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Iron fine-tunes innate immune responses, including macrophage inflammation. In this
review, we summarize the current understanding about the iron in dictating macrophage
polarization. Mechanistically, iron orchestrates macrophage polarization through several
aspects, including cellular signaling, cellular metabolism, and epigenetic regulation.
Therefore, iron modulates the development and progression of multiple macrophage-
associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this
review highlights the crucial role of iron for macrophage polarization, and indicates the
potential application of iron supplementation as an adjuvant therapy in different
inflammatory disorders relative to the balance of macrophage polarization.
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INTRODUCTION

As an essential microelement, iron is involved in cell proliferation, metabolism and differentiation
(1). Generally, recycling iron from red blood cells (RBCs) is essential for maintaining the quantity
and function of RBCs. In mammals, approximately 95% of the iron required for physiological
processes is dependent on macrophage iron recycling via a series of complex processes (2–7). Of
note, the roles of macrophages in regulating iron homeostasis have been well addressed (8, 9).

Reciprocally, iron modulates macrophage fate and function, like the development and
differentiation of tissue-resident macrophages (10–18), the function of macrophages in
hematopoiesis (19–22), and macrophage-mediated inflammatory responses during pathogen
infections (23–28). Noteworthily, in addition to their homeostatic activities, macrophages
polarize into disparate phenotypes in response to external signals and stimuli to exert different
functions (e.g., regulating the progression of diseases) (29). Numerous regulators, including cellular
pathway, intracellular metabolism, and epigenetic regulation contribute to the polarization of
macrophages, which have been well summarized elsewhere (30–32). Therefore, in this review, we
specifically focus on whether and how iron shapes macrophage polarization.
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REGULATION OF IRON IN MACROPHAGE
POLARIZATION

It is well accepted that, under normal conditions, iron always
binds with ferritin (Ft) in macrophages (33); nevertheless, iron
homeostasis and expression of iron-regulated genes strikingly
shift during macrophage polarization. For example, in classically-
activated macrophages (M1-like, pro-inflammatory phenotype),
expression of Hamp (encoding for hepcidin) and FtH/FtL
(encoding for ferritin) are highly up-regulated; while FPN
(encoding for ferroportin) and IRP1/2 (iron regulatory
proteins) are down-regulated (34, 35). Such different expression
of Fe-regulated genes in polarized macrophages suggests that iron
might be associated with macrophage activation.

Notably, acute iron deprivation decreases expression of
activating transcription factor 4 (ATF4) in resting human
macrophages, and reduces interleukin (IL)-1b and tumor
necrosis factor (TNF)-a expression in human macrophages
following LPS treatment (36). Moreover, iron depletion blocks
NF-kB activation in rat alveolar macrophage stimulated by LPS
plus TNF-a (37). These fascinating findings indicate that iron
may be necessary for M1-like macrophage polarization.
However, more investigations are needed to support this
notion as only few studies focusing on the iron deprivation in
modulating macrophage activation (Table 1). Moreover, the
current studies seem to be inclined to investigate the effects of
iron depletion on M1-like macrophage polarization; therefore, it
is interesting to have a comprehensive understanding about iron
Frontiers in Immunology | www.frontiersin.org 2
deprivation on macrophage polarization [e.g., alternatively-
activated macrophage polarization (M2-like, anti-inflammatory
phenotype)] in the future.

Interestingly, iron supplementation also affects macrophage
phenotypes. Increasing endogenous iron induces TNF
production in macrophages (38). Besides, exogenous iron
supplementation, like ferric ammonium citrate (FAC) (0.25
mM Fe3+), ferric citrate (2.5 mg/ml, equal to 10.2 mM Fe3+),
ferrous citrate (2.5 mg/ml, equal to 10.16 mM Fe2+), and
Ferumoxytol (Fe3H2O4) (2.73 mg Fe/ml, equal to 48.9 mM
Fe2+), promotes the expression of M1 markers (e.g., iNOS,
TNF-a, and IL-1b), while lowers the expression of M2 markers
(e.g., IL-10 and CD206) in RAW264.7 cells (44, 45), bone
marrow-derived macrophages (BMDMs) (47), and THP-1 cells
(40, 41). In addition to the in vitro experiments, some in vivo
experiments also confirm that iron supplementation enhances
pro-inflammatory macrophage polarization (37, 47).

The roles of iron in regulating pro-inflammatory
macrophages are not always consistent. In IFN-g-stimulated
RAW264.7 cells, FAC supplementation (25 mg/ml, equal to
0.089 mM Fe3+) lowers the expression of M1 markers (e.g., IL-
1b, iNOS, and TNF-a) by blocking signal transducer and
activator of transcription (STAT)-1 pathway (35). Moreover,
supplementation of Fe2+ (FeSO4, 0~1 mM) reduces LPS/IFN-g-
induced NO synthesis in mouse and rat macrophages (39). The
following factors may be conceivably involved in the regulation
of the final polarization trends of macrophages: (i) the final iron
(Fe2+ and/or Fe3+) concentrations and different processing
TABLE 1 | Iron affects macrophage phenotypes.

