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Abstract

Background: Cell entry and cell-to-cell spread of the highly pathogenic Nipah virus (NiV) requires
binding of the NiV G protein to cellular ephrin receptors and subsequent NiV F-mediated fusion.
Since expression levels of the main NiV entry receptor ephrin-B2 (EB2) are highly regulated in vivo
to fulfill the physiological functions in axon guidance and angiogenesis, the goal of this study was to
determine if changes in the EB2 expression influence NiV infection.

Results: Surprisingly, transfection of increasing EB2 plasmid concentrations reduced cell-to-cell
fusion both in cells expressing the NiV glycoproteins and in cells infected with NiV. This effect was
attributed to the downregulation of the NiV glycoproteins from the cell surface. In addition to the
influence on cell-to-cell fusion, increased EB2 expression significantly reduced the total amount of
NiV-infected cells, thus interfered with virus entry. To determine if the negative effect of elevated
EB2 expression on virus entry is a result of an increased EB2 signaling, receptor function of a tail-
truncated and therefore signaling-defective AcEB2 was tested. Interestingly, AcEB2 fully functioned
as NiV entry and fusion receptor, and overexpression also interfered with virus replication.

Conclusion: Our findings clearly show that EB2 signaling does not account for the striking
negative impact of elevated receptor expression on NiV infection, but rather that the ratio between
the NiV envelope glycoproteins and surface receptors critically influence cell-to-cell fusion and
virus entry.

Background

Nipah virus (NiV) was isolated in 1999 after an outbreak
of severe respiratory illness in pigs and fatal encephalitis
among pig farmers in Malaysia and Singapore [1,2].
Together with the closely related Hendra virus (HeV), NiV
forms the new genus henipavirus within the Paramyxoviri-
dae family [3,4]. With their exceptional wide host range,

their zoonotic potential and their ability to cause fatal dis-
eases in animals and humans, henipaviruses differ from
all other known paramyxoviruses and are classified as
Biosafety Level 4 (BSL4) pathogens. Fruit bats of the genus
Pteropus have been identified as natural NiV reservoir.
Besides bats, many other mammalian species such as pigs,
horses, dogs, cats or humans can be infected [5-8]. During
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the first outbreak beginning in 1998, NiV was transmitted
from bats to pigs, and then to humans. In more recent
outbreaks in Bangladesh which were characterized by
higher case fatality rates near 70% and rare human-to-
human transmissions, there was no link to infected live-
stock or domestic animals. Here, NiV was likely transmit-
ted to humans by date palm sap contaminated by bat
secretions [9-11].

Infection of endothelial cells is a hallmark of NiV infec-
tion in animals and humans. Significant involvement of
blood vessels in the central nervous system (CNS), lung,
heart and kidney was observed in all infections. In
humans, the severe damage of the microvasculature of the
CNS is thought to be the basis for the development of the
NiV encephalitis which often leads to coma and death
within three to thirty days [12,13]. Typically, small arter-
ies, arterioles, capillaries and venules in the brain showed
evidence of vasculitis and thrombosis with frequent adja-
cent necrosis and hemorrhage. Syncytial or multinucle-
ated giant endothelial cells were seen in blood vessels of
various organs, and viral inclusions were found in
endothelial cells as well as in brain parenchymal cells and
neurons near vasculitic vessels or necrotic plaques [13]. As
extensive viral replication in the CNS is assumed to be an
important factor for high mortality [14], efficient NiV
entry and spread from infected cells in the brain is likely
crucial for the outcome of infection.

Successful NiV entry into host cells requires the concerted
action of the two viral envelope glycoproteins F and G.
After binding of the attachment protein G to suitable
receptors on the cell surface, the fusion protein F in coop-
eration with the G protein promotes fusion of the viral
envelope and the plasma membrane leading to virus
entry. As with most paramyxoviruses, virus entry occurs at
the cell surface and does not require receptor-mediated
endocytosis [15]. After productive NiV replication, newly
synthesized F and G proteins are expressed on the surface
of the infected cell, and can trigger cell-to-cell fusion with
receptor-bearing neighboring cells resulting in the forma-
tion of multinucleated syncytia [16]. To fulfill its function
in fusion promotion during virus entry and cell-to-cell
fusion, the NiV F protein must be proteolytically activated
by cellular cathepsin L within an acidic endosomal com-
partment, before it is expressed on the cell surface and is
incorporated into cell-free virus particles [15,17-19].

Ephrin-B2 (EB2) is known to act as main entry receptor
for NiV [20,21], and its expression on endothelial cells,
smooth muscle cells and neurons [22-26] is highly con-
sistent with the known tropism of NiV infection in vivo
[13]. Besides EB2, ephrin-B3 can function as alternate
receptor and is likely used in brain regions where EB2 is
not expressed [27,28]. EB2 is a transmembrane-anchored
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ligand of the receptor tyrosine kinases EphB2, EphB3 and
EphB4. Interactions of Eph receptors with EB2 can trigger
a wide array of cellular responses including cell adhesion,
boundary formation and repulsion, and thus play a criti-
cal role in embryonic patterning, axon guidance, blood
vessel remodeling and lymphangiogenesis [25,29-31].
Important for these physiological functions is the tight
regulation of protein levels and an asymmetric distribu-
tion of ephrins and Eph receptors, for instance the asym-
metrical arteriovenous expression of EB2 and EphB4
[23,26,32,33]. Eph-ephrin binding and clustering triggers
a bi-directional signaling that is mediated by interactions
of the cytoplasmic tails with cytosolic factors [30]. In EB2,
activation of the signaling cascade depends on the C-ter-
minal 33 amino acids, and EB2 knockout or truncation of
just the catalytic cytoplasmic domain resulted in a signal-
ing-defective EB2 which had lost its ability to promote
vascular remodeling [34,35].

