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Highlights Impact and implications

� Lean NAFLD is genetically and metabolically

different from obese NAFLD.

� Variants of the iron homoeostasis gene HFE are
specifically associated with lean NAFLD.

� Patients with lean NAFLD are susceptible to type 2
diabetes and liver fibrosis.
https://doi.org/10.1016/j.jhepr.2023.100744
Lean NAFLD has a distinct natural history from obese
NAFLD. This study underscored liver iron content and
the genetic variant of the iron homoeostasis gene HFE
as major risks of lean NAFLD, in addition to the unique
metabolic profile. The development of type 2 diabetes
or liver cirrhosis shall be closely monitored and pre-
vented in patients with lean NAFLD.
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Background & Aims: Around 20% of patients with non-alcoholic fatty liver disease (NAFLD) are lean. Increasing evidence
suggests that lean NAFLD is a unique subtype of the disease. We aimed to explore the metabolic profile, genetic basis, causal
risk factors, and clinical sequelae underlying lean NAFLD.
Methods: NAFLD was diagnosed by whole liver proton density fat fraction >−5%. Whole liver proton density fat fraction and
hepatic iron were quantified using magnetic resonance imaging in the UK Biobank. Individuals in this study were stratified
according to the World Health Organization criteria of obesity, into lean, overweight, and obese. Mediation analysis, Men-
delian randomisation analysis, and Bayesian networks were used to identify a risk factor or a clinical sequela of lean/obese
NAFLD.
Results: Lean NAFLD manifested a distinct metabolic profile, featured by elevated hepatic iron and fasting glucose. Four loci,
namely, HFE rs1800562, SLC17A3-SLC17A2-TRIM38 rs9348697, PNPLA3 rs738409, and TM6SF2 rs58542926, were associated
with lean NAFLD (p <5 × 10-8). HFE rs1800562 was specifically associated with lean NAFLD and demonstrated a significant
mediation effect through elevating hepatic iron. Type 2 diabetes was the most pronounced clinical sequela of lean NAFLD,
followed by liver cirrhosis.
Conclusions: Our study suggested that HFE plays a potential steatogenic role rather than regulating iron homoeostasis in
patients with lean NAFLD. The increased liver iron deposition is associated with lean NAFLD, whereas obese NAFLD is not
related to hepatic iron. The clinical management of patients with lean NAFLD shall be concerned with the prevention and
treatment of type 2 diabetes and liver cirrhosis.
Impact and implications: Lean NAFLD has a distinct natural history from obese NAFLD. This study underscored liver iron
content and the genetic variant of the iron homoeostasis gene HFE as major risks of lean NAFLD, in addition to the unique
metabolic profile. The development of type 2 diabetes or liver cirrhosis shall be closely monitored and prevented in patients
with lean NAFLD.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Non-alcoholic fatty liver disease (NAFLD), characterised by
excessive liver fat deposition, was estimated to affect 24% of the
world population.1 NAFLD is highly correlated with obesity,
which is a criterion of clinically suspected fatty liver. However,
nearly 40% of patients with NAFLD are not obese (BMI <−30 kg/
m2), and �20% are lean (BMI <−25 kg/m2).2 Therefore, lean NAFLD
may be underdiagnosed in regular clinical screening. Lean NAFLD
was found to be associated with milder metabolic symptoms.
However, the histological severity of lean NAFLD can be
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comparable with that of obese individuals.3 Compared with
obese NAFLD, lean NAFLD is likely a unique subtype of metabolic
(dysfunction)-associated fatty liver disease.4,5 Previous studies
have found that the genetic variant TM6SF2 rs58542926 was
more frequent in patient with lean NAFLD than in patients with
obese NAFLD,6 whereas PNPLA3 rs738409 has a similar trend
among Asians.7 Unfortunately, the current understanding of the
genetic and pathobiological basis underlying lean NAFLD re-
mains largely unexplored. A comprehensive genome-wide
assessment for the genetic basis of lean NAFLD has not been
reported. Meanwhile, it remains largely unclear what risk factors
and long-term clinical sequelae for lean NAFLD are. Addressing
these questions will not only significantly further our under-
standing of the aetiology of lean NAFLD but will also help
develop effective and evidence-based strategies for both pre-
vention and long-term management of this disease subtype.

Liver iron could exert a synergic effect together with steatosis
in promoting hepatic lipid deposition.8 However, mounting evi-
dence also implied that altered hepatic iron level is associated
with insulin resistance and inflammation in patients NAFLD,9

whereas animal and cell model studies also revealed the path-
ogenic role of increased adipose tissue iron in the occurrence and
development of NAFLD.10 The human study linking hepatic iron
to NAFLD is less conclusive.