Cell Types Inducers Treatments Changes of
mediators

Refs

Human
macrophage

LPS (100 ng/ml), 24 h Deferiprone (DEF) (0.5 mM) ATF4↓ IL-1b↓ TNF-a
↓ TGF-b↑

(36)

Rat alveolar
macrophage

LPS (1 mg/ml)+TNF-a (4 U/ml), 30 min Iron-deficient diet NF-kB activity↓ (37)

LPS (1 mg/ml) + TNF-a (4 U/ml), 30 min Iron dextran (10 mg/125 mg) NF-kB activity ↑ (37)
Microglia Not provided Endogenous iron absorbed by macrophages TNF ↑ (38)
Mouse and rat
macrophages

LPS (5 mg/ml)+ IFN-g (100 U/ml) Fe2+ (FeSO4, 0.04, 0.2, 1 mM) NO↓ (39)

PMA-primed
THP-1

Resting condition Hepcidin, 24 h IFN-g/IL-4 ratio↑
iNOS↑

(40)

THP-1 Resting condition FeCl3 (0.01 mM), 5 min Hemin (0.01 mM), 5 min IL-6 ↑ (41)
LPS+IFN-g or IL-4+ IL-13, 20 ng/ml, 24 h FAC (0.1 mM) IL-1b↓ TNF-a↓

CCL17↑ CCL22 ↑
(42,
43)

RAW264.7 Resting condition Ferumoxytol (2.73 mg/ml, equal to 48.9 mM Fe2+), 24 h TNF-a↑CD86 ↑ IL-10
↓ CD206↓

(44)

IFN-g (20 ng/ml), 24 h FAC, (0.089 mM Fe3+) IL-1b↓ TNF-a ↓ iNOS
↓

(35)

Resting condition Fe3+ (ferric citrate, 2.5 mg/ml, 10.2 mM Fe3+) or Fe2+ (ferrous
citrate, 2.5 mg/ml, 10.2 mM Fe2+), 2 h

IL-1b↑ TNF-a↑ iNOS
↑

(45)

LPS (100 ng/ml)+IFN-g (20 ng/ml) or IL-4 (20 ng/
ml)+ IL-13 (20 ng/ml), 24h

FAC (0.05-0.15 mM) GMFG ↓ (38,
46)

BMDM Resting condition FAC (0.25 mM), 4 h iNOS↑ CCL2↑ IL-1b↑
KLF4↓

(47)

LPS+IFN-g or IL-4+ IL-13, 20 ng/ml, 24 h FAC (0.1 mM) IL-1b↓
CCL17↑ CCL22 ↑

(42)

IL-4 (20 ng/ml), overnight Iron dextran (20 mM) or RBCs (10:1) CD16/32 ↑ CD206 ↓ (38,
42)
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time (48); (ii) the macrophage types (e.g., RAW264.7 cells, THP-
1 cells, and BMDMs); (iii) the various conditions of stimuli/
inducers for macrophage polarization; (iv) pretreatment of iron
or treatment of iron during macrophage polarization
simultaneously. Hence, it is worth conducting experiments to
validate the aforementioned speculations, as well as the genders
of experimental animals or other factors associating the various
results of macrophage polarization status under iron treatment.

In contrast to classical ly-activated macrophages,
alternatively-activated macrophages are dominated by low Ft
and high FPN, and the high heme oxygenase (HO)-1 expression
promotes the absorption of heme and the excretion of free iron
by alternatively-activated macrophages (49). Therefore, iron
homeostasis may be also closely related to the functions of
M2-like macrophages, which has been validated in models of
diabetes (42), spinal cord injuries (SCI) (38), and cancers (44,
45). For example, tumor-associated macrophages (TAMs) are
defined as M2-like macrophages that promote the progression of
tumor and are associated with poor prognosis (50–52). In tumor-
burden BALB/C mice, ferric citrate (2.5 mg per three day, totally
17.5 mg) injection promotes reactive oxygen species (ROS)
production and CD86 expression of tumor infiltrating
macrophages, and lowers the volume and weight of H22
hepatoma xenograft (45). Likewise, intravenous injection of
ferumoxytol (10 mg Fe/kg) to mice profoundly inhibits the
function of M2-like macrophages while enhances the function
of M1-like macrophages in tumorous tissues (44). Collectively,
these findings suggest that iron negatively regulates M2-like
macrophage polarization.

In some situations, iron may promote M2-like macrophage
polarization. For example, exogenous iron supplementation
(FAC, 0.1 mM) and endogenic iron-rich human dermal
fibroblasts extracellular matrix (ECM) both enhance THP-1
cells polarizing into M2 phenotype (42). Similar finding is also
observed in BMDMs (42). Interestingly, iron status causes
different inflammatory response outcomes (44, 53, 54). For
example, iron deprivation lowers the expression of M2
markers, while an iron-rich status (under physiological iron
loading condition) favors M2-like macrophage polarization
and inhibits LPS-induced inflammatory responses, which
might be highly associated with the differential regulation of
Hamp and FPN in the context of various inflammatory
conditions (55). These conflicting results suggest that iron
might regulate macrophage polarization by affecting different
signal pathways based on different models. Therefore, the
underlying mechanisms by which iron shapes the macrophage
polarization deserve further exploration.

