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Abstract
Objective: To compare performance between linear regression (LR) and artificial neural network (ANN) models in estimating 9-
month patient-reported outcomes (PROs) after upper extremity fractures using various subsets of early mental, social, and physical
health variables.

Methods: We studied 734 patients with isolated shoulder, elbow, or wrist fracture who completed demographics, mental and social
health measures, and PROs at baseline, 2–4 weeks, and 6–9 months postinjury. PROs included 3 measures of capability (QuickDASH,
PROMIS-UE-PF, PROMIS-PI) and one of pain intensity. We developed ANN and LRmodels with various selections of variables (20, 23,
29, 34, and 54) to estimate 9-month PROs using a training subset (70%) and internally validated them using another subset (15%). We
assessed the accuracy of the estimated value being within one MCID of the actual 9-month PRO value in a test subset (15%).

Results: ANNs outperformed LR in estimating 9-month outcomes in all models except the 20-variable model for capability mea-
sures and 20-variable and 23-variable models for pain intensity. The accuracy of ANN versus LR in the primary model (29-variable)
was 83% versus 73% (Quick-DASH), 68% versus 65% (PROMIS-UE-PF), 66% versus 62% (PROMIS-PI), and 78% versus 65% (pain
intensity). Mental and social health factors contributed most to the estimations.

Conclusion: ANNs outperform LR in estimating 9-month PROs, particularly with a larger number of variables. Given the otherwise
relatively comparable performance, aspects such as practicality of collecting greater sets of variables, nonparametric distribution, and
presence of nonlinear correlations should be considered when deciding between these statistical methods.

Keywords: patient-reported outcomes, capability, pain intensity, pain interference, psychosocial, estimating, prediction modeling,
artificial neural network, machine learning, linear regression, model performance, increasing number of variables, comparison

1. Introduction

1.1. Background

Evidence suggests that psychosocial factors measured shortly after
injury are strongly associated with levels of comfort and capability
during recovery from injury and that comfort and capability have a
surprisingly limited association with pathophysiology severity.1–4

There is growing interest in sophisticated statistical models based on
machine learning (ML), including artificial neural networks (ANNs),
thatmight have thepotential to providemore accurate estimations of
patient outcomes and recovery trajectories during musculoskeletal
care. Such estimates could help improve health by informing care
strategies that address modifiable factors such as unhelpful thinking
and feelings of distress early on after injury. Potential advantages of
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ANNs include greater suitability to nonparametric data5 and
nonlinear correlations5–7 and better handling of colinearity among
explanatory variables,8 which is commonwith psychosocial factors.

1.2. Rationale

Despite these advantages, ANNs have not consistently out-
performed standard logistic regression models in studies of
musculoskeletal illness, and there remains a lack of clarity around
their utility in research and clinical application.9,10 A possible
explanation is that ANNs might be most useful in data with high
signal-to-noise ratio (SNR) (the proportion of the variation in an
outcome that is explained by explanatory variables [R2]),11,12

whereas in human medical research, SNR is often relatively low.
Another explanation could be the relatively high sample size
needed to optimally train ML algorithms.13 Some researchers
claim that the advantage of ML might lie in better handling of
large numbers of explanatory variables13–16 and that ML is less
likely to outperform regression models incorporating only a
limited set of variables. However, the risk of model overfit may
also increase whenmore variables are included.Model overfit is a
phenomenon in which a model captures and “learns” from
random noise and fluctuations in the training data to an extent
that it negatively affects the performance of the model to new
data.17 Variable selection is a popular way to account for this
limitation by only selecting a smaller subset of themost influential
variables, thereby reducing the noise from redundant variables.18

However, these statistical methods often select different variables
for ML algorithms than regression models,10 reducing their
generalizability. Thoughtful preselection of potentially relevant
variables might therefore be beneficial.10

The performance of ANNs compared with regression is less
clear when the same variables or a larger number of potentially
relevant variables, including psychosocial factors (eg, mindset
and social circumstances) and early patient-reported outcomes
(PROs) such as level of comfort and capability. We sought to
better understand the performance of ANNs compared with
linear regression (LR) in estimating longer-term PROs after arm
fractures based on subsets of variables by addressing the
following study questions: (1) Is there a difference in the
performance between ANN and LR in estimating 9-month levels
of capability, pain interference, and pain intensity after upper
extremity fractures? (2) What is the difference in performance of
ANN and LR models that incorporate different subsets of
explanatory variables after upper extremity fracture?