In this study, we performed a genome-wide association study
(GWAS) and multiple causal inferences in a large cohort, aiming
to identify genetic polymorphisms, manifestations, and clinical
sequelae of lean NAFLD. Our results implicated a causal rela-
tionship between the homoeostatic iron regulator gene (HFE),
increased hepatic iron content, and the onset of lean NAFLD.

Materials and methods
Details about materials and methods were included in the Sup-
plementary methods.

UK Biobank participants and sample exclusion
Genotyping, data collection, and quality control were conducted
by the UK Biobank team according to the protocols published
previously.11 The details of genetic data quality control are pro-
vided in the Supplementary methods. Participants with alcoholic
disease, alcohol harmful use, diagnosed haemochromatosis, viral
hepatitis, Wilson disease, and liver damage drug use were
excluded from the analyses (Table S1).

Image processing and WL-PDFF and liver iron calculation
The whole-liver proton density fat fraction (WL-PDFF) was
calculated based on the magnetic resonance images of �45,000
individuals of the UK Biobank. Liver iron images of �37,000 in-
dividuals were generated using the pipeline published elsewhere
(Fig. S1).12 Regions of interest marked by a team of experienced
radiologists were used to train the model. The deep learning
model nnUnet13 was constructed with a two-dimensional model
for liver iron and a three-dimensional model for WL-PDFF to
segment the liver and further calculated WL-PDFF/liver iron
content for each individual.

NAFLD cases and controls in different obesity strata
NAFLD was diagnosed by WL-PDFF >−5%, whereas the healthy
controls were defined as WL-PDFF <5%. The cohort was stratified
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according to the World Health Organization criteria of obesity,
into lean (BMI <25 kg/m2, n = 13,614), overweight (25 kg/m2

<−BMI <30 kg/m2, n = 13,710), and obese (BMI >−30 kg/m2, n =
5,617).
GWAS and heritability calculation
We undertook genome-wide association analyses in three BMI
strata, as well as a combined GWAS that included all participants
in the cohort. The cohort consisted of participants with European
ancestry. GWAS, conditional analysis, and sensitivity analysis
were conducted using BOLT-LMM.14 Diplotype assignments were
conducted using PLINK v1.07.15 LDSC16 was used to estimate
single-nucleotide polymorphism (SNP) heritability.

Mendelian randomisation
Two-stage least-squares linear regression was used to perform
one-sample Mendelian randomisation (MR).17 Polygenic risk
score (PRS) of lean NAFLD and liver iron in different BMI strata
was calculated using genetic variables obtained from GWAS re-
sults using PRSice2.18 MR p value <0.05 was used to indicate
significant causal associations between lean NAFLD and clinical
outcomes.

Mediation model
The mediation model was used to identify the potential mech-
anism in which the genetic variant played a role in lean NAFLD.
Our mediation analysis comprises three schemes, that is, X/Y,
X/M, and X + M/Y, where M is a mediator that explains the
underlying mechanism of the relationship between X and Y. We
estimated CIs and tested whether the mediation effect was sta-
tistically significant via bootstrap with 1,000 resampling using
the R package ‘mediation’ (R Foundation for Statistical
Computing, Vienna, Austria; https://www.r-project.org/). Cova-
riates used in mediation analysis included sex and age.

Bayesian networks
We used Bayesian networks (BNs) to validate the clinical out-
comes of lean NAFLD inferred by MR. A BN uses a graphical
model, directed acyclic graph, to illustrate the conditional de-
pendencies of variables.19 We selected the R package ‘bnlearn’ as
our analysis tool. We calculated average networks by boot-
strapping the data with the replacement for 1,000 times inwhich
the best network is recorded in each iteration. Using this
approach, we computed the joint strength of bidirectional causal
relationships among related factors, that is, genetic variants, lean
NAFLD, and potential clinical outcomes. We included only the
significant lean NAFLD variants in this analysis so that BN results
could be comparable with MR results.20 Only the causal re-
lationships with a possibility >50% were considered significant
and showed in the network plot.