In summary, in most cases (concerning nontumorous and/or
tumorous tissues), iron affects macrophage phenotypes by
promoting classically-activated macrophage functions
[especially high iron addition (>0.1 mM Fe3+ and/or >1 mM
Fe2+)], while decreasing alternatively-activated macrophage
functions (Table 1). It should be noticed that some effects seen
are probably the related stress responses rather than iron-driven
macrophage polarization (43). The differences in the direction of
macrophage polarization caused by iron deficiency, iron
Frontiers in Immunology | www.frontiersin.org 3
supplementation or overload also reflect that the cellular
signaling and/or metabolic pathways underlying iron in
shaping macrophage polarization are complex and diverse, and
the specific mechanisms remain to be explored.
MECHANISMS WHEREBY IRON
MEDIATES MACROPHAGE
POLARIZATION

Iron Shapes Macrophage Polarization
Through Cellular Signaling Pathways
Within multifarious pathways associating with functions of
macrophages, NF-kB functions as a main contributor to
regulate macrophage polarization (30, 56). Iron deprivation
shapes macrophage polarization through NF-kB involving
distinct mechanisms. Interestingly, macrophages isolated from
iron deficient rats have reduced Nox activity while iron depletion
blocks the activation of NF-kB in LPS+TNF-a-activated
macrophages (37), implying the suppression of classically-
activated macrophage polarization by iron deprivation (Figure
1A). However, LPS/IFN-g-polarized macrophages with NADPH
oxidase (Nox) 4 deficiency [a member of Nox family (57)]
express more Nox2 to enhance p65 nuclear translocation and
NF-kB activity to force pro-inflammatory macrophage
polarization (58), indicating that there might be another
mechanism involving NF-kB for iron deprivation to affect M1-
like macrophage polarization (Figure 1B). Here, we speculate
that these conflicting results might be associated with the
different culture conditions and/or the levels of Nox2; however,
the aforementioned process still needs well-designed
experimental validation.

Iron also shapes macrophage polarization through mitogen-
activated protein kinase (MAPK). Iron supplementation or
intracellular iron accumulation increases TNF-a expression
(38, 44, 54). Mechanistically, iron accumulation enhances
expression of MAPK, leading to the phosphorylation of kinase
2 (MK2) to trigger TNF-a production (38, 59). TNF-a
continuously stimulates macrophages to produce a large
number of hydroxyl radicals (OH•) and peroxynitrite
(ONOO•) (54, 60). Thus, iron treatment may promote M1-like
macrophage polarization through MAPK-p-MK2 axis
(Figure 1C). Lipocalin-2 (Lcn-2) combined with siderophore-
bound iron can be absorbed by macrophages (61). Interestingly,
Lcn-2 deficiency reduces M1 polarization in BMDMs (62).
Mechanistically, Lcn-2 activates ERK1/2 to shape macrophage
towards M1-like phenotype (63). However, whether Lcn-2-
mediated intracellular iron accumulation causes M1-like
macrophage polarization is still lacking the direct evidence.

