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Recently, a novel chiral cubane-based Schiff base ligand was reported to yield modest enantioselectivity in the Henry reaction.

To further explore the utility of this ligand in other asymmetric organic transformations, we evaluated its stereoselectivity in

cyclopropanation and Michael addition reactions. Although there was no increase in stereocontrol, upon computational evaluation

using both MO6L and B3LYP calculations, it was revealed that a pseudo six-membered ring exists, through H-bonding of a cubyl

hydrogen to the copper core. This decreases the steric bulk above the copper center and limits the asymmetric control with this

ligand.

Introduction

Since the initial synthesis of cubane in 1964 by Eaton and Cole
[1,2], numerous studies have been undertaken on its derivatives:
Nitrated cubanes are remarkably explosive [3,4]; cubylamines
possess antiviral activity [5]; and cubylamides have been shown
to be P2X7 receptor antagonists [6]; whereas other cubane
derivatives were examined as narcotic antagonists against both

n and k receptors [7], as well as being monoamine oxidase

(MAO) inactivators [8-10]. Cubanes have also shown a propen-
sity to undergo cage opening. In particular, syn-tricyclooctadi-
enes are formed when rhodium(I) salts are introduced [11],
while with silver(I) or palladium(II) catalysts, cuneane is
obtained [12]. Spontaneous cage opening has been observed
with cubanol yielding vinylcyclobutenylketene [13,14], whereas
dicubyl disulfide is remarkably stable [15]. More recently,
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4-iodo-1-vinylcubane was shown to undergo cage opening/

rearrangement to form 4-vinyl-trans-p-iodostyrene [16,17],

whereas 1-iodocubane-4-carboxaldehyde undergoes cage
opening/fragmentation to afford benzaldehyde, which further
reacts to give benzyl benzoate [18].

Recently, we synthesized the first cubane-based Schiff base
ligand (Figure 1) and screened it in the Henry reaction in the
synthesis of B-nitroalcohols [19]. The cubyl moiety can be
considered a cross between a fert-butyl and a phenyl group. In
fact, the C—H bond of cubane has been shown to have ~31%
s-character [20], compared to 25% for a simple alkane and 33%
for an aromatic hydrogen. Due to the bulk of the cube it was

initially envisioned that there would be high stereocontrol;

however, the stereoselectivity was modest-at-best with only the
highest ee value of 39% being achieved when copper(I) chlo-
ride was used at 65 °C. Therefore, we decided to examine this
novel ligand further in the hope of increasing the stereoselec-
tivity in other organic transformations.

Figure 1: Structure of (1R,2R)-N,N-bis[(4-iodocuban-1-yl)methylene]-
trans-1,2-diamino cyclohexane (1).

Table 1: Cyclopropanation with cubane ligand 1.

[Cul/

ethyl diazoacetate'
CH,Cl,

Entry Catalyst precursor
1 Cu(OTf) toluene complex
2 Cu(OTf) tetrakisacetonitrile
3 CuCl
4 Cu(OTf),
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Results and Discussion

We began by initially evaluating this cubane-based ligand with
cyclopropanation reactions. When no chiral ligand was added
there was a 2.6:1 ratio of trans to cis products with no ee
control. We then introduced our cubane-based chiral ligand 1 to
our cyclopropanation protocol with four different copper
sources (Table 1). The highest ee value of 14% was found with
the use of Cu(]) triflate tetrakisacetonitrile as catalyst. For the
reaction with Cu(I) chloride, values of only 1% ee were
obtained for both cis and trans products. In all reactions, the
trans product was favored over the cis. Overall, this reaction
was unsuccessful in obtaining high stereoselectivity, and thus
we decided to switch to Michael addition with organomagne-

sium and organozinc reagents.

Since the copper source that produced the highest ee value with
the cyclopropanation above was Cu(]) triflate tetrakisacetoni-
trile, we decided to initially focus on this catalyst precursor. We
were pleased to observe an ee value of 16% in the Michael ad-
dition of EtMgBr to 2-cyclohexen-1-one at 0 °C in Et,O
(Table 2, entry 1). We next screened a variety of solvents in this
reaction. With both CH,Cl, and THF the ee values signifi-
cantly dropped (Table 2, entry 2 and 3). As previously reported,
CuCl gave the best results with the Henry reaction [19]; hence,
we decided to evaluate this copper source. This, however, did
not yield any encouraging results with only a maximum ee
value of 4% when performed in Et,O (Table 2, entry 4). We
next evaluated a Cu(OTYf) toluene complex, as well as
Cu(OTf),; however, we only obtained a maximum value of
12% ee with Cu(OTY) , in Et,O (Table 2, entry 10). The use of

mozEt © CO2Et
(1R,2S)-cis S,2R)-cis
gﬂéma © CO,Et
(1S,2S)-trans R,2R)-trans
Conv (%)2 cis/transP eeb eeb
cis (%) trans (%)
53 45:55 9 5
13 29:71 14 9
77 37:63 1 1
82 42:58 8 6

aThe conversion was determined by analysis of the "TH NMR spectra. °Determined by GC analysis using a Chirasil-Dextrin CB column.
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Table 2: Asymmetric ethyl addition to 2-cyclohexen-1-one under different conditions.