Since the expression levels of EB2 are highly regulated in
vivo [23,32,33] and levels of viral entry receptors can be
crucial for efficient virus entry and replication, the goal of
this study was to determine if changes in EB2 receptor
expression on the surface of NiV target cells influence NiV
infection. We found that an overexpression of EB2 inter-
fered with virus entry and NiV glycoprotein-mediated cell-
to-cell fusion in F and G-transfected cells as well as in NiV-
infected cells. Whereas the reduction in syncytia forma-
tion can be explained by the downregulation of the NiV
glycoproteins from the cell surface, inhibition of virus
entry is likely due to an oversupply of EB2 surface recep-
tors interfering with efficient virus-cell fusion and subse-
quent NiV entry. Fusion assays and infection studies in
cells expressing a tail-truncated and thus signaling-defec-
tive EB2 revealed that the catalytic cytoplasmic domain of
EB2 is not involved in this process.

Results

Increasing surface expression levels of the NiV receptor
EB2 interfere with NiV glycoprotein-mediated cell-to-cell
fusion

A correlation of expression levels of cell-surface receptors
and infection efficiency has been shown for many differ-
ent viruses. Increased receptor expression had either a
beneficial effect on virus replication or had no effect [36-
43]. To determine the influence of differences in receptor
expression on NiV replication, we first analyzed the effect
on glycoprotein-mediated fusion in the absence of a NiV
infection. To monitor EB2 surface expression, EB2-nega-
tive Hela cells were transfected with increasing amounts
of EB2 plasmid DNA (pCAGGS-EB2), and were analyzed
at 24 h post transfection (p.t.) by immunostaining (Fig.
1A) and FACS analysis (Fig. 1B). For immunofluorescence
staining, living cells were incubated with recombinant
EphB4/Fc. Surface-bound EphB4/Fc was then detected
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EB2 surface expression and NiV glycoprotein-mediated cell-to-cell fusion in HeLa cells transfected with differ-
ent amounts of pCAGGS-EB2. (A) Receptor-negative Hela cells were transfected with the indicated quantities of an EB2-
encoding pCAGGS vector. At 24 h p.t., immunostaining was performed using recombinant EphB4/Fc and rhodamine-conju-
gated secondary antibodies. Nuclei were visualized by DAPI staining. (B) Hela cells expressing different amounts of EB2 were
incubated with an EB2-specific antibody followed by FITC-conjugated secondary antibodies. FACS analysis was performed at 24
h p.t. (C) Hela cells were cotransfected with constant quantities of plasmids carrying the NiV F and G genes and the indicated
amounts of pCAGGS-EB2. To visualize cell-to-cell fusion, cells were fixed and incubated with Giemsa staining solution at 24 h
p-t.. Representative microscopic fields were photographed. (D) Syncytium formation of Hela cells expressing different
amounts of EB2 as shown in panel C was quantified by counting and averaging the number of nuclei per syncytium of twenty
randomly chosen syncytia.
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with a rhodamine-conjugated anti-human IgG antibody.
FACS analysis of surface-expressed EB2 was performed
using an EB2-specific antibody and FITC-conjugated anti-
goat secondary antibodies. As shown in Fig. 1A and 1B,
the number of EB2-positive cells raised with increasing
quantities of EB2 DNA. In the sample transfected with 1
ng pCAGGS-EB2, 63.2% of the cells expressed EB2 on the
cell surface. The mean fluorescence values, thus the mean
receptor densities, were the same in all EB2-transfected
cells indicating that cultures with more EB2-positive cells
contained an increased total number of cells with higher
EB2 expression levels, but maximal EB2 surface expres-
sion levels were not upregulated by transfection of more
plasmid DNA.

To analyze the ability of cell cultures transfected with dif-
ferent EB2 plasmid concentrations to support NiV glyco-
protein-mediated cell-to-cell fusion, constant and
optimized ratios of NiV F and G protein encoding plas-
mids were cotransfected, and syncytia formation was
monitored at 24 h p.t. by staining with Giemsa solution
(Fig. 1C). Since HelLa cells do not express endogenous
EB2, mock-transfected Hel a cells did not support any NiV
glycoprotein-specific fusion (Fig. 1C, mock). As expected,
EB2 transfection was required to render cells susceptible
for cell-to-cell fusion. However, pronounced syncytia for-
mation was only seen in cells transfected with low
amounts of pPCAGGS-EB2, higher amounts interfered with
efficient cell-to-cell fusion. When we determined the
mean size of syncytia by counting and averaging the
number of nuclei per syncytium (Fig. 1D), we found the
largest syncytia (14 nuclei) in HeLa cells transfected with
only 0.05 pg pCAGGS-EB2. Then, the size decreased step-
wise with increasing DNA amounts down to 4.9 nuclei per
syncytium in cells transfected with 1 ug pCAGGS-EB2.

To test if differences in EB2 expression also affect syncy-
tium induction in NiV permissive cells expressing endog-
enous EB2, cotransfection of the NiV glycoprotein genes
in addition to various amounts of pCAGGS-EB2 was per-
formed in Vero cells. As anticipated, NiV F and G induced
syncytium formation in mock-transfected cells (Fig. 2A,
mock). Supplemental expression of exogenous EB2, even
at the lowest concentration tested (0.1 ug DNA), resulted
in decreased cell-to-cell fusion (Fig. 2A and 2B). In accord-
ance with HeLa cells, EB2 overexpression in Vero cells
clearly led to downregulation of NiV glycoprotein-
induced syncytia formation. FACS analysis to quantify
EB2 expression levels in transfected Vero cells again
showed that with rising amounts of EB2 DNA an increas-
ing percentage of Vero cells (up to 40% in cells transfected
with 1 pg DNA) expressed EB2 at higher surface densities
(data not shown). The mean fluorescence values in this
cell population expressing additional plasmid-encoded
EB2 was about 10-fold higher than in Vero cells express-

