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Endothelium dysfunction induced by reactive oxygen species (ROS) is an important

initial event at the onset of myocardial ischemia/reperfusion in which the Egr-1

transcription factor often serves as a master switch for various damage pathways

following reperfusion injury. We hypothesized that an intracellular ROS/MAPK/Egr-1

signaling pathway is activated in cardiac microvascular endothelial cells (CMECs)

following hypoxia/reoxygenation (H/R). ROS generation, by either H/R or the ROS donor

xanthine oxidase-hypoxanthine (XO/HX) activated all three MAPKs (ERK1/2, JNK, p38),

and induced Egr-1 expression and Egr-1 DNA-binding activity in CMECs, whereas ROS

scavengers (EDA and NAC) had the opposite effect following H/R. Inhibitors of all three

MAPKs individually inhibited induction of Egr-1 expression by H/R in CMECs. Moreover,

N-n-butyl haloperidol (F2), previously shown to protect cardiomyocytes subjected to I/R,

dose-dependently downregulated H/R-induced ROS generation, MAPK activation, and

Egr-1 expression and activity in CMECs, whereas XO/HX and MAPK activators (EGF,

anisomycin) antagonized the effects of F2. Inhibition of the ROS/MAPK/Egr-1 signaling

pathway, by either F2, NAC, or inhibition of MAPK, increased CMEC viability and the

GSH/GSSG ratio, and decreased Egr-1 nuclear translocation. These results show that

the ROS/MAPK/Egr-1 signaling pathway mediates H/R injury in CMECs, and F2 blocks

this pathway to protect against H/R injury and further alleviate myocardial I/R injury.
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INTRODUCTION

Reactive oxygen species (ROS), including hydrogen peroxide
(H2O2), superoxide anion (O•−

2 ) and hydroxyl radical (·OH),
are forms of oxygen free radicals that arise as by-products
of mitochondrial respiration and oxidases. There is growing
evidence that ROS generated from excess oxidative stress
are responsible for many cardiovascular diseases, including
hypertension, diabetes, and ischemia/reperfusion (I/R)-related
heart diseases (Fennell et al., 2002; Jung et al., 2003; Yang
et al., 2004; Liu et al., 2013). Restoration of blood in
ischemic organs induces further injury, called I/R injury, by
a mechanism involving ROS-induced oxidative stress (Murphy
and Steenbergen, 2008). Upon I/R, excessive accumulation of
ROS can disrupt cellular homeostasis, resulting in oxidative
stress damage and additional I/R injury. As a second messenger
(Cosentino-Gomes et al., 2012; Choudhury et al., 2013;
Madureira and Waisman, 2013), ROS not only cause direct
damage to cellular proteins, lipids and nucleic acids, but also are
capable of acting as signaling molecules to initiate damage or
survival signals. In recent years, research focusing on I/R suggests
that ROS are largely responsible for I/R injury (Zhang et al., 2012;
He et al., 2013; Wang et al., 2014).

Early growth response gene-1 (Egr-1) is an immediate early
gene that functions extensively in cellular growth, proliferation,
differentiation, and apoptosis. It has been reported that Egr-
1 can be rapidly induced by various stimuli, including growth
factors, ischemia, hypoxia, and oxidative stress, to regulate many
pathological progresses. As a transcription factor, Egr-1 can
transmit information from the cytoplasm to nucleus, and then
alter downstream target gene expression to mediate I/R injury.
In 2000, Yan et al. postulated that Egr-1 is a “master switch” for
various pathways of reperfusion injury (Yan et al., 2000), and
since then, Egr-1 has been investigated extensively due to its key
role in I/R.

Recent research suggests that there exists a connection

between ROS and Egr-1. Han et al. (2013) and Kang et al.
(2013) reported that the anticancer actions of sanguinarine

and 2′-benzoyloxycinnamaldehyde are related to activation

of the ROS/Egr-1 pathway. A study by Nozik-Grayck et al.
(2008) revealed that hypoxia-induced overexpression of Egr-

1 is inhibited in transgenic mice overexpressing extracellular
superoxide dismutase (EC-SOD) to eliminate ROS. In addition, a
new study by our laboratory found that hypoxia/reoxygenation
(H/R, I/R model in vitro) activates the ROS/Egr-1 pathway
in cardiac-derived H9c2 rat cardiomyoblast cells (Zhang
et al., 2015). However, cardiac microvascular endothelial
cells (CMECs), a major component of myocardial tissue,
are the earliest components of the heart exposed to I/R
stimulation and are quite sensitive to I/R injury (Brutsaert,
2003). Previous studies on CMECs, as well as H9c2 cells,
revealed that oxidative stress and Egr-1 expression contribute
to H/R injury (Zhou et al., 2010b). Moreover, damage
resulting from oxidative stress decreases in the presence of
Egr-1 antisense oligonucleotide, indicating that the ROS/Egr-
1 pathway might exist in CMECs and be responsible for H/R
injury in CMECs and even heart tissue (Zhou et al., 2010a).

However, a ROS/Egr-1 pathway in CMECs has yet to be
identified.

