (multiplication of a np × ny nt matrix with a ny nt × np

matrix). In each iteration i, the current Hessian Hi can be
obtained by removing the rows and columns from H that
correspond to fixed parameters. In each iteration the
eigenvalues of the current Hessian matrix have to be cal-
culated. The number of operations necessary for the eigen-
value method is as follows.

The first term accounts for the initial calculation of the
Hessian matrix. The second term accounts for the eigen-
value calculation.

Comparing computational complexity of the eigenvalue and the 
orthogonal method

The computational complexity of the eigenvalue method

is of order  (see equation (27)), whereas

the computational complexity of the orthogonal method

is of order  (see equation (24)). For a

comparison we have to distinguish between the following

three cases. In the first case we assume ny nt ≤ np. In this

case the complexity of both methods is dominated by the

term  and both method are equally efficient. In the

examples treated here, this case does not occur. In the sec-

ond case we assume . Here the computa-

tional complexity of the eigenvalue and the orthogonal

method reduce to  and , respectively.

This case applies to the MAP-kinase example and the
eigenvalue method is faster than the orthogonal method.
The difference is the more pronounced the larger ny nt - np.

In the last case we assume that . This is true in

the JAK-STAT and the NF-κB example. Here the complex-
ity of the eigenvalue method and the orthogonal method

reduce to  and , respectively. In this case the

eigenvalue method is an order of magnitude in the
number of parameters faster than the orthogonal method.

F: Correlation is not equal to linear dependence
In order to show that a correlation of ± 1 between two vec-
tors does not necessarily imply their linear dependence,
we present a simple counter-example. Consider the vec-
tors x = (1, -1)T and y = (2, 0)T. According to equation (13)
the correlation corr(x, y) = 1 results. Clearly, however, x
and y are linearly independent. A set of parameters that
are found to be unidentifiable with the correlation
method may therefore contain false positives.
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