o)
[Cul

EtMgBr or Et,Zn

Entry Catalyst precursor Alkylating reagent Solvent Conv (%)?2 ee (%)P
1 Cu(OTf) tetrakisacetonitrile EtMgBr Et,O >99 16 (R)
2 Cu(OTf) tetrakisacetonitrile EtMgBr CH.Cly 89 <1(S)
3 Cu(OTf) tetrakisacetonitrile EtMgBr THF >99 3(R)
4 CuCl EtMgBr Et,0 >99 4(S)
5 CuCl EtMgBr CH,Cl, 92 1(S)
6 CuCl EtMgBr THF >99 2(R)
7 Cu(OTf) toluene complex EtMgBr Et,0 >99 1(R)
8 Cu(OTf) toluene complex EtMgBr CH.Cl, >99 15 (S)
9 Cu(OTf) toluene complex EtMgBr THF 94 11 (R)
10 Cu(OTf), EtMgBr Et,0 >99 12 (S)
11 Cu(OTf), EtMgBr CH,Cl, >99 5(S)
12 Cu(OTf), EtMgBr THF >99 1(S)
13 Cu(OTf) tetrakisacetonitrile EtyZn Et,O 86 3(S)
14 Cu(OTf) tetrakisacetonitrile EtoZn CHCly 87 9 (R)
15 CuCl EtyZn Et,0 >99 9(S)
16 CuCl EtyZn CH,Cl, >99 11(S)
17 CuCl EtoZn THF >99 4(S)
18 Cu(OTf) toluene complex EtpZn Et,0 >99 4 (S)
19 Cu(OTf) toluene complex EtoZn CHCly >99 1(S)

20 Cu(OTf), EtyZn Et,0 >99 12 (S)
21 Cu(OTf), EtyZn CH,Cl, 97 6 (S)
22 Cu(OTf), EtoZn THF >99 1(S)

aThe conversion was determined by analysis of the TH NMR spectra. bDetermined by HPLC (OD Column, 0.5 mL/min, 99.7:0.3 hexanes/iPrOH) after

derivatization with (R,R)-1,2-diphenylethane-1,2-diol.

EtyZn has also been used to provide excellent stereoselectivity
in Michael addition reactions [21,22]. However, with our
cubane-based chiral ligand 1 we did not have this success. Our
best result with this anion source was with Cu(OTf), in Et,O
reaching an ee value of only 12% (Table 2, entry 20).

At the onset we had anticipated much stronger results as the
large bulky nature of the cube should likely block one side of
the copper complex, thus hopefully increasing stereoselectivity.
Appropriate crystals for X-ray analysis were not obtained, thus
we decided to look into computational simulations. On the basis
of earlier assessment studies [23,24], we chose the MO6L [25]
density functional theory method (and B3LYP [26] for compari-
son) to locate the global minimum-energy structures for the
ligands and their Cu(I) complexes. The computations employed
the 6-31+G(d) basis set, and for iodine the LAN2DZdp basis set
[27] with an effective core potential was used instead of
6-31+G(d). All calculations were performed with Gaussian09
[28].

Using both B3LYP and MO6L density functional theory
methods, we observed N—C—C—N dihedral angles of 65.0 and
62.7°, respectively for the ligand 1 on its own (Figure 2a).
When this was complexed with a Cu™l, however, the cyclo-
hexyl moiety retained its chair conformation, but the N—-C—-C—N
dihedral angles dropped to 49.7° and 48.5°, in the B3LYP and
MOG6L calculations, respectively (Figure 2b). In addition, the
copper is observed to exhibit either an agostic interaction [29]
or a H-bond [30] with the “meta” cubyl hydrogens (with respect
to the iodine). The H--*Cu bond lengths of 2.06 A with MO6L
and 2.29 A with B3LYP calculations are well within the
required H-bonding length of <3.2 A [31]. In addition, the
C-Cu lengths of 2.85 and 3.03 A with MO6L and B3LYP, res-
pectively, were well within the required 4.0 A limit [31]. This
produces pseudo six-membered rings having a C—H-Cu bond
angle of 125.1° or 122.9° with MO6L and B3LYP calculations,
respectively. As Cu(l) is a late transition metal in a low oxi-
dation state [32], the H---Cu bond length is shorter than that of
C--Cu [27], and the C—H--Cu bond angle is >100° [33], it can
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Figure 2: MO6L DFT global minima for (a) (1R,2R)-N,N-bis[(4-iodocuban-1-yl)methylene]-trans-1,2-diaminocyclohexane (1) and (b) Cu*! complex
with ligand 1.

be stated that the H'--Cu interaction is a true intermolecular
multicenter hetero-acceptor hydrogen bond as opposed to an
intermolecular pseudo-agostic bond. Cubyl hydrogens partici-
pating in H-bonding have been reported previously with
nitrocubanes [34], as well as with dicubyl vic-disulfone [35].
From the computational results it would appear that the cubes
play very little role in blocking either side for selective coordi-
nation with the copper. In fact, it would appear that the very
modest selectivity is due to the axial hydrogens on the cyclo-
hexyl moiety since the copper is best described as being
strained square planar with a N-Cu—H bond angle of 93.7° for
MO6L and 91.0° for B3LYP.

Conclusion

We obtained slight stereoselectivity for both cyclopropanation
as well as Michael addition. A maximum ee value of 16% was
observed when Michael addition was performed with EtMgBr
at 0 °C in Et,O. The poor stereoselectivity is explained compu-
tationally by the lack of steric hindrance on either face of the
copper complex. In addition, H-bonding with cubyl hydrogens
and the copper core yielded a pseudo six-membered ring, which
decreased the N-C—C—N dihedral angle.
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