The mitogen-activated protein kinase (MAPK) family,
which includes the extracellular signal-regulated kinases
(ERK1/2), stress-activated protein kinase/c-Jun N-terminal
kinase (SAPK/JNK), and p38 MAP kinase (p38 MAPK), is
evolutionarily conserved and known to respond to stress through
transmission of activating signals along a phosphorylation
cascade from cytoplasmic to nuclear targets. Extensive studies
demonstrate that MAPKs (ERK1/2, JNK, p38) are involved in
I/R injury. We previously demonstrated that JNK and ERK1/2
mediate Egr-1 induction during H/R injury in H9c2 cells and
primary cardiomyocytes, respectively, with ROS/Egr-1 signaling
participating in the former (Zhang et al., 2013, 2015). It remains
unknown whether MAPK is activated by H/R stimuli in CMECs,
and whether the other two MAPK pathways, besides JNK, are
involved in CMEC ROS/Egr-1 signaling.

N-n-butyl haloperidol iodide (F2) is a novel compound,
derived from haloperidol and granted by China
(Supplementary Images 1, 2), that has a protective effect
on heart tissue subjected to I/R. F2 could protect against
H/R injury in CMECs, as well as H9c2 cells, by decreasing
oxidative stress and inhibiting the expression of Egr-1 (Zhou
et al., 2010b). Furthermore, F2 alleviates H/R injury by
reducing the activation of JNK and ERK1/2 responsible for
Egr-1 induction in H9c2 cells and primary cardiomyocytes
following H/R (Zhou et al., 2010b; Zhang et al., 2013). The
above data suggest that the protective effect of F2 on CMECs
could be related to an ability to inhibit the ROS/MAPK/Egr-1
pathway. This study was implemented to determine whether
the ROS/MAPK/Egr-1 signaling pathway is active in CMECs
subjected to H/R, and if the protective effect of F2 on CMECs
and heart tissue results from the ability of F2 to inhibit this
pathway.

MATERIALS AND METHODS

Reagent Preparation
Fetal bovine serum (FBS) and Dulbecco’s modified Eagle’s
medium (DMEM) were obtained from Gibco. Endothelial cell
growth supplement (ECGS) was from Merck Millipore. F2
(Chinese national invention patent, No. ZL96119098.1) was
synthesized in our laboratory and used at concentrations of 1
× 10−7, 1 × 10−6, 1 × 10−5 M (DMSO as solvent). Edaravone
(EDA) was from Simcere Pharmaceuticals (Nanjing, China). N-
acetyl-L-cysteine (NAC), xanthine oxidase (XO)/hypoxanthine
(HX), anisomycin (ANISO), U0126, SB203580 and 2′,7′-
dichlorofluorescein acetyl acetate (DCFH-DA, mainly detecting
H2O2) were from Sigma-Aldrich. SP600125 was from Enzo Life
Sciences. Epidermal growth factor (EGF) was from Pepro Tech.

Primary antibodies against p-JNK, total-JNK, p-ERK1/2,
total-ERK1/2, p-p38, total-p38, and Egr-1 were purchased from
Cell Signaling Technology (United States); primary antibody
against platelet endothelial cell adhesion molecule-1 (CD31) was
purchased from Bio-RAD (United States). Antibodies against β-
actin, anti-rabbit secondary antibody, and anti-mouse secondary
antibody were purchased from Wuhan Boster Biotechnology
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Limited (Wuhan, China). The EMSA assay kit was purchased
from Thermo-Fisher Scientific (United States).

Hypoxia solution (Zhang et al., 2015): 137mM NaCl, 12mM
KCl, 0.49mM MgCl2·6H2O, 0.9mM CaCl2, 4mM HEPES, and
20mM sodium lactate. Binding buffer for EMSA: HEPES pH
7.5, 5mMMgCl2, 2.5mM dithiothreitol, 2.5mM EDTA, 250mM
NaCl, and 10% glycerol.

Primary Cell Isolation Culture and
Induction of Hypoxia/Reoxygenation
Neonatal Sprague-Dawley (SD, 3–5 days) rats of either sex were
used in experiments. All animals were treated in compliance with
the Guide for Care and Use of Laboratory Animals published
by the US National Institutes of Health (NIH publication No.
85-23, revised 1996) and followed the rules of National Animal
Protection of China. The study was approved by the Institutional
Animal Care and Use Committee of Shantou University Medical
College. Rat CMECs were isolated as described (Zhou et al.,
2010a) and cultured in DMEM supplemented with 10% FBS,
ECGS (15 mg/L) and heparin sodium (6.25U/ml) at 37◦C under
5% CO2. CMECs were identified by antibody against CD31,
which is constitutively expressed on the surface of CMECs.
Hypoxia was induced as before with some modifications (Zhou
et al., 2010a). Briefly, CMECs were cultured in hypoxia solution
in an air-tight chamber saturated with pure N2 at 37

◦C for 1, 2,
3, or 4 h; the culture conditions were then returned to normal for
1 h of reoxygenation.