Other cellular signaling pathways include ATF4, ROS, and
NLRP3 inflammasome. ATF4 expression is correlated with the
percentage of M2-like macrophages (64, 65). Notably, acute iron
deprivation decreases ATF4 (36), indicating that iron deprivation
could block M2-like macrophage polarization (Figure 1D).
Furthermore, iron treatment may promote M1-like macrophage
May 2021 | Volume 12 | Article 669566
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polarization by increasing the production of intracellular ROS
(Figure 1E) (38, 45, 66). Iron overload increases hepcidin
expression (45), which inhibits STAT6 activation while
promotes interferon regulatory factor (IRF)-3 expression (40),
resulting in pro-inflammatory macrophage polarization (Figure
1F). NLRP3 inflammasome (mainly including NLRP3, ASC,
Caspase-1, and IL-1b) functions as a crucial platform for M1-
like macrophage polarization (30). Of note, iron overload can
activate NLRP3 inflammasome through the generation of ROS,
and some unrevealed mechanisms (67–69), thereby enhancing
M1-like phenotype (Figure 1G).
Frontiers in Immunology | www.frontiersin.org 4
On the contrary, iron supplementationmay also inhibitM1-like
polarization by suppressing STAT1 activation (35). Iron
supplementation down-regulates actin-regulatory protein glia
maturation factor-g (GMFG), which is negatively associated with
themitochondrial ROS (mtROS) accumulation (46). Themoderate
increase of mtROS cascading with NF-kB pathway is needed
for M2-like macrophage polarization (70); hence, iron
supplementation might also shape M2-like macrophage
polarization associating with GMFG/mtROS/NF-kB pathway
(Figure 1H). Therefore, iron supplementation and/or overload
affect macrophage polarization depends on various cellular
FIGURE 1 | Cellular pathways whereby iron shapes macrophage polarization. Iron deprivation may suppress NF-kB activation to block M1-like macrophage
polarization (A). In some special cases, iron deprivation could lower the activity of Nox to promote p65 nuclear translocation and increases NF-kB activity, promoting
M1-like macrophage polarization (B). Iron treatment could activate MAPK-p-MK2 pathway to increase TNF-a production to generate a large amount of OH• and
ONOO•, promoting M1-like macrophage polarization (C). Acute iron deprivation inhibits ATF4 expression to suppress M2-like macrophage polarization in tumorous
tissues (D). Iron treatment may promote M1-like macrophage polarization by inducing the activation of MAPK, NF-kB and other proinflammatory signaling pathways
via increasing the production of intracellular ROS (E). Iron overload increases hepcidin expression which can inhibit STAT6 activation while promote IRF3 expression
to increase iNOS expression in M1-like macrophages (F). Iron can activate NLRP3 inflammasome to promote M1-like macrophage polarization by the generation of
ROS (G). Iron might enhance M2-like macrophage polarization through moderately activating of mtROS cascading with NF-kB pathway by down-regulating GMFG
level (H). ATF4, activating transcription factor 4; GMFG, glia maturation factor-g; IRF3, interferon regulatory factor 3; MAPK, mitogen-activated protein kinase; MK2,
kinase 2; NF-kB, nuclear factor kB; NLRP3, NOD‐like receptor; Nox, NADPH oxidase; ROS, reactive oxygen species; STAT6, signal transducer and activator of
transcription 6. “↑”, increase; “↓”, decrease. Question mark means that the mechanism needs experimental confirmation.
May 2021 | Volume 12 | Article 669566
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pathways (Figure 1). And the possible reasons for these different
effects of iron inguidingmacrophagepolarizationare largely related
to cellular iron status (e.g., marginal or high iron supplementation)
and/or heterogeneity of tissue microenvironment.

Iron Shapes Macrophage Polarization
Through Cellular Metabolism
The cellular metabolism is highly associated with the functional
output of macrophages (31). Unfortunately, there are only
several studies concerning the cellular mechanisms whereby
iron mediates macrophage polarization. Of note, although
acute iron deprivation in human macrophages without pro-
inflammatory stimuli (resting macrophages) share the same
metabolic switch with pro-inflammatory stimuli (e.g., LPS and/
or IFN-g)-treated macrophages (an induction of glycolysis and
fatty acid synthesis, and a repression of OXPHOS), the
underlying mechanisms differ (36). Mechanistically, iron
deprivation directly inhibits the mRNA expression and protein
abundance of respiratory chain Fe-S enzymes (including
NDUFS6 and SDHB) and blocks the activity of mitochondrial
aconitase to cause citrate accumulation (36), thereby potentiating
M1-like phenotype (Figure 2A); nevertheless, LPS-induced M1-
like macrophage polarization is limited in iron-deprived human
macrophages due to the increase of itaconate:succinate ratio
(Figure 2B) (36). Prolyl hydroxylase (PHD), as a key factor in
the metabolic pathways, is responsible for M1-like macrophage
polarization via post-translational modification of IKKb and
Frontiers in Immunology | www.frontiersin.org 5
stabilization of HIF‐1a (71–74). Notably, lack of iron inhibits
PHD proteins, plausibly explaining how iron deprivation
facilitates M1-like macrophage polarization in some specific
situation (e.g., acute iron deprivation). Interestingly, iron
deprivation also results in reduced transcription of the nuclear
DNA-encoded OXPHOS genes [e.g., Ndufa9 and Ndufs7
(complex I), Sdha (complex II), Uqcrc2 (complex III) and
Atp5a1 (complex V)] via modulating nuclear epigenome (chiefly
decreasing histone acetylation) (75), suggesting that iron
depletion may suppress M2-like phenotype (Figure 2C). It is
mentionable that the changes in cellular metabolism are likely the
outcomes of epigenetic regulation; hence, whether and how iron
deprivation facilitates resting and/or pro-inflammatory-
activated macrophages towards M1-like phenotype through the
decreased acetylation of OXPHOS-related genes still needs
experimental validation.