http://www.virologyj.com/content/5/1/163

ing endogenous EB2 only (mock transfected cells). To
exclude that these higher EB2 expression levels have a gen-
eral downregulating effect on paramyxovirus cell-to-cell
fusion, we investigated the effect of EB2 overexpression
on syncytium formation caused by the measles virus
Edmonston (MVy,,,,) glycoproteins F and H. MV, does
not bind to EB2 but uses CD46 as entry receptor which is
also endogenously expressed in Vero cells [44]. Cells were
transfected with the MV, F and H genes together with
different amounts of pCAGGS-EB2 and syncytia forma-
tion was analyzed at 15 h p.t.. In contrast to what we had
observed for NiV, EB2 overexpression had no negative
effect on MV, glycoprotein-mediated cell-to-cell fusion
(Fig. 2C). This demonstrates that higher amounts of EB2
do not generally interfere with paramyxoviral glycopro-
tein-induced fusion but specifically inhibit NiV F- and G-
mediated syncytia formation. When we expressed the NiV
F and G protein in the presence of increasing amounts of
CD46 we again did not see any effect on syncytia forma-
tion (Fig. 2D). Therefore, the downregulating effect on
NiV glycoprotein-mediated fusion by EB2 is specific.

EB2 overexpression can downregulate surface expression
of the NiV glycoproteins

To determine if EB2 overexpression affects surface expres-
sion of the NiV F or G protein, Vero cells were cotrans-
fected with constant amounts of plasmids encoding the
NiV glycoproteins F and G in addition to varying amounts
of pCAGGS-EB2. At 24 h p.t., cells were surface bioti-
nylated followed by immunoprecipitation of F and G pro-
teins. After separation by SDS-PAGE and blotting to
nitrocellulose, surface expressed NiV glycoproteins were
detected by IRDye 800-conjugated streptavidin. As shown
in Fig. 3A and 3B, EB2 overexpression reduced the expres-
sion levels of F and G protein on the cell surface in a con-
centration-dependent manner. The finding that surface
expression of the MV glycoproteins F and H was not influ-
enced by EB2 transfection (Fig. 3C) clearly suggests that
surface downregulation of NiV glycoprotein complexes is
due to specific interactions with EB2.

Increased EB2 surface expression interferes with
productive NiV infection

To analyze the effects of additional EB2 expression in the
context of a NiV infection, Vero cells were transfected with
different amounts of the EB2-encoding plasmid, trans-
ferred to the BSL4 facility and subsequently infected with
NiV at a multiplicity of infection (MOI) of 1. NiV-positive
cells were stained by indirect immunofluorescence analy-
sis at 24 h post infection (p.i.) to reveal the size and the
number of syncytia. To quantify virus production, virus
titers in the supernatant were determined by the TCIDj,
method. For immunostaining, NiV-infected cells were
fixed and incubated with a NiV-specific guinea pig antise-
rum and rhodamine-conjugated secondary antibodies.
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NiV and MV glycoprotein-mediated cell-to-cell fusion in Vero cells overexpressing different amounts of EB2 or
CD46. (A) Vero cells were cotransfected with plasmids encoding the NiV F and G protein and increasing amounts of
pCAGGS-EB2. Cell-to-cell fusion was visualized by Giemsa staining at 24 h p.t.. (B) Quantification of syncytium formation was
performed as described in the legend to Fig. ID. (C) Cells transfected with constant amounts of the MV glycoproteins and the
indicated amounts of EB2 were Giemsa stained at 15 h p.t.. (D) Cells were transfected with constant amounts of plasmids
encoding NiV F and G proteins and different amounts of plasmids encoding the CD46 gene. At 24 h p.t., syncytium formation

was visualized by Giemsa staining.

Cell nuclei were counterstained with DAPI. Merged pic-
tures of the rhodamine and DAPI fluorescence channels
are shown in Fig. 4A and demonstrate that all Vero cell
cultures transfected with different amounts of pCAGGS-
EB2 could be infected with NiV. However, the number
and size of syncytia appeared to be reduced in cells trans-
fected with pCAGGS-EB2. This was confirmed by deter-
mining the average size of the NiV-induced syncytia (Fig.
4B). Whereas syncytia in mock-transfected cells contained
about 50 nuclei in average, cells transfected with 0.25 pg,
0.5 pg or 1 pg of EB2 plasmid DNA produced syncytia

with 22, 19 or 15 nuclei, respectively. To evaluate if differ-
ences in EB2 expression also affect virus entry, the total
number of syncytia in each sample was counted and was
also found to be reduced in EB2-transfected cells (Fig.
4C). Since one syncytium originates from one initially
infected cell, this finding clearly indicates that not only
NiV-mediated cell-to-cell fusion but also virus entry is
impaired in Vero cells overexpressing EB2. In agreement
with the decreased total number of infected cells and the
less efficient spread via cell-to-cell fusion, the amount of
infectious NiV particles released into the cell supernatant
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Surface expression of NiV and MV glycoproteins in the presence of increasing amounts of EB2. Vero cells were
cotransfected with constant amounts of NiV F- or G-encoding plasmids and the indicated amounts of pPCAGGS-EB2. At 24 h
p-t., cells were surface biotinylated and lysed. (A) Immunoprecipitation of NiV G was carried out using a polyclonal NiV antise-
rum. After separation on a 12% SDS gel under reducing conditions and blotting to nitrocellulose, surface-biotinylated G pro-
teins were detected by IRDye 800-conjugated streptavidin using a LiCor-Odyssey imager. (B) NiV F was immunoprecipitated
with an F-specific antiserum, separated by SDS-PAGE under non-reducing conditions and further processed as described
above. (C) Vero cells were cotransfected with constant amounts of plasmids encoding the MV F and H proteins and the differ-
ent amounts of pCAGGS-EB2. Immunoprecipitation of the MV glycoproteins was carried out using F- and H-specific antibod-
ies. After separation by SDS-PAGE under reducing conditions and blotting, proteins were detected as described above.