Experimental Grouping
CMECs after being cultured for 2–3 days were randomly
allocated to the following groups: control, control + the ROS
donor XO/HX (con + XO/HX), control + the ERK1/2 activator
EGF (con + EGF), control + the JNK/p38 activator ANISO
(con + ANISO), H/R, H/R + the ROS scavenger NAC (H/R +

NAC), H/R + the ROS scavenger EDA (H/R + EDA), H/R +

ERK1/2 inhibitor U0126 (H/R + U0126), H/R + JNK inhibitor
SP600125 (H/R + SP600125), H/R + p38 inhibitor SB203580
(H/R + SB203580), H/R + different doses of F2, H/R + F2 +

XO/HX, H/R+ F2 + EGF, and H/R+ F2 +ANISO. The working
concentrations of each chemical and solvent used to prepare
stock solutions are as follows: XO (1, 3, 5mU/ml, potassium
phosphate buffer as solvent)/HX (1.2 × 10−4, 3.6 × 10−4, 6.0 ×
10−4, 10 M NaOH as solvent), EGF (50 ng/ml, H2O as solvent),
ANISO (40 ng/ml, DMSO as solvent), NAC (2 × 10−5, 1 ×

10−4, 5 × 10−4 M, H2O as solvent), EDA (5 × 10−5, 1 ×

10−4, 2 × 10−4 M, PEG as solvent), U0126 (10µM, DMSO
as solvent), SP600125 (10µM, DMSO as solvent), SB203580
(20µM, DMSO as solvent), F2(1 × 10−7, 1 × 10−6, 1 × 10−5 M
DMSO as solvent). CMECs in all groups were cultured in serum-
free medium for 12–24 h to achieve quiescence. After that, cells in
the control group were left intact. The H/R group was treated as
described above. The concentration and administration protocol
for XO/HX, EGF, ANISO, NAC, EDA, F2, SP600125, U0126, and
SB203580 were described in “Reagent preparation” and Figure 1,
respectively.

Measurement of ROS Levels in CMECs by
Using Flow Cytometry
Flow cytometry was performed as previously described (Zhang
et al., 2015). In short, cells were harvested after the indicated
treatments, washed twice with PBS, and then washed once
with serum-free medium. Subsequently, the supernatants were
discarded and cell pellets were resuspended in 1 ml serum-free
medium containing a final concentration of 5µM DCFH-DA,
and then incubated in the dark at 37◦C for 30min with gentle
shaking every 5min to fully expose the cells to the probe. Cell
suspensions were then washed three times with ice-cold PBS.
Subsequently, the cell pellets were resuspended in 500µl PBS,
mixed well, and analyzed at an excitation wavelength of 488 nm
and emission wavelength of 525 nm using a FACSCalibur flow
cytometer (Becton Dickinson, USA). WinMDI2.9 software was
used to analyze the mean fluorescence intensity (MFI).

Western Blotting
Western blotting was performed as described previously (Zhang
et al., 2015). Briefly, total protein in CMECs was extracted and
quantified. Next, equal amounts of denatured protein samples
(20–50µg) were subjected to 8% SDS-PAGE and probed with
corresponding primary antibodies for Egr-1 (1:1500), p-JNK
(1:1000), total-JNK (1:2000), p-ERK1/2 (1:2000), total-ERK1/2
(1:2000), p-p38 (1:2000), total-p38 (1:2000), and β-actin (1:4000)
at 4◦C overnight, followed by secondary antibodies [HRP-
labeled rabbit anti-mouse IgG (1:50,000) or HRP-labeled goat
anti-rabbit IgG (1:80,000)]. HRP-labeled secondary antibodies
were detected by chemiluminescence, and the protein bands
were analyzed using Gel-pro Image Analysis Software (Media
Cybernetics, USA). The ratio of p-JNK/JNK, p-ERK1/2/ERK1/2,
and p-p38/p38 reflected the activation of JNK, ERK1/2, and
p38, respectively, and the ratio of Egr-1/β-actin represented the
expression of Egr-1.

RNA Extraction and Real-Time
Quantitative PCR
The expression level of Egr-1 mRNA was detected by qRT-
PCR. Total RNA was extracted from CMECs using the
RNAiso Plus kit (Takara). Total RNA (0.5µg) was used to
synthesize cDNA by using a PrimeScript RT Reagent Kit
with gDNA Eraser (Takara) according to the manufacture’s
protocol. CDNAs were then quantified by RT-PCR on an
ABI 7500 RT-PCR System (Applied Biosystems) using the
following primers, Egr-1: 5′-GAACAACCCTACGAGCACCTG-
3′ (sense), 5′-GCCACAAAGTGTTGCCACTG-3′ (antisense);
GAPDH: 5′-GGCACAGTCAAGGCTGAGAATG-3′ (sense), 5′-
ATGGTGGTGAAGACGCCAGTA-3′ (antisense), which were
synthesized by BGI (BGI, China). GAPDH was used as an
endogenous reference and the ratio of Egr-1 mRNA/GAPDH
mRNA represented expression of the Egr-1 gene.