As for iron supplementation, it has been demonstrated that
iron-load promotes glycolysis in macrophages, manifested by
increased expression of glycolysis-related genes, such as Eno1,
Slc2a1, and Hk2 (76), indicating that iron promotes M1-like
macrophage polarization through glycolysis (Figure 2D).
Considering that iron-load down-regulates GMFG (46), and
that blockade of GMFG reduces the expression of NDUFV2
(complex І), SDHD (complex II), and SOD (77), iron might
restrain M2-like macrophage polarization via GMFG-OXPHOS
pathway (Figure 2E) and/or favor M1-like macrophage
polarization through GMFG-SOD signaling (Figure 2F).
FIGURE 2 | Mechanisms associated with metabolic pathways whereby iron shapes macrophage polarization. Iron deprivation directly inhibits the expression of
NDUFS6 and SDHB and blocks the activity of mitochondrial aconitase to cause citrate accumulation, thereby switching resting macrophages towards M1-like
macrophages (A). Iron deprivation limits M1 polarization by increasing itaconate:succinate ratio through altering metabolic fluxes and inducing TGF-b signaling
pathway (B). Specially, iron deprivation decreases histone acetylation to reduce transcription of the nuclear DNA-encoded OXPHOS genes, suppressing M2-like
phenotype (C). Iron-load increases the expressions of glycolysis-related genes to promote glycolysis in macrophages, enhancing M1-like macrophage polarization
(D). Iron might restrain M2-like macrophage, while favors M1-like macrophage polarization via reducing the expression of NDUFV2 and SDHD (E), and SOD1 and
SOD2 through down-regulating GMFG (F), respectively. OXPHOS, oxidative phosphorylation; TGF-b, transforming growth factor-b. “↑”, increase; “↓”, decrease.
Question mark means that the mechanism needs experimental confirmation.
May 2021 | Volume 12 | Article 669566

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xia et al. Iron in Macrophage Polarization
Overall, iron mainly shapes activated macrophages polarize into
pro-inflammatory phenotype via targeting cellular metabolism
(Figure 2).

Iron Shapes Macrophage Polarization
Through Epigenetic Regulation/
Modification
Generally, epigenetic regulation/modification includes small
RNA, DNA modification (methylation), histone modification,
and chromatin remodeling. Epigenetic regulation/modification
causes chromosome-bound, heritable changes to gene expression
that are not dependent on changes to DNA sequence (78), thus
becoming a key platform for macrophage reprogramming (79–
81). In this section, we summarize how iron shapes macrophage
phenotypes through the interactions between iron and several
epigenetic regulators (Figure 3).

MiRNAs
MicroRNAs (miRNAs) are a series of non-coding RNA involved
in regulating gene expression. With the establishment of
miRNAs expression profiles associated with the polarized
human and mouse macrophages, it is not surprising that
miRNAs function in controlling macrophage polarization (82).
The expression of miR-141-3p or miR-152 is highly up-regulated
Frontiers in Immunology | www.frontiersin.org 6
in pro-inflammatory macrophages; while the expression of miR-
124 is increased in anti-inflammatory macrophages (82).
MiR141/200c could inhibit adenosine 5’-monophosphate
(AMP)-activated protein kinase (AMPK) phosphorylation to
block the activation of peroxisome proliferators-activated
receptor (PPAR)-a, leading to an impairment of fatty acid b-
oxidation in macrophages (83). Therefore, miR-141 favors M1-
like phenotype (83). Interestingly, the anti-inflammatory effects
of miR152 appear to be inconsistent with their up-regulation in
M1-like macrophages. MiR-152 directly targets to Kruppel-like
factor 5 (KLF5) to inhibit M1-like macrophage polarization (84).
MiR-124 favors M2-like phenotype by inhibiting LPS-induced
STAT3 phosphorylation in LPS-exposed RAW264.7 cells (85).

Of note, some miRNAs associating with macrophage
polarization are supposed to regulate the expression of iron-
regulated genes. For example, miR-124 modulates the stability of
TFR1 mRNA by targeting iron-responsive element (IRE)-B (86);
miR-152 negatively regulates TFR1 at post-transcriptional level
(87); miR-141-3p regulates TFR1 mRNA degradation by directly
targeting 3’-untranslated region (UTR) of TFR1 (86) or not (88,
89). Insofar, it is not surprising that iron shapes macrophage
polarization through miRNAs.

MiR-29a-3p enhances the polarization of M2-like macrophages
by activating suppressor of cytokine signaling (SOCS)-1/STAT6
FIGURE 3 | Mechanisms associated with epigenetic regulation/modification whereby iron shapes macrophage polarization. Iron supplementation may reduce miR-
29a expression to block the activation of SOCS1/STAT6 signal pathway, inhibiting TAM polarization (A). Iron could promote M1-like macrophage polarization by
increasing miR-214 expression (B). Iron could increase the enzyme activity of JMJD3 to demethylate H3K27me3, relieving the transcriptional silencing of LPS-
induced genes and facilitating M1-like macrophage polarization (C). Iron might promote macrophages toward pro-inflammatory phenotype through demethylating
H4K20me3 by enhancing the enzyme activity of HR23A (D). Iron deficiency might cause the loss of H3K9Ac and H3K4me3 to reduce hepcidin expression, inhibiting
M1-like macrophage polarization (E). Iron deficiency inhibits M1 activation (e.g., pro-inflammatory responses) possibly through increasing HDAC1 binding to the
related genes (F). Iron deficiency inhibits M1-like phenotype by lowering hepcidin expression via enhancing HDAC3 binds chromatin at the hepcidin locus (G).
H3K27me3, histone 3 lysine 27 trimethylation; H4K20me3, histone 4 lysine 20 trimethylation; HDAC, histone deacetylase; SOCS1, suppressor of cytokine signaling
1. “↑”, increase; “↓”, decrease. Question mark means that the mechanism needs experimental confirmation.
May 2021 | Volume 12 | Article 669566
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signal pathway (90). Considering iron negatively regulates miR-29a
(91), iron supplementation may reduce miR-29a expression to
inhibit M2-like macrophage polarization (Figure 3A). Moreover,
miR-214 is related to M1 polarization (92–94) and iron saccharate
promotes miR-214 transcription (95); thus, it is likely that
iron could promote M1-like macrophage polarization by
increasing miR-214 expression (Figure 3B). However,
these observations about iron-mediated the expression of
miRNAs are achieved by TAM; therefore, whether iron shapes
the polarization of conventional macrophages via miRNAs needs
further investigations.