was also drastically diminished. Virus titers were reduced
by more than 100-fold (Fig. 4D). To examine if inhibition
of infection by EB2 overexpression is specific for NiV, con-
trol studies were performed with MVy,,,. Vero cells trans-
fected with various quantities of pCAGGS-EB2 were
infected with MV, at a MOI of 1. Since no infectious
virus could be detected at 24 h p.i., the amount of virus
particles released from the cells was determined at 42 h
p.i. by plaque assay. In contrast to NiV, MV, virus titers
in the supernatant of mock- and EB2-transfected Vero
cells were similar (Fig. 4E) demonstrating that MVg,,
infection was not affected by variations in EB2 expression.
We also analyzed MV, replication in the presence of

increased levels of its own receptor CD46, but we did not
observe any negative influence of CD46 overexpression
on productive MV, infection (data not shown). We thus
conclude that the negative effect of EB2 overexpression on
productive virus replication is specific for NiV.

Cytoplasmic-tail truncated EB2 also interferes with NiV-
mediated cell-to-cell fusion and productive infection
Clustering of EB2 by NiV G protein binding during virus
entry may be an essential component of these processes
and might trigger EB2 signaling. Supporting this idea, it
was recently shown that the critical residues in EB2
involved in interaction with NiV G are the same required
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Influence of EB2 overexpression on NiV and control MV, infection. (A) Vero cells transfected with the indicated
amounts of pCAGGS-EB2 were infected with NiV at a MOI of | at |5 h after transfection. At 24 h p.i., cells were fixed and an
immunostaining was performed using a NiV-specific guinea pig antiserum and rhodamine-conjugated secondary antibodies.
Nuclei were visualized by DAPI staining. (B) Nuclei per syncytium were quantified as described in the legend to Fig. ID. (C) To
determine the amount of initially NiV-infected cells, the total number of NiV-positive syncytia on each coverslip was counted.
(D) Virus titers in the supernatant were determined by the TCIDs, method at 24 h p.i.. (E) Vero cells transfected with different
quantities of pPCAGGS-EB2 were infected with MV, at a MOI of |. Virus titers in the supernatant were determined by plaque

assay at 42 h p.i..

for interaction with the EphB2 receptor [27]. After NiV G-
induced EB2 clustering, NiV entry might be influenced by
proteins interacting with the catalytic domain of the EB2
cytoplasmic tail, such as proteins containing PDZ
domains which can stabilize high-ordered clustering into
oligomeric arrays [45]. The density of this clustering or
effects of EB2 signaling on actin cytoskeleton rearrange-
ments may modulate the efficiency of virus-cell fusion.

Therefore, the negative effect of EB2 overexpression on
NiV entry could be the result of an overshooting EB2 sig-
naling. To evaluate this idea, we decided to study the
influence of a tail-truncated AcEB2 that lacks the C-termi-
nal 67 amino acids on NiV replication [46] (Fig. 5A). First,
we analyzed the effect of increased AcEB2 surface expres-
sion on NiV glycoprotein-mediated cell-to-cell fusion in
Vero cells by transfecting the NiV F and G genes in addi-
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of NiV glycoprotein DNA and the indicated quantities of plasmids encoding either EB2 or AcEB2 protein. After 24 h, cells were
fixed and stained with Giemsa solution. (C) Quantification of syncytium formation was performed as described in the legend to

Fig. ID.

tion to different amounts of EB2 or AcEB2 plasmid DNA.
As with wildtype EB2, an expression level-dependent
reduction of the size of syncytia was observed in AcEB2-
expressing cells (Fig. 5B and 5C). To investigate the effect
of increased amounts of tail-truncated EB2 on NiV infec-
tion, AcEB2-transfected Vero cells were infected with NiV
and syncytium formation and virus production was mon-
itored at different time points p.i.. The quantitative analy-
sis at 15 h p.i. is depicted in Fig. 6 and shows that
overexpression of tail-truncated EB2 affected productive
NiV infection to similar extents as full-length EB2 (Fig. 4).
Transfection of only 0.25 pg of AcEB2 plasmid DNA
already drastically interfered with NiV-induced cell-to-cell
spread (Fig. 6B) and reduced the release of infectious

viruses by 2 to 3 log steps (Fig. 6C). Higher DNA concen-
trations had no further substantial effects. This indicates
that receptor overexpression can downregulate productive
NiV infection by interfering with virus entry and F- and G-
mediated cell-to-cell fusion but cannot completely pre-
vent infection.

Cytoplasmic-tail truncated EB2 can function as NiV entry
receptor

The finding that overexpression of AcEB2 interfered with
NiV infection suggests that tail-truncated EB2 can also
function as NiV binding partner. To directly test if ACEB2
can be used as NiV entry receptor or if it even provides a
more effective receptor than full-length EB2 because it no
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amounts of pCAGGS-AcEB2 were infected with NiV at a MOl of I. (A) At I5 h p.i., NiV-positive cells were stained as
described in the legend to Fig. 4A. (B) Quantification of cell-to-cell fusion was carried out as described in the legend to Fig. ID.