Immunofluorescence Detection of CD31
and Egr-1
CMECs were inoculated at 1.0 × 10−5 cells/well on coverslips
in 12-well-plates. When cells grew to 70% confluence, they
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FIGURE 1 | Protocol for experimental grouping and treatments. (A) Protocol used to investigate whether the ROS/MAPK/Egr-1 signaling pathway occurs in

CMECs after H/R. (B) Protocol used to investigate the protective effects of F2 on CMEC H/R injury through regulating ROS/MAPK/Egr-1 signaling.

were treated with the conditions as indicated. Subsequently,
cells were fixed in 4% paraformaldehyde for 20 min at room
temperature, permeabilized in 0.3% Triton X-100 for 15 min, and
then were blocked in 5% BSA for 1 h. Next, BSA was removed
and cells were incubated, with primary antibodies recognizing
CD31 (1:50) and Egr-1 (1:50), at 4◦C overnight, followed by
AlexaFlour 488-conjugated goat anti-mouse or AlexaFlour
594-conjugated goat anti-rabbit secondary antibodies for 1–2 h
at room temperature. Subsequently, the cells were washed in
PBS and counterstained with Hoechst 33258. Then, coverslips
were mounted onto glass slides using fluorescence mounting
medium (Beyotime Biotechnology), and the fluorescence
signal was detected using 200 × magnification on a Nikon
microscope. Exposure times for each channel were as follows:
Hoechst 33258, 200ms; AlexaFlour 488, 200ms; AlexaFlour
594, 600ms.

Detecting DNA Binding Activity of Egr-1
Using EMSA
Electrophoretic mobility shift analysis (EMSA) was performed
on nuclear extracts prepared from CMECs. Complementary
27-bp oligonucleotides containing an Egr-1 binding site were
5′-GGATCCAGCGGGGGCGAGCGGGGGCCA-3′, 5′-TGG
CCCCCGCTCGCCCCCGCTGGATCC-3′. Oligonucleotides
were 5′-end-labeled with biotin and annealed. The biotin-labeled

probe was incubated with 6µg protein and poly (dI-dC)
(50µg/ml) in binding buffer for 25min at room temperature.
Gels were pre-run for 45min, then samples were loaded
directly onto non-denaturing polyacrylamide/bisacrylamide
(6%) gels. Electrophoresis for 1.5–2 h at 100 volts, and
electrotransfer for 45min at 380 mA were performed
in an ice bath. For competition studies, 50- and 200-
fold molar excesses of unlabeled probe for Egr-1 were
added.

Detecting GSH/GSSG Ratio and MDA Level
The intracellular glutathione/oxidized glutathione (GSH/GSSG)
ratio, which reflects the oxidative stress level and the ability
to eliminate ROS, was measured with the GSH and GSSG
Assay Kit (Beyotime Technology, China). Briefly, cells were
harvested after the indicated treatments and were mixed with
protein removal reagent (3 times the cell volume, 10mg ≈

10µl). Subsequently, cells were freeze-thawed two times in liquid
nitrogen and 37◦C water. Cells were placed in an ice bath for
10min, and then centrifuged for 10min at 4◦C and 10,000 × g,
after which the supernatant was assayed for total GSH and GSSG
according to the manufacturer’s instructions. Absorbance was
measured at 412 nm over 25min. The concentration of reduced
GSH in the sample was obtained by subtracting GSSG from
total-GSH.
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Malonaldehyde (MDA) was measured by thiobarbituric acid
(TBA) reactivity using an MDA assay kit (Nanjing Jiancheng
Bioengineering Institute, China) according to the manufacture’s
protocol. Supernatants containing MDA were obtained from the
cytoplasm of CMECs. The concentration of MDA was calculated
by a calibration curve using 1,1,3,3′tetra-ethoxy propane as a
standard.

Assessment of CMEC Viability by MTT
Assay
CMECs were inoculated in 96-well-plates. After different
treatments with NAC, F2, U0126, SP600125, and SB203580,
3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide
(MTT) solution was added to the medium and cells were
incubated for an additional 4 h at 37◦C. Then the medium
was discarded and DMSO was added to dissolve the formazan
crystals. All operations were performed in the dark. Absorbance
was measured at 490 nm using a SpectraMax M2e Microplate
Reader (Molecular Devices). The control group was considered
as 100% viable.

Statistical Analysis
All data are presented as mean ± S.E.M. Differences between
groups were determined using one-way ANOVA followed by a
Student-Newman-Keuls test with SPSS 17.0 software. Statistical
significance was considered at a value of P < 0.05.

RESULTS

Derivation of CMECs
Microvascular endothelial cells isolated from heart of neonatal
Sprague-Dawley rats were multipolar and possessed a
cobblestone-like appearance upon reaching confluence. CD31 is
constitutively expressed on the surface of CMECs. As judged by
immunofluorescence, all cells were CD31-positive, confirming
that the cells were CMECs (Supplementary Image 3).

ROS Level and Egr-1 Protein Expression in
CMECs at Various Times following H/R
To determine the effects of different durations of H/R on ROS
level and Egr-1 expression, CMECs were cultured in an air-tight
chamber saturated with pure N2 at 37◦C for 1, 2, 3, or 4 h,
then returned to normal conditions for 1 h of reoxygenation.
Flow cytometry analysis revealed that ROS levels in CMECs
increased in a manner dependent on the duration of H/R (≈1.7–
2.9 fold), with peak ROS levels occurring at 3 h of hypoxia
and 1 h of reoxygenation (H3/R1) vs. normoxia (Figure 2A).
Immunoblotting of extracts prepared from CMECs showed
expression of Egr-1 increased in all H/R groups (≈17–92-fold)
compared with the control group. Concomitant with the peak
in ROS levels, peak Egr-1 expression also occurred at H3/R1
(Figure 2B), followed by a decline in ROS generation and Egr-
1 protein expression by H4/R1. Based on the above data, all
subsequent experiments were performed using 3 h of hypoxia and
1 h of reoxygenation.