2. Methods

2.1. Study design and participants

This is a secondary analysis of data from a previous research
study involving the prospective enrollment of 775 adult patients
with isolated shoulder, elbow, or wrist fracture at a single level 1
trauma center.19 The Institutional Review Board approved the
request to collect and analyze protected health information for
research purposes (Integrated Research Application System
[IRAS] Number 16/YH/0017) and specifically considered (1)
the risk and anticipated benefits, (2) the selection of subjects, (3)
the procedures for obtaining and documenting informed consent,
(4) the safety of subjects, and (5) the privacy of subjects and
confidentiality of the data. All methods were performed in
accordance with relevant guidelines and regulations of our
Institutional Review Board.

We analyzed a total of 734 patients from this data set who
completed demographic data, clinical data, and PROmeasures at
baseline (within the first week after fracture), 2–4 weeks, and 6–9
months postinjury (Table 1). Only adults fluent in English were
included, and those experiencing polytrauma, fracture disloca-
tions, and periprosthetic fractures were excluded.

2.2. Measured variables and variable selection

We measured demographic information, clinical variables, mental
health factors, social circumstances, PROs, and patient satisfaction
at baseline and 2–4 weeks postinjury. We then created 5 subsets
with various selections of an increasing number of explanatory
variables (20, 23, 29, 34, and 54 variables) with the intention to
compare ANN and LR models among different data subsets and

TABLE 1
Demographics

Variable N (%)

All observations 734 (100)
Sex
Men 236 (32)
Women 498 (68)

Marital status
Divorced/widowed 203 (28)
Partner/married 365 (50)
Single 166 (23)

Social support (living situation)
Alone 153 (21)
Partner/friend(s)/family 514 (70)
Full/part-time care 67 (9.1)

Work status
Employed 326 (44)
Homemaker 328 (45)
Retired 46 (6.3)
Unemployed/workers’ compensation 34 (4.6)

Fracture location
Distal radius 378 (51)
Elbow 183 (25)
Proximal humerus 173 (24)

Broad injury class*
Category 1 377 (51)
Category 2 131 (18)
Category 3 226 (31)

Injury on dominant side 363 (49)
High energy injury 119 (16)
Open injury 13 (1.8)
Neurovascular injury 38 (5.2)
Surgery 118 (16)
Prior fracture
Dominant arm 137 (19)
Nondominant arm 79 (11)

Opioid use 252 (34)
Antidepressant use 174 (24)

Mean 6 SD
Age (years) 59 6 20
Years of education 14 6 3.0

Median (IQR)
NRS pain intensity (6–9 months) 2 (4)
Quick-DASH (6–9 months) 16 (39)

IQR 5 interquartile range; SD 5 standard deviation.
* Injury class category 1 (greater tuberosity, radial neck/head, and OTA/AO type A distal radius
fracture); category 2 (proximal humerus fractures with 2 or less fragments, extra-articular elbow
fractures, OTA/AO type B distal radius fracture); category 3 (proximal humerus fractures with 3 or more
fragments, intra-articular elbow fractures, OTA/AO type C distal radius fracture).
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sizes (Table 2). We selected the 29-variable model a priori as the
primary model on which to test model performance in an effort to
achieve a balance between (1) optimizingmodel performance, while
limiting the risk formodel overfit, and (2) selecting the variables that
were deemed most clinically relevant (associated with PROs) based
on current evidence. There are a wide range of statistical methods
that can be used to reduce the risk for model overfit, which mostly
revolve around selecting a smaller subset of the most influential
explanatory variables. In this study, we opted to use a clinically
oriented approach to select variables, recognizing the substantial
evidence concerningmodifiable risk factors related tomental health
(eg, symptoms of depression and anxiety, negative pain thoughts,
and fear of movement) and social health (eg, instrumental and
emotional social support) that are dominantly associated with pain
intensity and level of capability after injury.1,3,4,20 Two senior
authors selected the variables in a stepwise approach and arrived at
5 different subsets (Table 2).

2.3. Development of ANN models

First, we randomly split the entire data set into 3 data subsets: a
training subset, validation subset, and test subset, each consisting of
70%, 15%, and 15% of the total observations, respectively. We
then used the training subset (data from 514 patients, 70%) to
develop a total of 20 ANNmodels (for 4 response variables using 5
different subsets of explanatory variables), by running data
through the models to iteratively adjust the weights of the
connections (more elaborate explanation of how ANNs work is
included in Appendix A, http://links.lww.com/OTAI/A87). We
proceeded to use the validation subset (data from 110 patients,
15%) to validate and adjust the developed ANN models. This
process involved editing several hyperparameters in themodel with
the aim of achieving better model performance. Finally, the test

subset (fresh data from 110 patients [15%] that had not been used
previously) was used to test the primary 29-variable ANN model.