(C) Cell free virus was determined by the TCIDs, method.

longer functions in signaling, we analyzed NiV infection
in HeLa cells and porcine aortic endothelial cells (PAEC)
stably expressing either wildtype or a tail-truncated
AcEB2. As we got similar results for both cell lines, only
the results obtained for the PAEC, a well-studied cell line
in terms of EB2 functions [46] are shown. To control the
protein expression, EB2 and AcEB2 proteins were immu-
noprecipitated from cell lysates and subjected to western
blot analysis using an EB2-specific antibody. As shown in
Fig. 7A, expression of EB2 and AcEB2 in stably transfected
PAEC is comparable. To characterize surface localization
of EB2 and the tail-truncated variant, double-labeling
experiments for EB2 and VE-cadherin, a marker protein
for adherens junctions in endothelial cells, were per-
formed. PAEC-EB2 and -AcEB2 were seeded on porous fil-
ter membranes and cultured for 7 days to form a polarized
endothelial cell monolayer. Surface-expressed EB2 and
AcEB2 was detected by incubation with EphB4/Fc on ice
and subsequent treatment with rhodamine-conjugated
anti-human IgG antibodies. Then, cells were permeabi-
lized and stained with a VE-cadherin antibody and a FITC-

conjugated secondary antibody. Analysis of vertical sec-
tions through the endothelial cell monolayers identified
an equal luminal expression of both EB2 and AcEB2 (Fig.
7B). To control the loss of function of the tail-truncated
EB2, an EphB4 receptor body uptake experiment was per-
formed [33]. For this, PAEC-EB2 and PAEC-AcEB2 were
incubated with recombinant EphB4/Fc for 1 h at 37°C to
allow binding of EphB4/Fc and co-endocytosis of EB2 and
EphB4/Fc to occur. Surface-remained EphB4/Fc was visu-
alized by incubation with rhodamine-conjugated second-
ary antibodies at 4°C. After fixation and
permeabilization, intracellular EphB4/Fc was stained with
FITC-conjugated secondary antibodies. In PAEC stably
expressing wildtype EB2, numerous fluorescent intracellu-
lar vesicles (green dots) were found (Fig. 7C, PAEC-EB2).
In contrast, in PAEC-AcEB2 expressing cells, no intracellu-
lar complexes were detected demonstrating that tail-trun-
cated EB2 is no longer endocytosed. To analyze the
receptor function of tail-truncated EB2, PAEC-EB2 or
PAEC-AcEB2 were infected with NiV at a MOI of 1. To
monitor the infection at 24 h p.i., NiV-positive cells and
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Figure 7

Characterization and NiV infection of EB2- and AcEB2-expressing PAEC. (A) EB2 and AcEB2 were immunoprecipi-
tated from PAEC-EB2 and -AcEB2 cell lysates, separated on a SDS gel and analyzed by Western blot analysis using an EB2-spe-
cific antibody. (B) Stably EB2- and AcEB2-expressing PAEC were seeded on permeable filter supports. After 7 days, apical and
basolateral surfaces were stained with EphB4/Fc and rhodamine-conjugated secondary antibodies. After fixation and permeabi-
lization, cells were incubated with anti-VE-cadherin antibodies (VE-Cad) and FITC-conjugated secondary antibodies. (C) PAEC-
EB2 and -AcEB2 were incubated with recombinant EphB4/Fc for | h at 37°C to allow binding and endocytosis to occur. Sur-
face-remained EphB4/Fc was detected with rhodamine-conjugated secondary antibodies (surface) and internalized EphB4/Fc
was stained after fixation and permeabilization by FITC-conjugated secondary antibodies (intracellular). (D) EB2- or AcEB2-
expressing PAEC were infected with NiV at a MOI of |. At 24 h p.i., immunostaining was performed as described in the legend
to Fig. 4A.
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syncytia were detected by immunostaining and virus titers
in the supernatant were quantified by the TCID5, method.
As shown in Fig. 7D, extensive cell-to-cell fusion could be
detected in both PAEC-EB2 and PAEC- AcEB2. The aver-
age size as well as the number of syncytia was similar.
Accordingly, the amount of infectious virus particles
released into the supernatant was the same (3.1 x 10°
TCID;,/ml for both cell lines). The finding that there are
no substantial differences in the amount of initially
infected cells, NiV-mediated cell-to-cell fusion and virus
titers demonstrates that the tail-truncated AcEB2 can fully
function as NiV entry receptor in endothelial cells, the pre-
dominant target cells of the NiV infection in vivo.

Discussion

The major and new finding of this study is that productive
NiV replication is counteracted by overexpression of the
main NiV receptor EB2. By transfection of different
amounts of EB2 gene into EB2-negative HeLa or EB2-pos-
itive Vero cells and quantification of syncytia formation
upon coexpression of the two NiV envelope glycoproteins
and in NiV-infected cells, we found that increasing
amounts of EB2 plasmid DNA augmented the total
number of cells expressing high levels of EB2 on the sur-
face without changing the maximal EB2 surface density.
Unexpectedly, EB2 expression higher than a very low
threshold in Hela cells or any additional EB2 expression
in Vero cells resulted in a decreased cell-to-cell fusion, and
also interfered with efficient virus entry. This negative
effect on syncytia formation is mostly due to the fact that
the expression levels of the NiV glycoproteins on the cell
surface were reduced. However glycoprotein downregula-
tion cannot be the reason for the reduced virus entry. To
assess if the negative effect of elevated EB2 expression lev-
els on virus entry and cell-to-cell fusion is linked to direct
or indirect effects of an increased EB2 signaling, a cyto-
plasmic tail truncated and therefore signaling-defective
EB2 (AcEB2) was expressed in Vero cells. Interestingly,
overexpression of ACEB2 had a similar negative effect on
virus entry and fusion, clearly showing that the detrimen-
tal influence of elevated receptor expression on NiV infec-
tion is not linked to EB2 signaling. NiV infection of
endothelial cells expressing either full-length or truncated
EB2 was similar in terms of virus entry and replication
finally confirming that the receptor function of EB2 is
independent of its cytoplasmic tail.