Relationship between ROS Level and Egr-1
Expression during H/R
The correlation of time-dependent changes of Egr-1 protein,
during H/R, with ROS levels suggested that ROS could be
responsible for Egr-1 induction. To further investigate the cause-
effect relationship between ROS and Egr-1 in H/R CMECs, we
determined whether the ROS donor XO/HX and ROS scavengers
EDA and NAC could exert changes in Egr-1 expression.

Flow cytometric analysis of ROS, western blot analysis of Egr-
1 protein and RT-PCR analysis of Egr-1 RNA harvested from
XO/HX-induced CMECs displayed increased ROS levels, Egr-1
protein expression and Egr-1 transcripts (≈2.4-, 1.7-, 4.2-fold,
respectively) at low concentrations of XO/HX, which rose further
at moderate concentration of XO/HX (≈3.0-, 2.7-, 9.8-fold,
respectively), and were even more elevated at high concentration
of XO/HX (≈4.1-, 6.6-, 49-fold, respectively), as compared with
the control group (Figures 3A–C), demonstrating that treatment
with different concentrations of XO/HX for 1 h increased ROS
levels and Egr-1 mRNA and protein expression in a dose-
dependent manner. Pretreatment with EDA and NAC for 30min
decreased ROS levels and Egr-1 mRNA expression induced by
H/R (Figures 4A,B,D), with moderate and high concentrations
of ROS scavengers (1× 10−4 M and 2× 10−4 M EDA, 1× 10−4

and 5 × 10−4MNAC) resulting in substantial decreases in H/R-
induced Egr-1 protein expression (Figure 4C). In contrast, low
concentrations of ROS scavengers (5 × 10−5 M EDA, 2 × 10−5

M NAC) had no significant effect on Egr-1 expression induced
by H/R. These results indicate that Egr-1 expression in CMECs
is regulated by ROS levels following H/R stimulation. In other
words, a ROS/Egr-1 signaling pathway is activated in CMECs
by H/R.

MAPKs Mediate ROS/Egr-1 Signal
Transduction in H/R CMECs
To observe the relationship between ROS and MAPK activity,
we initially used XO/HX (5 mU/ml, 6.0 × 10−4 M) to increase
ROS levels, and NAC (5 × 10−4 M) to decrease H/R-induced
ROS generation, and examined MAPK activity. We found that
p-ERK1/2, p-JNK, and p-p38 protein expression all increased in
XO/HX-treated CMECs (≈21-, 19-, 11-fold, respectively) and
H/R-induced CMECs (≈8-, 13-, 5-fold, respectively) compared
with the control CMECs, indicating ERK1/2, JNK, and p38 were
all activated by ROS and H/R (Figures 5A–C). H/R-mediated
ERK1/2, JNK, and p38 activation was decreased significantly
by addition of the ROS scavenger NAC (Figures 5A–C). We
next utilized activators and inhibitors of MAPKs to assess if
activation of MAPK by ROS regulates the expression of Egr-1.
Addition of ANISO (40 ng/ml) for 1 h, to activate JNK/p38, or
addition of EGF (50 ng/ml) for 1 h, to activate ERK1/2, both
increased Egr-1 protein expression, whereas the H/R-induced
increase in Egr-1 protein could be blocked by preincubation
of cells with SP600125 (10µM), U0126 (10µM), or SB203580
(20µM) for 45min (Figure 5D). These data suggest that ERK1/2,
JNK, and p38 are all involved in ROS/Egr-1 signal transduction,
and that activation of theseMAPKs plays an important role in the
ROS/Egr-1 pathway.
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FIGURE 2 | ROS level and Egr-1 protein expression in CMECs following different durations of hypoxia, and a 1-h reperfusion, as assessed using flow

cytometry and western blotting. (A) ROS levels during H/R; n = 3. (B) Protein levels of Egr-1 and β-actin; n = 3. Quantitative data are expressed as the

percentages of the control group. All values are expressed as mean ± S.E.M.*P < 0.05 vs. control; #P < 0.05 vs. the H1/R1 group; †P < 0.05 vs. the H2/R1 group;
‡P < 0.05 vs. the H3/R1 group.

Effects of F2 on ROS Level, MAPK
Activation, and Egr-1 Expression and
Activity
After confirming H/R-mediated activation of the
ROS/MAPK/Egr-1 signaling pathway in CMECs, we next
explored the effects of F2 on this pathway. Compared with
the control group, ROS level, MAPK activation, and Egr-1
mRNA and protein expression all increased in the H/R group.
However, these increases were dose-dependently inhibited by a
30min pretreatment with 0.1–10µM F2 (Figures 6A–F). High
concentrations of F2 further decreased ROS levels compared
with low concentrations of F2 (Figures 6A). Moderate and
high F2 concentrations reduced Egr-1 protein expression to a
greater extent compared with low concentrations (Figure 6E).
In addition, moderate and high F2 concentrations decreased
the expression of Egr-1 mRNA and p38 activation, as compared
with low concentrations of F2 (Figures 6F,D). As evidenced by

EMSA of nuclear extracts from CMECs, using a biotin-labeled
oligonucleotide probe containing a consensus Egr-1 binding site,
increased DNA binding activity of Egr-1 was observed after H/R,
and the increase was inhibited by F2 pretreatment (Figure 7).
These data suggest that F2 inhibits H/R-induced ROS, MAPK
activation, Egr-1 expression, and enhanced Egr-1 DNA binding
in CMECs in a dose-dependent manner. Although we have
previously shown that inhibiting expression of Egr-1 is one of
the mechanisms by which F2 protects cardiomyocytes from H/R
injury (Zhang et al., 2007), we extend these results to show that
F2 affects the DNA binding activity of Egr-1.