2.4. Development of linear regression models

Similarly, we developed 20 LR models for each of our 4 response
variables using 5 different subsets of explanatory variables from
the training and validation subsets with proprietary software
(SAS Software, Cary, NC). The performance of primary 29-
variable LR model was assessed in the test subset.

2.5. Response variables and model performance

The response variables (outcomes of interest) were levels of
capability, pain interference (incapability specifically related to
pain), and pain intensity 6–9 months after upper extremity
fracture. The level of capability was measured using the Quick
Disability of the Arm, Shoulder, and Hand (Quick-DASH)
questionnaire and the Patient-Reported Outcome Measurement
Information System (PROMIS) Upper Extremity Physical Func-
tion (UE) computer adaptive test (CAT). Pain interference was
measured using the PROMIS Pain Interference (PI) CAT. Pain
intensity was measured using the Numerical Pain Rating Scale
(NPRS). We defined model performance as the accuracy of the
estimated PRO value to be within the distribution-based minimal
important difference (MID)21 threshold (0.5 times the standard
deviation of the change frombaseline to follow-up22) of the actual
score.

2.6. Variable importance

The definition of variable importance (eg, the contribution of an
explanatory variable to the estimation of an outcome) is different

TABLE 2
Variables included in each data subset

20-variable model 23-variable model 29-variable model 34-variable model 54-variable model

Variables included Age
Female
CCI
Marital status
Social support
Years of education
Work status
IMD factor
Fracture location
Dominant side
High energy
Neurovascular injury
Open injury
Surgery
Prior fracture
Prior fx dominant
Prior fx nondom
Prior fx ipsilateral
Broad injury class
Opioid use at 2 weeks

Every variable to the left plus:
PROMIS Depression CAT (t 5 0)
PROMIS Anxiety CAT (t 5 0)
PCS-13 (t 5 0)

Every variable to the left plus:
PROMIS Depression CAT (t 5 1)
PROMIS Anxiety CAT (t 5 1)
PCS-13 (t 5 1)
TSK-11 (t 5 0, t 5 1)
PROMIS IS

Every variable to the left plus:
Complication
Antidepressant use
Grip injured side
Grip uninjured side
Grip injured/uninjured

Every variable to the left plus:
Clinical satisfaction (t 5 0, 1)
Hospital satisfaction (t 5 0, 1)
PROMIS PF CAT (t 5 0, 1)
PROMIS UE CAT (t 5 0, 1)
PROMIS PI CAT (t 5 0, 1)
Quick-DASH (t 5 0, 1)
EQ-5D-3L (t 5 0, 1)
NPRS (t 5 0, 1)
PSEQ-2 (t 5 0, 1)
PROMIS ES
PAM

Broad injury class5 classification of mild, moderate, severe fracture based on OTA/AO classification; CAT5 Computer adaptive test; CCI5 Charlson Comorbidity Index; EQ-5D-3L5 European Quality of Life 5
Dimensions 3 Level Version; fx dominant5 fracture of dominant arm; fx ipsilateral5 fracture of ipsilateral arm; fx nondom5 fracture of nondominant arm; Grip5 Grip Strength; IMD factor5 Indices of Multiple
Deprivation factor; NPRS5 11-point Numerical Rating Scale of Pain; PAM5 Patient Activation Measure; PCS-13 5 13-item Pain Catastrophizing Scale; PROMIS5 Patient-Reported Outcome Measurement
Information System; PROMIS ES5 PROMIS Emotional Support; PROMIS IS5 PROMIS Instrumental Support; PROMIS PF CAT5 PROMIS Physical Function CAT; PROMIS PI CAT5 PROMIS Pain Interference
CAT; PROMIS UE CAT5 PROMIS Upper Extremity Physical Function CAT; PSEQ-25 2-item Pain Self-Efficacy Questionnaire; Quick-DASH5 Quick Disabilities of Arm, Shoulder, and Hand; TSK-115 11-item
Tampa Scale of Kinesiophobia.
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between LR and ANN models. For LR, variable importance can
be determined by assessing the (1) regression coefficient: the effect
size of a correlation, (2) P-value: probability that a correlation is
due to random chance, and (3) semipartial R2: the proportion of
the variation in the outcome variable that is explained by the
explanatory variable. For ANN, while there is no gold standard
for evaluating the relative importance of explanatory variables, a
popular method is determining the average of “slopes” for each
variable to define their level of importance within an ANN
model.23 In other words, this approach estimates the contribution
of a variable to the estimation of an outcome but provides no
information on how an explanatory variable is associatedwith an
outcome. Owing to the fundamental differences in determining
the variable importance within both models, it is not possible to
directly compare them.