For their multiple physiological functions in angiogen-
esis, axon guidance, cell migration and neovasculariza-
tion of tumors [47,48], ephrins and Eph receptors must
cluster to trigger bi-directional signaling into the ephrin-
expressing cell (reverse signaling) and the contacting Eph
receptor expressing cell (forward signaling) [49]. EB2-
mediated reverse signaling is known to depend on a cata-
lytic domain comprising the conserved last 33 residues of
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the cytoplasmic domain which contains a PDZ domain
binding motif and five conserved tyrosine residues
[30,50,51]. One of the two known signaling pathways
activated by B ephrins depends on the phosphorylation of
the tyrosine residues and subsequent binding of Src-
homology-2-domain-containing adaptor molecules like
Grb4 initiating a cascade of signaling events that regulate
cytoskeleton dynamics [52]. The second signaling path-
way depends on the interaction with PDZ domain bind-
ing proteins like Grip1, Grip2, syntenin, Par3, PICK1 or
Dvl2 inducing cluster formation, or binding partners with
PDZ domains linked to a functional unit, for instance
PTP-BL, Tiam1 or PDZ-RGS3 regulating G protein-cou-
pled signaling events, finally resulting in guided cell
migration [25,30,53]. In a previous report, the interesting
idea was proposed that proteins containing a PDZ
domain or other proteins which can interact with the EB2
cytoplasmic tail, may influence NiV entry into host cells
and therefore could be a potential target for therapeutic
treatments [54]. This concept that putative signals sent
through EB2 upon interaction with NiV G may be an
essential component of the entry process was mainly
based on the finding that the NiV-G protein is a tetramer
as it is also proposed for Eph receptors [28,55,56]. Thus,
G binding might lead to EB2 clustering and activation of
the signaling cascade. However, the data presented in this
paper indicate that cellular binding partners of the EB2
catalytic domain are not involved in NiV entry, because a
tail-truncated EB2 fully functions as host cell receptor and
downregulates NiV infection when it is overexpressed. But
even if EB2-mediated signaling per se is obviously not
involved in virus entry and spread via cell-to-cell fusion, it
remains to be determined if NiV binding to its receptor
triggers EB2-mediated signaling possibly affecting host
cell functions or apoptosis, as it is described for HIV
[57,58].

It is well known that expression levels of viral entry recep-
tors can be crucial for virus infection. For instance, aden-
ovirus binding to the coxsackievirus-adenovirus receptor
(CAR) and subsequent infection clearly decreased if CAR
expression is reduced after cytokine treatment [42]. Simi-
larly, the density of cell surface-expressed CD81 was
shown to be a key determinant for productive hepatitis C
virus (HCV) entry into host cells. Cell susceptibility to
HCV infection could be increased by augmenting CD81
surface densities up to a certain threshold, further increase
did not have any additional positive or negative effects
[37]. In the case of the human immunodeficiency virus
(HIV) cell surface concentrations of receptors and core-
ceptors also control infection efficiency. Concentrations
of CD4 and CCR5 required for efficient infections by HIV
were found to be interdependent, requirements for each
were increased when the other component was limited
[40]. For several other retroviruses positive correlations of
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receptor overexpression and virus infection were also
reported [36,38,39,41,43]. In all reports so far, upregula-
tion of receptor densities had either no or beneficial
effects on virus replication. A negative effect of increased
virus receptor expression on virus entry and productive
infection as demonstrated in this study has never been
reported, and thus might reflect a unique characteristic of
the highly virulent NiV.

Coexpression of virus receptors and viral receptor binding
glycoproteins in one cell can result in complex formation
and retention of both proteins in intracellular compart-
ments leading to downregulation of the receptor on the
cell surface. This phenomenon of receptor interference is
described for several viral proteins which are known to
interact with or even induce degradation of their cellular
receptors [59-65]. Even though Sawatsky et al. [66]
described EB2 surface expression to be unchanged after
coexpression of NiV G, our finding that the NiV glycopro-
tein surface expression levels are downregulated in EB2
expressing cells indicates an intracellular interaction and
subsequent retention of the two proteins. However, this
effect that leads to reduced cell-to-cell fusion efficiency
does not explain the less efficient virus entry into Vero
cells expressing additional EB2. Reduced infection of
these cultures is most likely due to an imbalance between
cellular receptors and viral receptor binding proteins in
the virus envelope. Since fusion and the lateral mobility of
paramyxoviral glycoproteins in the target cell membrane
correlate [67], NiV G interactions with too many receptor
molecules on a host cell likely hinders the virus-cell fusion
process by interfering with the optimal formation or
mobility of fusion pore complexes required for virus-cell
fusion and subsequent virus entry. Our observation that
cell-to-cell fusion is decreased if cells expressing the NiV
glycoproteins were mixed with cells expressing increased
amounts of EB2 supports the model that the balance
between the amount of fusogenic glycoproteins on one
membrane and the density of receptors on adjacent mem-
branes critically determines fusion efficiency (Thiel,
unpublished observations). Given that more cells in a cul-
ture express too high EB2 concentrations, more viral NiV
G proteins are clustered with receptors. This prevents or
slows down the fusion process required for virus entry or
cell-to-cell fusion.