ROS/MAPK/Egr-1 Pathway Agonists
Antagonize the Effects of F2
Addition of XO/HX (1mU/ml, 1.2 × 10−4 M), EGF (50 ng/ml),
or ANISO (40 ng/ml) to F2-pretreated H/R CMECs in hypoxia
solution for 3 h, followed by culturing in normal medium with F2

Frontiers in Pharmacology | www.frontiersin.org 6 January 2017 | Volume 7 | Article 520

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Lu et al. F2 Regulates ROS/MAPK/Egr-1 Signaling

FIGURE 3 | Effects of different doses of a ROS donor on ROS level, and Egr-1 gene and protein expression in CMECs. (A) Flow cytometry was performed

to determine ROS levels; n = 4. (B) Egr-1 protein expression was detected by western blot; n = 3. (C) RT-PCR was performed to determine Egr-1 mRNA levels; n =

3. Quantitative data are expressed as the percentages of the control group. All values are expressed as mean ± S.E.M. *P < 0.05 vs. control; #P < 0.05 vs. the 1

mU/ml XO + 1.2 × 10−4 M HX group; †P < 0.05 vs. the 3 mU/ml XO + 3.6 × 10−4 M HX group.

alone, showed that XO/HX antagonized the effects of F2 on H/R-
induced ROS generation,MAPK activation, and Egr-1 expression
(Figures 8A–E). Similarly, the ERK1/2 and JNK/p38 activators
EGF and ANISO, respectively, also antagonized the effects of
F2 on H/R-induced MAPK activation and Egr-1 expression
(Figures 8B–E). These findings indicate that F2 can modulate
H/R-mediated activation of the ROS/MAPK/Egr-1 signaling
pathway in CMECs.

F2 Alleviates H/R Injury through Inhibiting
the ROS/MAPK/Egr-1 Pathway in CMECs
F2 (10−6 M) pretreatment reduced H/R-mediated cell death,
as did signaling pathway inhibitors (NAC, U0126, SP600125,

and SB203580) (Figure 9A). Since cellular MDA levels and the
GSH/GSSG ratio are widely used to reflect the ability to eliminate
ROS and the degree of oxidative stress injury, we measured
MDA levels and the GSH/GSSG ratio in order to characterize the
extent of oxidative damage induced by ROS-mediated signaling.
F2 (10

−6 M) reduced MDA levels, but enhanced the GSH/GSSG
ratio, compared with H/R alone. Signaling pathway inhibitors
exerted the same effects (Figures 9B,C). Induction of Egr-1 is
also regarded as a marker of H/R injury (Yan et al., 2000; Zhang
et al., 2007, 2008). We found that Egr-1 (red) was expressed at
low levels in the control group, and was distributed throughout
the entire cell (cytoplasm and nucleus; Supplementary Image 4).
Notably, H/R stimulation triggered Egr-1 translocation from the
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FIGURE 4 | Effects of different doses of ROS scavengers on ROS level, and Egr-1 gene and protein expression in CMECs after H/R, as assessed by

flow cytometry, western blot and RT-PCR. (A) Effect of NAC on ROS levels in H/R CMECs; n = 3. (B) Effect of EDA on ROS levels in H/R CMECs; n = 3. (C)

Effects of EDA and NAC on protein levels of Egr-1 and β-actin; n = 3. (D) Effect of EDA on Egr-1 mRNA levels; n = 3. Quantitative data are expressed as the

percentages of H/R groups. All values are expressed as mean ± S.E.M. *P < 0.05 vs. control; #P < 0.05 vs. H/R; †P < 0.05 vs. H/R + 2 × 10−5 M NAC or H/R + 5

× 10−5 M EDA; ‡P < 0.05 vs. H/R + 1 × 1 0−4 M NAC or H/R + 1 × 10−4 M EDA.
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FIGURE 5 | Effects of MAPKs (ERK1/2, JNK, and p38) on ROS/Egr-1 signaling in CMECs subjected to H/R, as detected by western blotting. (A) Effects

of XO/HX and NAC on ERK1/2; n = 3. (B) Effects of XO/HX and NAC on JNK; n = 4. (C) Effects of XO/HX and NAC on p38; n = 3. (D) Effects of MAPK activators

and inhibitors on expression of Egr-1 protein. n = 3. Quantitative densitometric data are expressed as percentages of the control or H/R groups. All values are

presented as mean ± S.E.M.*P < 0.05 vs. control; #P < 0.05 vs. H/R.

cytoplasm to nucleus. However, this translocation was blocked
when F2 was present. As expected, NAC and MAPK inhibitors
exerted similar effects as F2 (Supplementary Image 4). These
novel findings indicate that F2, similar to inhibitors of ROS
and MAPKs, could enhance cell viability, and decrease both
oxidative stress and activation of Egr-1 to protect CMECs
against H/R injury through inhibiting the ROS/MAPK/Egr-1
pathway.