2.7. Software

Data preprocessing and ANN analysis were performed using
Python and the Pytorch statistical package. LR analysis was
performed in SAS (SAS Software, Cary, NC).

3. Results

3.1. Is there a difference in performance of ANN and LR
models in estimating 9-month level of capability, pain
interference, and pain intensity after upper
extremity fracture?

ANNs outperformed LR in estimating 9-month Quick-DASH,
PROMIS UE PF, and PROMIS PI scores in all models except the
20-variable models. ANN also outperformed LR in estimating 9-
month NPRS scores in all models except the 20-variable and 23-
variable models (Table 3). The accuracy of ANN versus LR in the

primary 29-variable model of the test subset was 83% versus
73% for Quick-DASH, 68% versus 65% for PROMIS UE PF,
66% versus 62% for PROMIS PI, and 78% versus 65% for
NPRS. Notably, mental and social health factors contributed
relatively more to the estimation of the outcome than other types
of variables in both models (ANN: Fig. 1 and LR: Table 4).

3.2. What is the difference in performance of ANN and LR
models that incorporate different numbers of
explanatory variables?

The performance of ANN and LR models in the estimation of all
outcomes generally improved with an increasing number of
explanatory variables included in the models (Table 3). The only
exception was the decrease in performance between the 34-
variable and 54-variable ANN model for PROMIS UE PF (from
74% to 71%). ANN models seem to benefit most from a higher
number of included variables.

4. Discussion

Symptom intensity and level of capability after recovery from
injury can be estimated by analyzing their relationship with
mental, social, and pathophysiological factors soon after injury.
We sought to compare the performance of ANN versus LR in
estimating 9-month level of capability, pain interference, and pain
intensity after upper extremity fracture. We also evaluated the
differences in estimating performance of both models based on
various subsets of explanatory variables. We found that ANNs
outperformed LR in estimating 9-month PROs after upper
extremity fracture, especially when a larger number of variables
were included. LR performed better in models with a smaller
number of included variables. Notably, mental and social health

TABLE 3
Accuracy of LR versus ANN in estimating PROs at 6–9 months using various data subsets

Linear regression Artificial neural network

Training subset Validation subset Training subset Validation subset

Quick-DASH
M-20 63% 61% 99% 64%
M-23 65% 58% 100% 65%
M-29 74% 72% 100% 80%
M-34 76% 75% 100% 81%
M-54 81% 77% 100% 85%

PROMIS UE
M-20 60% 59% 83% 54%
M-23 62% 57% 85% 66%
M-29 64% 61% 99% 67%
M-34 65% 66% 97% 74%
M-54 74% 70% 100% 71%

NPRS
M-20 62% 69% 99% 65%
M-23 62% 67% 91% 63%
M-29 68% 66% 99% 74%
M-34 70% 75% 99% 78%
M-54 77% 77% 100% 86%

PROMIS PI
M-20 54% 47% 77% 40%
M-23 56% 49% 82% 49%
M-29 60% 63% 93% 65%
M-34 61% 65% 98% 67%
M-54 70% 69% 100% 72%
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factors contributed relatively more to the estimation of the
comfort and capability compared with other variables in both
models.

4.1. Limitations

This study must be viewed in the light of several limitations.
First, one could argue that variable selection based on
consensus of senior authors is somewhat arbitrary.10 How-
ever, this approach allowed us to compare ANNs and LR both
with the same variables as well as with an increasing number of
variables. Although our approach might not have resulted in
the best performing models possible and different subsets of
variables could have led to different results, thoughtful
preselection of variables offers a practical means of achieving
generalizability and supporting the feasibility of these models
in clinical settings. Second, we used a distribution-based
method for the estimation of MID (0.5 3 standard deviation
of delta score) rather than an anchor-based approach.
Distribution-based methods are considered inferior compared
to anchor-based MCID because they depend on a sample
distribution rather than the patient’s perspective,24,25 but the
distribution-based method may be adequate for this first step.
Third, we combined both baseline and 2–4-week data points as
explanatory variables within the models. While one might
argue that estimation models could be more valuable when
configured using data points as close as possible to injury, we

believe an early window of recovery from baseline to 2–4
weeks better reflected a timeframe where patients at risk of
prolonged pain and incapability may be identified, including
those developing unhealthy mindsets and ongoing levels of
distress and unhelpful thoughts that impede recovery. Nota-
bly, mental health interventions may be most effective during
this period.26,27