Since high viral replication in the central nervous system
is likely an important factor for the high mortality rates of
NiV infection in humans [14], EB2 expression levels may
critically influence viral replication by regulating virus
entry, virus spread by cell-to-cell fusion and particle
release. Thus, fatal or nonfatal outcome of a NiV encepha-
litis might depend on EB2 expression levels. The his-
topathological finding that in brain tissues of NiV-
infected patients, syncytial cells were only found in 27%
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of the cases whereas vasculitis, thrombosis and necrosis
were seen in over 80% [13] might reflect differences in the
EB2 expression levels resulting in different extents of NiV-
mediated cell-to-cell fusion. Besides its possible influence
on the outcome of the acute infection, differences in EB2
expression levels might also contribute to the relapse
encephalitis which was found in some patients at 13-39
days after mild or asymptomatic acute NiV infection [12].
As it is well known, that EB2 expression in vivo is regulated
by the local microenvironment within the vascular tree
[33], and up-regulation of EB2 is controlled by the Notch
pathway as well as by hemodynamic factors or vascular
endothelial growth factor (VEGF) [33,68-70], NiV infec-
tion of brain endothelia might induce changes in the local
microenvironment thereby inducing up- or downregula-
tion of EB2 and influencing further virus spread. Using a
suitable animal model [7,71,72], it remains to be eluci-
dated if up- or downregulation of the NiV receptor is able
to influence NiV spread in vivo and thus might be a poten-
tial therapeutic option for treatment of NiV encephalitis
in early stages of infection.

Conclusion

In summary, this paper demonstrates for the first time
that overexpression of a virus receptor substantially inter-
feres with virus infection on the level of virus entry and
cell-to-cell spread by two independent pathways. Whereas
cell-to-cell fusion is mainly reduced as a consequence of
NiV glycoprotein downregulation from the cell surface,
virus entry is rather impaired by disturbing the optimal
balance between the amount of fusogenic glycoproteins
in the virus envelope and receptors on the host cell sur-
face.

Methods

Cell cultures

Vero (African green monkey kidney) and HeLa (human
cervical cancer) cells were maintained in Dulbecco's mod-
ified minimal essential medium (DMEM, Gibco) contain-
ing 10% fetal calf serum (FCS), 4 mM L-glutamine, 100
units/ml penicillin and 0.1 mg/ml streptomycin. PAE
(porcine aortic endothelial) cells were cultured in DMEM/
F12 + GLUTAMAX (Gibco) supplemented with 10% FCS,
penicillin and streptomycin.

Virus infections

The NiV strain used in this study was isolated from human
brain tissue (kindly provided by J. Cardosa) and propa-
gated as described earlier [73]. For NiV infection, conflu-
ent cell monolayers of different cell lines were infected at
a multiplicity of infection (MOI) of 1. After incubation for
1 h at 37°C, inocula were removed, cells were washed
twice and then cultured with medium containing 2% FCS
at 37°C. All work with live NiV was performed under
BSL4 conditions.
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Measles virus vaccine strain Edmonston (MVyy,) was
grown and propagated on Vero cells as described previ-
ously [74]. For MV, infection studies, cells were infected
with MV, at a MOI of 1. After incubation for 2 h at
37°C, virus was removed by extensive washings and cells
were incubated with medium containing 2% FCS at 33°C.

Plasmids and transfections

The NiV F and G glycoprotein open reading frames (Gen-
Bank™ accession number AF212302) were subcloned into
the pczCFG5 expression vector as described by Moll et al.
[75]. Cloning of the MV, glycoprotein genes (F and H)
into the pCG expression vector has been described earlier
[76]. The human EB2 gene and a C-terminally truncated
EB2 version (encoding amino acid residues 1-266), des-
ignated as AcEB2 [46], were subcloned into the Notl site
and Sacl site of a pCAGGS expression vector [77]. Human
CD46 gene was cloned into the pH3APr.1-neo expression
vector as specified previously [78].

Transfections of Vero and HelLa cells were performed by
using the cationic liposome based transfection reagent
Lipofectamine 2000 (Invitrogen) according to the sup-
plier's instructions. Stably EB2- and AcEB2-expressing PAE
cells were constructed as described by Fiiller et al. [46].

EB2 surface staining

HelLa cells transiently expressing varying amounts of EB2
were cultured on coverslips. At 24 h post transfection
(p-t.), recombinant mouse EphB4/Fc, a soluble EB2 recep-
tor fused to the Fc region of human IgG (R&D Systems)
was added at a concentration of 2 pg/ml for 1 h at 4°C.
Bound EphB4/Fc was stained with rhodamine-conjugated
anti-human IgG antibodies on ice (dilution 1:200; Jack-
son ImmunoResearch). Nuclei were visualized by 4',6-
diamidino-2-phenylindole (DAPI) staining. Representa-
tive merged images of the DAPI and rhodamine channels
were recorded with a Zeiss Axiovert 200 M microscope.

Stably EB2- and AcEB2-expressing PAE cells were cultured
on 0,4 um-pore size ThinCert polyethylenterephthalat fil-
ter supports (Greiner Bio-one). After 7 days, the apical and
basolateral surfaces were incubated with recombinant
EphB4/Fc (2 pg/ml; 2 h at 4°C) and rhodamine-conju-
gated secondary antibodies (dilution 1:200; 2 h at 4°C).
To visualize the adherens junctions, cells were fixed with
4% paraformaldehyde (PFA), permeabilized with 0.1%
Triton X-100 for 15 min and subsequently treated with
anti VE-cadherin antibodies (Santa Cruz) at a dilution of
1:100 for 2 h at 4°C and fluorescein isothiocyanate
(FITC)-conjugated anti-mouse IgG antibodies (dilution
1:200; 2 h at 4°C; Jackson ImmunoResearch). Filter mem-
branes were analyzed with a confocal laser scanning
microscope (LSM 510, Zeiss).
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Flow cytometry

Hela or Vero cells were transfected with different
amounts of EB2 DNA. At 24 h p.t.,, cells were detached
with phosphate buffered saline (PBS) containing 5 mM
EDTA, washed twice and 5 x 105 cells were subsequently
incubated with an EB2-specific antibody (dilution 1:10;
R&D Systems) for 45 min at 4°C. Primary antibodies were
detected by FITC-conjugated anti-goat IgG secondary anti-
bodies (dilution 1:100; Jackson ImmunoResearch) and
flow-cytometric analyses were carried out with a FACScan
(Guava Technologies). Since it has been shown that coex-
pression of NiV G protein did not influence the expression
of EB2 on the cell surface [66], FACS analysis was per-
formed in cells expressing EB2 only.