DISCUSSION

I/R-related heart diseases are major causes of heart failure
and mortality, and acquiring the ability to reduce cardiac

I/R injury has been a topic of intense investigation. A
growing body of evidence shows that CMECs play a unique
and critical role in myocardial I/R progression (Anversa
et al., 1980; Brutsaert, 2003; Rohrbach et al., 2015). It
is crucial to maintain its integrity and function of the
microvascular endothelium in order to reduce myocardial

I/R injury. Recent studies by our laboratory suggest that
oxidative stress (induced by excessive ROS) and Egr-1 expression

are key factors responsible for H/R damage in CMECs.

Furthermore, ROS and Egr-1, might crosstalk to mediate H/R
injury of CMECs (Zhou et al., 2010a,b; Zhang et al., 2015).
Demonstration that an activated ROS/Egr-1 pathway is behind
the mechanism of H/R injury in CMECs would be another
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FIGURE 6 | Effects of F2 on ROS level, MAPK (ERK1/2, JNK, and p38) activation, and Egr-1 gene and protein expression in CMECs after H/R, as

assessed using flow cytometry, western blotting and RT-PCR. (A) ROS levels; n = 3. (B) Total ERK1/2 and p-ERK1/2 protein expression; n = 4. (C) Total JNK

and p-JNK protein expression; n = 3. (D) Total p38 and p-p38 protein expression; n = 3. (E) Egr-1 and β-actin protein expression; n = 3. (F) Egr-1 mRNA and

GAPDH mRNA expression; n = 3. Quantitative data are expressed as percentages of the levels of H/R groups. All values are expressed as mean ± S.E.M. *P < 0.05

vs. control; #P < 0.05 vs. H/R; †P < 0.05 vs. H/R + 10−7 M F2;
‡P < 0.05 vs. H/R + 10−6 M F2.
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FIGURE 7 | Effect of F2 on DNA binding activity of Egr-1. EMSA was

performed with a biotin-labeled consensus Egr-1 oligonucleotide probe and

CMEC nuclear extracts (6µg/lane of nuclear protein). Competitor samples

were incubated with an extra 50- or 200-fold non-biotin-labeled probe.

important step for prevention and therapy of myocardial I/R
injury.

In the current study, we show that H/R stimulates rapid
generation of ROS and expression of Egr-1 in CMECs. The
magnitude of Egr-1 expression corresponds to H/R-induced
ROS levels (initiated at H1/R1 and reaching a maximum at
H3/R1) in CMECs. Second, application of different doses of
the ROS activators XO/HX and scavengers EDA and NAC,
to CMECs, results in a dose-dependent stimulatory (XO/XH)
or inhibitory (EDA, NAC) effect on ROS levels and Egr-1
expression, indicating ROS levels positively modulate Egr-1
expression. These results support the hypothesis that ROS/Egr-
1 signaling occurs in CMECs during H/R, similar to our previous
findings using rat H9c2 cardiomyoblast cells.

Early studies on H9c2 cells revealed a JNK-dependent
ROS/Egr-1 pathway in H/R injury through initiation of a
phosphorylation cascade by ROS, resulting in induction of Egr-
1 (Zhang et al., 2015). Previous studies on cardiomyocytes
revealed that ERK1/2 also mediates Egr-1-dependent H/R injury
(Zhang et al., 2013). Although some studies proposed that JNK
and ERK1/2 are the chief upstream signals of Egr-1-mediated
lung I/R injury or pulmonary alveolar macrophage H/R injury
(Fujita et al., 2004; Yamamoto et al., 2011), p38 also has been
shown to contribute to H/R injury in human umbilical vein
endothelial cells (Millar et al., 2007). In the present study,
activators and inhibitors of ROS and MAPKs were used to
determine whether MAPKs mediate ROS/Egr-1 signaling to
further contribute to H/R injury in CMECs. The results show
that ROS enhance p-ERK1/2, p-JNK, p-p38 and Egr-1 expression,
and ROS scavenging inhibits H/R-induced MAPK activation and

Egr-1 expression. Therefore, ERK1/2, JNK, p38, and Egr-1 are
all downstream signaling molecules of ROS. ERK1/2, JNK, and
p38 inhibitors downregulate H/R-induced Egr-1 expression to
varying degrees, whereas MAPK activators have the opposite
effect on Egr-1 expression, suggesting that ERK1/2, JNK and
p38 all act upstream to induce Egr-1. In addition to previous
studies on H9c2 cells and cardiomyocytes, the current study
further demonstrates that ERK1/2, JNK and p38 all regulate the
ROS/Egr-1 signaling pathway in CMECs following H/R.