DNA Methylation
DNAmethylation is associated with the transcriptional inhibition
via DNA methyltransferases (DNMTs, including DNMT1,
DNMT2, DNMT3A, and DNMT3B) (96). Up to now, DNA
methylation in modulating M1 activation is still in its infancy.
Only DNMT1 has been found to inhibit the expression of SOCS1
(which functions as a negative regulator of cytokine signals,
including STAT1) through hypermethylation, thereby
enhancing M1-like macrophage polarization (97). Interestingly,
different concentrations of exogenous iron (Fe3+, 0.0625~0.25
mM) directly decrease the enzyme activity of purified
DNMT in vitro (98). In addition, as mentioned above, FAC
supplementation (~0.089 mM Fe3+) suppresses M1-like
macrophage polarization by blocking STAT1 pathway in IFN-g-
stimulated RAW264.7 cells (35); thus, it remains to know whether
in some special cases, iron blocks STAT1 pathway through
regulating DNA methylation.

Histone Modification
Histone 4 lysine 20 trimethylation (H4K20me3), H3K9me3, and
H3K27me3 restrain inflammatory cytokine gene transcription
(e.g., IL-12 p40) in the absence of TLR signaling to keep
macrophages in a “poised” state (32). Notably, these epigenetic
“brakes” related to transcriptional silencing could be released by
using demethylases in macrophages followed by inflammatory
stimulation (e.g., TLR ligands) (32). Indeed, these modifiers
involved in the regulation of macrophage polarization are also
inextricably linked to iron. LPS-triggered NF-kB activation
promotes JMJD3 (specially demethylates H3K27me3) binding
to the promoter regions of LPS-induced genes in macrophages
(99, 100). Notably, the enzyme activities of JumonjiC histone
demethylases (including JMJD3) depend on 2-oxoglutarate and
iron (II); thus, it is likely that iron could increase the enzyme
activity of JMJD3 to demethylate H3K27me3, relieving the
transcriptional silencing of LPS-induced genes and facilitating
M1-like macrophage polarization (Figure 3C). Moreover,
HR23A is a histone H4K20 demethylase that specifically
demethylates H4K20me1/2/3 to produce formaldehyde, and
iron (II) is required as cofactor for the enzyme activity of
HR23A (101). Herein, we envision that iron might promote
macrophages towards pro-inflammatory phenotype through
demethylating H4K20me3 by enhancing the enzyme activity of
HR23A (Figure 3D). Moreover, it has been shown that ten-
eleven translocation family proteins (Tets) [which are iron (II)
Frontiers in Immunology | www.frontiersin.org 7
and a-ketoglutarate (a-KG)-dependent demethylases (102–
104)] promote (by Tet1) (105) or restrain (through Tet2) (106,
107) pro-inflammatory responses in macrophages through
unique mechanisms; thus, iron might also shape M1-like
macrophage polarization through regulating Tet activity
(Figure not shown).

Indeed, after removal of “negative histone markers” (which
could inhibit gene expression, e.g., H4K20me3, H3K9me3, and
H3K27me3) of inflammatory genes, “positive histone markers”
(which could promote gene expression, including H3K4me3,
H3K9Ac, and H3K27Ac) increase, that could be enriched in the
promoter region of Cxcl10 (M1 marker gene) (32). Notably, iron
deficiency suppresses hepcidin expression involving reversible
loss of H3K9Ac and H3K4me3 at the hepcidin locus (108). Given
that hepcidin supplementation promotes M1-like polarization
(40), we speculate that iron deficiency might cause the loss of
H3K9Ac and H3K4me3 to reduce hepcidin expression,
inhibiting M1-like macrophage polarization (Figure 3E).
Nevertheless, the above hypothesis still requires the convincing
experimental evidence.