4.2. Is there a difference in the performance between ANN
and LR in estimating 9-month levels of capability, pain
interference, and pain intensity after upper
extremity fractures?

The observation that ANNs outperformed LR in the primary 29-
variable model suggests that ANNsmight be a better choice when
a large number of potentially relevant variables are used including
multiple psychosocial variables, which are often nonparametric
and colinear. Previous comparisons of ANN and LR did not
address psychosocial variables, whereas this data set included a
large number of mental and social factors. These factors
contributed most to the estimation of comfort and capability,
which is consistent with the evidence regarding their strong
association.1,3,4,28–36 One might want to consider using ANN
models as a favorable statistical approach for large nonparamet-
ric data sets with colinear variables and complex nonlinear
correlations given the potential advantages over LR.5–7 This is
underlined by the observation that one variable had to be

Figure 1. Relative weights for importance of variables in the primary 29-variable ANN model.
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removed from the 29-variable LR model because of multi-
collinearity, while the ANN model had no problems processing
this.

4.3. What is the difference in performance of ANN and LR
models that incorporate different numbers of
explanatory variables?

The observation that both ANN and LR models performed better
with a larger number of variables suggests that bothmethods benefit
from more data points. However, the risk that a model, whether

developed using ANNor LR, will measure random variation (noise)
rather than relevant variation (associations) (model overfit) also
increaseswhenmore variables are included.The risk ofmodel overfit
is influencedby sample size (observations per variable), quality of the
data, and importance of the included variables to the estimated
outcome. The observed drop in performance between the 34-
variable and 54-variableANNmodels used to estimate PROMISUE
PF scores might be an example of model overfit.

ANNs performed better than LR in models where a higher
number of variables were included (and improved more with a
larger number of included variables than LR), compared to LR

TABLE 4
Results of linear regression model used on the primary 29-variable subset

Variables Quick-DASH PROMIS UE PF NPRS PROMIS PI

Regression
Coefficient

P Regression
Coefficient

P Regression
Coefficient

P Regression
Coefficient

P

Age 0.14 0.014 20.32 <0.001 0.0097 0.16 0.047 0.17
Female 4.3 <0.001 21.8 0.0053 0.51 <0.001 0.39 0.54
CCI 20.26 0.69 0.96 0.02 0.0044 0.96 0.10 0.80
IMD factor 0.0042 0.83 0.012 0.34 20.00024 0.92 20.0042 0.73
Marital status
Partner/married Reference value Reference value Reference value Reference value
Single 0.86 0.52 0.27 0.75 20.14 0.40 0.054 0.95
Separated 0.83 0.52 20.43 0.60 20.43 0.006 20.54 0.50

Social status
Partner/family Reference value Reference value Reference value Reference value
Lives alone 3.8 0.012 21.2 0.21 0.35 0.063 1.1 0.26
Part/full-time care 4.7 0.0024 22.0 0.039 0.56 0.0033 1.4 0.14
Years of education 0.048 0.77 20.13 0.22 0.020 0.31 0.051 0.62

Work status
Working/homemaker Reference value Reference value Reference value Reference value
Unemployed 6.3 0.002 26.3 <0.001 1.5 <0.001 2.1 0.095
Retired 2.5 0.091 21.8 0.051 0.42 0.021 3.0 0.0012
Workers comp 10 <0.001 25.6 <0.001 1.5 <0.001 1.6 0.25

Fracture location
Wrist Reference value Reference value Reference value Reference value
Elbow/shoulder* 20.53 0.36 21.1 0.0017 20.19 0.0071 20.31 0.38