We also observed that H/R leads to increased MDA levels and
a decreased GSH/GSSG ratio in CMECs, suggesting oxidative
stress damage occurs during H/R. In addition, H/R-induced
oxidative stress damage can be reduced by ROS scavenging and
MAPK inhibition. Our previous results showed that an Egr-
1 antisense oligodeoxyribonucleotide can antagonize oxidative
stress damage in CMECs caused by H/R, as evidenced by
decreases in MDA levels and an increase in SOD activity (Zhou
et al., 2010a,b). Based on this, we deduce that oxidative stress-
related damage in CMEC H/R injury, triggered by abnormal
ROS generation, is mediated by the activated ROS/MAPK/Egr-1
pathway.

We also previously showed that F2 protects myocardium
against I/R injury by blocking L-type calcium channels, inhibiting
Egr-1 gene and protein expression, and reducing damage due
to oxidative stress. Although we have known that F2 reduces
H/R-induced oxidative stress injury and other damage in CMECs
through inhibiting expression of Egr-1, the cellular target of F2
remains unknown. Studies on H/R H9c2 cells demonstrate that
F2 inhibits the ROS/JNK/Egr-1 pathway (Zhang et al., 2015).
Data from the present study show that F2 reduces H/R-induced
increases in ROS level, MAPK activation, and Egr-1 expression
in CMECs in a dose-dependent manner. In addition, we observe
that F2 has multiple effects on Egr-1: F2 not only inhibits Egr-
1 mRNA and Egr-1 protein expression, but also reduces Egr-1
nuclear translocation. Moreover, we show, by EMSA, that F2
downregulates Egr-1 activity and that ROS donor administration
antagonizes the F2-mediated inhibition of ROS induction,MAPK
activation and enhanced Egr-1 expression, which are induced by
H/R stimuli. Similarly, EGF, an ERK1/2 activator, and ANISO, a
JNK and p38 activator, inhibit F2-mediated decreases in MAPK
activation and Egr-1 expression, suggesting that F2 reduces Egr-1
expression by inhibiting ROS generation and MAPK activation
in CMECs.

Moreover, in H/R CMECs, F2, as well as inhibitors of ROS
andMAPKs, increase cell viability, reduce oxidative stress injury,
as demonstrated by a decreased MDA level and an increased
GSH/GSSG ratio, and inhibition of nuclear translocation of Egr-
1, all of which have been shown to be associated with I/R-
induced inflammation and other types of injury (Yan et al.,
2000; Zhang et al., 2007, 2008; Zhou et al., 2010a). Taken
together, our data suggest F2 protects CMECs via regulating the
ROS/MAPK/Egr-1 signaling pathway during H/R. In addition,
this study provides a necessary and sufficient explanation
for Egr-1’s central and unifying role in the pathogenesis of
I/R injury, i.e., Egr-1 also mediates ROS-induced oxidative
stress injury caused by I/R. Our findings provide guidance
for I/R-related investigations of other organs in which the
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FIGURE 8 | Influence of ROS donor and MAPK activators on the effects of F2 on ROS level, MAPK activation, and Egr-1 expression in CMECs after

H/R, as determined using flow cytometry and western blot. (A) ROS levels; n = 3. (B) Total ERK1/2 and p-ERK1/2 protein expression; n = 3. (C) Total JNK and

p-JNK protein expression; n = 3. (D) Total p38 and p-p38 protein expression; n = 3. (E) Egr-1 and β-actin protein expression; n = 3. Quantitative data are expressed

as percentages of the levels of the H/R groups. All values are expressed as means ± S.E.M. *P < 0.05 vs. control; #P < 0.05 vs. H/R; †P < 0.05 vs. H/R + F2.
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FIGURE 9 | Effects of signaling pathway inhibitors (NAC, U0126, SP600125, and SB203580) and F2 on cell viability, MDA levels and the GSH/GSSG ratio

of CMECs after H/R. (A) Cell viability; n = 4. (B) Level of MDA; n = 6. (C) GSH/GSSG ratio; n = 5. All values are expressed as means ± S.E.M. *P < 0.05 vs.

control; #P < 0.05 vs. H/R.

microvascular endothelium is indispensable. In addition to I/R,
ROS induced oxidative stress turn out to be primary pathogenesis
of other diseases such as diabetes, heart failure and Alzheimer’s
diseases, therefore, it is reasonable to expect that ROS in
above diseases might also active ROS/MAPK/Egr-1 pathway, and
even damage vascular endothelium, which can be ameliorated
similarly by F2.

CONCLUSIONS

In summary, H/R leads to ROS/Egr-1 signaling pathway
activation in CMECs, and MAPK activation mediates the
signaling pathways between ROS and Egr-1. F2 downregulates
H/R-induced ROS/MAPK/Egr-1 signaling to antagonize
myocardial I/R injury.
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(CMECs) by immunofluorescence analysis of CD31. CD31 (green),

Hoechst 33258 (blue) (400 × , bar = 20 µm).

Supplementary Image 4 | Effects of signaling pathway inhibitors and F2 on

nuclear translocation of Egr-1 in CMECs after H/R, as assessed using
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immunofluorescence. Egr-1 in the control group (light red, low level Egr-1) is

mainly expressed in cytoplasm. In the H/R group, Egr-1 (bright red) was observed

in the nucleus and red fluorescence was nearly undetectable in the cytoplasm,

indicating Egr-1 nuclear translocation. When pre-treated with F2, NAC, U0126,

SP600125, and SB203580, cells showed decreased Egr-1 expression and

translocation to the nucleus.
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