It should be noticed that HDACs highly regulate M1
activation; and LPS stimulation affect almost all classes of
HDACs, thereby controlling the expression of inflammatory
genes. For instance, HDAC 2/3/6/9 positively regulate M1
polarization, whereas HDAC 1/4/5 have repressive effects (32,
109). It has been found that the initial decrease in HDAC1 is
responsible for IL-8 induction during L. pneumophila infection
(110). Fetal iron deficiency increases HDAC1 binding to its
target gene promoter (111). Therefore, iron deficiency inhibits
M1 activation (e.g., pro-inflammatory responses) possibly
through increasing HDAC1 binding to the related genes
(Figure 3F). Besides, HDAC3 depletion leads to the loss of
basic expression of IFN-b in macrophages, which affects
subsequent STAT1-dependent gene expression and thus
inhibits inflammatory activation (109). Intriguingly, during
iron deficiency, RGFP966 (the HDAC3 inhibitor) counteracts
hepcidin suppression (108). As mentioned above, hepcidin could
promote M1-like macrophage polarization (40); thus, it is
possible that iron deficiency inhibits M1-like phenotype by
lowering hepcidin expression via enhancing HDAC3 binds
chromatin at the hepcidin locus (Figure 3G). Besides, HDAC1
reduces expression of hepcidin by interacting with SMAD4
rather than deacetylation of SMAD4 or histone-H3 on the
hepcidin promoter (112); therefore, it is interesting to further
investigate whether iron deficiency directs pro-inflammatory
macrophage polarization that is independent of the effect of
deacetylation of HDAC1.

Sirtuin 2 (SIRT2) depletion results in a decrease in cellular
iron levels; mechanistically, SIRT2 deacetylates nuclear factor
erythroid-derived 2-related factor 2 (NRF2) on K506 and K508
to reduce FPN1 expression, leading to the decreased cellular iron
export (113). After TNF-a stimulation, Sirt2-/- mouse embryonic
fibroblasts (MEFs) cells become highly acetylated, resulting in
increased expression of NF-kB target genes, including Mpa2l,
Cxcl5, Ip10, and Il6 (114). Reciprocally, whether iron status
shapes M1 polarization as an outcome of the effect of
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SIRT2/NRF2 is still unknown. Importantly, a large number of
iron deprivation-related histone acetylation and methylation
modifications have been found in iron chelator-treated
myoblasts cells (75), thus it would be very interesting to
explore whether these epigenetic modifications could
participate in regulating macrophage polarization in the
context of iron deprivation.

Indeed, chromatin remodeling occurs through the ATP-
dependent SWI/SNF complex during M1 activation (115), and
SWI/SNF directly represses iron transport-related genes (116);
therefore, it is of great interest to investigate whether iron shapes
M1 polarization involving chromatin remodeling in the future.
IRON IN MACROPHAGE-ASSOCIATED
DISEASES

Notably, defects in macrophage phenotypic switch, such as the
prolonged activation of a pro-inflammatory property in
macrophages, are associated with various macrophage-
associated diseases (117). Thus, the significant role of iron in
dictating macrophage polarization suggests that iron has
potential for affecting the progression of macrophage-
associated diseases.

Nonalcoholic Fatty Liver Disease
Liver is the main organ for systemic iron regulation and storage,
and the increase of iron in the liver may cause oxidative damage,
lipid peroxidation, and even cell death (118). Nonalcoholic fatty
liver disease (NAFLD) is one of the most common chronic liver
diseases, including steatosis, nonalcoholic steatohepatitis
(NASH), cirrhosis, and hepatocellular carcinoma (119).

In patients with NAFLD, iron deposits in different liver cells
[including reticuloendothelial system (RES)]. Of note, iron
deposits in RES could aggravate clinical symptoms of patients
(120) due to the accumulation of inflammation-induced iron
in Kupffer cells via IL-6/hepcidin pathway (121, 122).
Simultaneously, the accumulation of iron in RES also promotes
the production of ROS, inducing lipid peroxidation, apoptosis
and/or necrosis of Kupffer cells (123). Similarly, in high-fat-
induced NASH model, dietary iron supplementation induces
iron accumulation in sinusoidal macrophages as well as high
level of TNF-a in liver, aggravating disease symptoms (124).
However, in thioacetamide-induced cirrhosis model, after fed
with high-iron diet, although macrophages are recruited in the
liver sinusoid, the number of macrophages infiltration within the
hepatic lesions is reduced, thereby the hepatocellular injury
could be attenuated, which is probably due to iron alters the
apoptotic pathway (125).