Fusion assays

As it has been reported for the closely related HeV glyco-
proteins that the ratio of F to G plasmids transfected into
cells can influence the efficiency of membrane fusion
[79], we first tested the capacity of varying levels of
pczCFG5-F and pczCFG5-G transfected into Vero cells to
mediate cell-to-cell fusion. In agreement with what has
been shown for the HeV glycoproteins, increased fusion
was observed with greater amounts of the G protein plas-
mid. Since NiV glycoprotein-mediated syncytia formation
was found to be maximal at a 1:5 ratio of NiV F to NiV G
plasmid DNA, cells were cotransfected with constant
amounts of plasmids encoding either the NiV glycopro-
teins F and G at this ratio or the MV glycoproteins F and H
(optimal ratio of 1:1), in addition to varying amounts of
pCAGGS-EB2, pCAGGS-AcEB2 or pHf3APr.1-neo-CD46,
respectively. At 24 h (NiV) or 15 h (MV) p.t., cells were
fixed with ethanol for 10 min and incubated with a 1:10
diluted Giemsa staining solution for 30 min to visualize
syncytium formation. Representative microscopic fields
were photographed. To quantify the size of syncytia, the
number of nuclei per syncytium of twenty randomly cho-
sen syncytia were counted and averaged.

Surface biotinylation

Cell surface proteins were labeled with sulfosuccinimido-
biotin (S-NHS-biotin; Pierce) and subsequently lysed in
radioimmunoprecipitation assay buffer (RIPA) as
described previously [17]. Immunoprecipitation of NiV F
from surface-biotinylated cells was carried out with an F-
specific antibody directed against amino acids 523 to 541
of the NiV F cytoplasmic domain (dilution 1:100; Immu-
noGlobe Antikorpertechnik), and NiV G was immunopre-
cipitated with a polyclonal NiV-specific antiserum
(dilution 1:350). MV glycoproteins were isolated using F-
or H-specific monoclonal antibodies [76]. Immunopre-
cipitates were separated on a 12% polyacrylamide gel
under reducing (NiV G, MV F and H) or non-reducing
conditions (NiV F) and blotted to nitrocellulose. Nonspe-
cific binding sites were blocked with 5% nonfat dry milk
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in PBS. To detect surface-biotinylated NiV and MV glyco-
proteins, blots were incubated with IRDye 800-conju-
gated streptavidin for 45 min at 4°C (Rockland; dilution
1:8000). Fluorescent signals were analyzed using a LiCor-
Odyssey infrared imaging system (LI-COR Biosciences
GmbH).

NiV infection of cells expressing varying amounts of EB2 or
AcEB2

Vero cells grown on coverslips were transfected with vary-
ing amounts of pCAGGS-EB2 or -AcEB2. At 15 h p.t,
infection with NiV was performed as described above.
NiV-positive cells or syncytia were detected by indirect
immunofluorescence as described recently [15]. Briefly,
after fixation with 4% PFA for 48 h, cells were permeabi-
lized with methanol-acetone and incubated with a NiV-
specific guinea pig antiserum (dilution 1:1000) for 1 h at
4°C. Primary antibodies were detected with rhodamine-
conjugated anti-guinea pig IgG antibodies (Jackson
ImmunoResearch; dilution 1:200; 45 min at 4°C). Nuclei
were counterstained by DAPI. Images were recorded using
a Zeiss Axiovert 200 M microscope.

The size of NiV-induced syncytia was quantified as
described above. The number of initially infected cells in
each sample was determined by counting the number of
NiV-positive syncytia. To quantify virus release, virus titers
in the supernatant were calculated by the 50% tissue cul-
ture infective dose (TCIDs,) method on Vero cells [80].

Immunoprecipitation and Western Blot analysis of EB2
and AcEB2

Stably EB2- and AcEB2-expressing PAEC were lysed in
immunoprecipitation buffer (1% Triton X-100, 0.15 M
NaCl, 1 mM EDTA, 10 mM Tris-HCI, pH 7,4). EB2- and
AcEB2 were immunoprecipitated with EphB4/Fc (dilution
1:100) and 100 pl of a suspension of protein A/G sepha-
rose CL-4B (Pierce). After three washes, immunocom-
plexes were suspended in reducing sample buffer.
Precipitates were subsequently separated on a 10% poly-
acrylamide gel and transferred to nitrocellulose. The blot
was probed with 0,3 pg anti-EB2 (R&D Systems) followed
by incubation with peroxidase-conjugated anti-goat IgG
antibodies (dilution 1:4000; Jackson ImmunoResearch).
EB2 and AcEB2 proteins were visualized with the
enhanced chemoluminescence system (SuperSignal® West
Pico Chemoluminescent Substrate; Pierce) by exposure to
an autoradiography film (GE Healthcare).

Endocytosis of EB2 and AcEB2

Stably EB2- and AcEB2-expressing PAEC were seeded on
coverslips and grown to subconfluency. Cells were then
incubated with 2 pg/ml recombinant EphB4/Fc for 1 h at
37°C to allow binding and endocytosis to proceed. Sur-
face-remained EphB4/Fc was stained with rhodamine-
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conjugated anti-human IgG antibodies (dilution 1:50) for
90 min at 4°C. After fixation and permeabilization with
methanol-acetone, internalized EphB4/Fc was detected by
FITC-conjugated anti-human IgG antibodies (dilution
1:500, Jackson ImmunoResearch) for 35 min at 4°C.
Images of representative cells were recorded using a Zeiss
Axiovert 200 M microscope.
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