Injury on dominant side 1.1 0.17 20.52 0.31 0.12 0.22 0.59 0.24
High energy injury 3.5 0.0058 21.2 0.12 0.64 <0.001 2.4 0.002
Neurovascular injury 20.23 0.9 21.2 0.33 20.032 0.9 0.17 0.89
Open injury 20.49 0.88 1.1 0.59 20.028 0.94 0.88 0.67
Surgery 2.1 0.10 20.56 0.48 0.30 0.05 0.67 0.40
Prior fracture 21.4 0.34 20.46 0.63 0.13 0.47 0.32 0.73
Prior fracture of dominant arm 1.2 0.44 1.7 0.097 20.062 0.75 21.2 0.21
Prior fracture of ipsilateral arm 1.7 0.25 21.0 0.28 0.035 0.85 0.49 0.60
Broad injury classification 1.7 0.85 21.0 0.16 0.035 0.90 0.49 0.23
Opioid use at 2 weeks 20.099 0.095 20.46 0.88 20.0081 0.22 20.39 0.52
PROMIS Depression CAT (t 5
0)

2.2 0.13 0.12 0.72 0.19 0.17 0.52 <0.001

PROMIS Depression CAT (t 5
1)

20.087 0.0093 20.013 0.011 20.0096 0.024 20.16 <0.001

PROMIS Anxiety CAT (t 5 0) 20.15 0.28 0.095 <0.001 20.016 0.0029 20.15 <0.001
PROMIS Anxiety CAT (t 5 1) 0.11 <0.001 20.24 0.19 0.036 0.0016 0.34 <0.001
PCS-13 score (t 5 0) 0.38 0.44 20.067 0.040 0.031 0.64 0.23 0.40
PCS-13 score (t 5 1) 0.062 <0.001 0.10 0.18 20.0046 <0.001 20.042 0.040
TSK-11 score (t 5 0) 20.30 <0.001 0.071 0.0096 20.055 <0.001 20.11 <0.001
TSK-11 score (t 5 1) 0.79 <0.001 20.27 <0.001 0.14 <0.001 0.39 <0.001
PROMIS IS 1.4 <0.001 20.68 0.10 0.15 <0.001 0.60 0.14

Bold indicates statistical significance. The variable for prior fracture of the nondominant arm was omitted from the model because of multicollinearity with the other prior fracture variables.
Broad injury class5 classification of low, moderate, high fracture complexity based on OTA/AO classification; higher scores indicate more complexity; CAT5 Computer Adaptive Test; CCI5 Charlson Comorbidity
Index; IMD factor 5 Indices of Multiple Deprivation factor; PCS-13 5 13-item Pain Catastrophizing Scale; PROMIS 5 Patient-Reported Outcome Measurement Information System; PROMIS IS 5 PROMIS
Instrumental Support; TSK-11 5 11-item Tampa Scale of Kinesiophobia.
* Shoulder and elbow fractures were grouped to provide more weight and statistical significance because wrist fractures had almost double the number of observations than shoulder/elbow individually. Proximal
fracture locations likely have a similar effect on the level of capability while wrist likely has a different effect.
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which performed better in models with a low number of included
variables. This might reinforce the suggestion that ANNs are
better in processing large nonparametric data sets with nonlinear
correlations,5–7, while LR might be better in processing smaller
parametric data sets with linear correlations.7

Notably, there is some evidence that suggests that ANNs can
perform as accurate as logistic regression while using less
variables when variable selection methods are used.10 This points
to the potential advantage of using statistical variable selection
methods to only include the most influential variables while
omitting noise from redundant variables. Thoughtful preselection
of potentially relevant and modifiable variables combined with
statistical variable selection methods might be the best strategy to
increase the generalizability and clinical relevance, while opti-
mizing performance of the estimation models.

5. Conclusion

A better understanding of the optimal statistical method to
estimate health outcomes with greater accuracy has the potential
to inform the development of models that can be applied to
enhance clinical decision-making and tailor more personalized
care pathways through prognostic information generated early
after injury. The observation that ANNs performed better in
estimating 9-month PROs than LR, particularly with a larger
number of variables, points to a potential benefit of ANNs. Given
the relatively comparable performance of both ANNs and LR,
other factors such as data distribution, multicollinearity, and
complexity of the correlations should also be considered when
deciding on statistical approach. Prioritizing the inclusion of
modifiable variables such as psychosocial factors might be useful
because they could help estimate and visualize the potential effects
of certain treatments. Future studies should perform an external
validation of our ANN algorithms and may also use anchor-
based MCID estimation instead of distribution-based methods in
the process. Studies continuing this line of research may help
select an optimal method and set of variables to enable the
estimation of health outcomes in real-time clinical practice.
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