Atherosclerosis
Atherosclerosis is a common vascular disease with the formation
of plaques or lesions in the arterial wall (126). Macrophages are
the main inflammatory cells in atherosclerotic plaques. During
atherogenesis, circulating monocyte-derived macrophages could
be recruited to vascular endothelium and form lipid-laden foam
Frontiers in Immunology | www.frontiersin.org 8
cells (one of the main characteristics of atherosclerosis) (127).
Indeed, according to the “iron hypothesis”, overloaded iron
generates a large amount of ROS and promotes the lipid-
peroxidation, inducing fatty deposits and inflammatory cell
infiltration (128). During atherogenesis, high levels of iron in
circulation promotes the recruitment of monocyte-derived
macrophages to vascular endothelium, and excessive iron
stimulates M1-like macrophage polarization in plaques,
thereby facilitating the formation of foam cells (129–131).
Hepcidin level is supposed to be a major determinant of the
level of iron retained within macrophages (20, 132). Of note,
impaired clearance of iron from plaque macrophages caused by
high inflammation-induced levels of hepcidin might be
associated with atherogenesis (133). Thus, it may be possible to
prevent atherosclerosis by reducing iron retention in the plaque
macrophages through decreasing hepcidin concentration
(134, 135).

Cancer/Tumor
TAMs are M2-like macrophages related to the progression and
poor prognosis of tumor (136–138). Iron-containing M2
macrophage conditioned medium contributes to the growth of
human renal cell carcinoma cells (RCC10) or mouse NIH-3T3
cells; and chelation of iron by desferrioxamine (DFO)
supplementation reduces cancer cell proliferation (139).
Moreover, co-culture of TAM and melanoma cells exhibit
coexpression of HO-1 and CD163, suggesting that tumor cells-
derived M2 macrophages promote heme metabolism (140).
These studies indicate that M2 macrophages metabolize iron
and delivery iron to tumor cells. Indeed, iron chelation therapy
for cancer is used clinically. In addition to DFO, there are several
other drugs (like deferiprone, deferasirox, and curcumin) are
applied for slowing down cancer progression (141). Interestingly,
except for iron chelation-based cancer therapy, iron
supplementation (e.g., iron oxide nanoparticles) also shows
highly anti-tumor potential. For example, ferumoxytol inhibits
tumor growth and metastases that are closely associated with M1
polarization and cancer cell apoptosis induced by Fenton
reaction (44).

Collectively, these interesting findings suggest the various
roles of iron in macrophage-associated diseases through
altering macrophage responses. Together with the other
macrophage-associated diseases summarized in Table 2, the
specific pathways transmitting the effects of iron on these
diseases need to be fully understood.
CONCLUDING REMARKS

Iron is an essential metal that fine-tunes a series of physiological
functions, including macrophage-dependent responses. In this
review, we summarize how iron shapes macrophage polarization.
Mechanistically, iron modulates macrophage polarization via
cellular signaling pathways (e.g., MAPK, NF-kB, and STATs),
cellular metabolism (mainly targeting OXPHOS), and epigenetic
regulation (e.g., miRNAs, DNMT1, JMJD3, H3K4me3,
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H4K20me3, and HDAC1/3). Other pathways discussed in this
review seem to additionally contribute; however, these require a
broader experimental confirmation. It has been well documented
that a-KG produced by glutaminolysis is responsible for JMJD3-
dependent demethylation of H3K27 on the promoter of M2‐
specific marker genes (149). Thus, it would be very interesting to
study whether iron shapes macrophage polarization (M2
polarization in particular) through the correlation of epigenetic
and metabolic reprogramming. As we mentioned above, iron
may have various roles in regulating macrophage polarization
based on different types of macrophages, therefore, it is also
meaningful to conduct comparative studies on the effects of iron
on polarization of macrophage with different origins (embryonic
origin compared with monocyte derivation), tissues (e.g.,
osteoclasts from bone and alveolar macrophage from lung), or
even species (murine and human).

Mitophagy activation or inhibition fine-tunes macrophage
polarization (150). Interestingly, iron affects mitophagy through
diverse pathways (including mtROS and MAPK) (151, 152).
However, the exact mechanisms whereby iron targets mitophagy
to switchmacrophagepolarization should still be revealedwith some
reservation. Furthermore, mitochondrial dynamics (fission and
fusion) is intertwined with macrophage polarization. It has been
demonstrated that iron chelation selectively increasesmitochondrial
fusion protein (Mfn2) expression in neuronal HT22 cells (153),
while iron overload induces dephosphorylation of dynamin-related
protein (Drp)-1 S637 loci and activation of Drp1 in hippocampal
HT-22 neuronal cells (154) as well as promotes mitochondrial
fragmentation in mesenchymal stromal cells (MSC) by activating
theAMPK/mitochondrialfission factor (MFF)/Drp1pathway (155).
Nevertheless, a broader basis concerning cell types is needed to allow
generalizations and robust conclusions on iron in directing
macrophage polarization. More recently, it has found that
endogenous and/or exogenous iron-induced iron overload can
trigger macrophage ferroptosis (156, 157). Macrophage under
hypoxia condition undergoes ferroptosis (158, 159), thus whether
Frontiers in Immunology | www.frontiersin.org 9
iron shapes macrophage polarization (chiefly M1 polarization)
through affecting ferroptosis should also be taken into
consideration. More importantly, it is urgent to dig out the
intrinsic relationship between ferroptosis, macrophage phenotype,
and cancer progression (160).
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