Statistical analysis
Two-tailed Student’s t test and ANOVA were applied to test the
differences between lean healthy, lean NAFLD, obese healthy, and
obese NAFLD in metabolic profiling. The t test, ANOVA, linear/
logistic regression, and the estimation of the Pearson correlation
test were all performed using R (R Foundation for Statistical
Computing).
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Fig. 1. Study flowchart. GWAS, genome-wide association study; HFE, homoeostatic iron regulator; MR, magnetic resonance; NAFLD, non-alcoholic fatty liver
disease; WL-PDFF, whole-liver proton density fat fraction.
Results
Estimating liver fat content and liver iron content from
magnetic resonance imaging data
The UK Biobank imaging cohort involved participants with
abdominal magnetic resonance images of the Dixon technique
and IDEAL protocol. WL-PDFF and liver iron were quantified
using a trained deep learning pipeline. Using this pipeline, WL-
PDFFs of 42,005 participants were successfully estimated and
liver iron contents were calculated in 34,625 participants (Fig. 1,
Phase 1).
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The mean of WL-PDFF was 4.27 (SD 3.06). We further corre-
lated WL-PDFF with proton density fat fraction (PDFF) that were
previously calculated based on 3–9 points in a single slice of the
images and were now available for a subset of the imaging
cohort (n = 15,750, UK Biobank field 24352) to confirm the ac-
curacy of WL-PDFF. WL-PDFF was highly correlated with PDFF,
with a correlation coefficient r = 0.893 (95% CI 0.889–0.896, p
<2.2 × 10-16). On average, the liver fat content estimated with
WL-PDFF was slightly higher than that quantified with PDFF,
especially in those individuals with lower liver fat content (Fig.
3vol. 5 j 100744
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2). The mean of liver iron was 1.22 (SD 0.21), which is consistent
with a previous report.12
Identification of patients with lean NAFLD and their
metabolic profiling
Although liver fat and iron contents as well as BMI are all
continuous variables, we primarily conducted our study based
on a case–control design. This is because such a design allows us
to evaluate lean NAFLD as a clinically relevant disease rather than
a biological trait. As such, our findings associated with lean
NAFLD would be more clinically interpretable. We identified 810
NAFLD cases and 12,804 healthy controls in lean participants,
3,069 NAFLD cases and 10,641 healthy controls in overweight
participants, as well as 2,744 NAFLD cases and 2,873 healthy
controls in obese individuals.

To better characterise the clinical profile of patients with lean
NAFLD,we compared themetabolic biomarkers and characteristics
between lean healthy participants, participants with lean NAFLD,
participants with obese non-NAFLD, and participants with obese
NAFLD(Fig.1, Phase2).Considering that theageandsexdistribution
were different in these four groups, we also conducted metabolic
profiling adjusted for age and sex (Fig. 3).

Most of these clinical markers showed a similar pattern
(detrimental level: obese NAFLD > obese z lean NAFLD > lean),
including serum levels of liver enzymes, C-reactive protein,
urate, HDL cholesterol, LDL cholesterol, triglycerides, abdominal
obesity (as indicated by waist-to-hip ratio and visceral adipose
tissue), and diastolic/systolic blood pressure. However, total
cholesterol did not differ among the groups. It is also noteworthy
that patients with lean NAFLD manifested the highest fasting
glucose level among all four groups (ANOVA, p = 1.9 × 10-5),
although the difference between lean NAFLD and obese NAFLD
was not significant. This also implied that both individuals with
JHEP Reports 2023
lean NAFLD and those with obese NAFLD may experience a
similar abnormal glucose metabolism. Interestingly, liver iron
content was also the highest in patients with lean NAFLD
(ANOVA, p = 5.5 × 10-21). Moreover, both obese NAFLD and lean
NAFLD affected more males than females as compared with
controls with obese and lean non-NAFLD, respectively (obese: 57
vs. 46%; lean: 58 vs. 39%). Furthermore, the individuals with lean
NAFLD were 2.7 years older (p = 4.8 × 10-18) than the lean healthy
people and 2.2 years older (p = 4.5 × 10-21) than the individuals
with obese NAFLD. There was no age difference between the
obese NAFLD and obese groups (p = 0.2). Other clinical charac-
teristics are shown in Table S2.
Genetic susceptibility of NAFLD stratified by BMI
We next sought to identify genetic variants conferring risks for
lean NAFLD, with also an aim to compare them with those for
overweight and obese NAFLD (Fig. 1, Phase 3). We also conducted
an overall GWAS on general NAFLD without BMI stratification.
GWAS analyses were performed on a total of 32,941 participants
with European ancestry.

Our analyses demonstrated that the well-established SNPs
PNPLA3 rs738409 and TM6SF2 rs58542926 were significantly
associated with NAFLD in all strata (Table 1 and Fig. 4), although
stratum-specific associations were also observed.

Among lean participants, in addition to the PNPLA3 and
TM6SF2 loci, the 6p22.2 locus was uniquely shown to be asso-
ciated with NAFLD. Two lead SNPs, rs1800562 in HFE (homoeo-
static iron regulator; odds ratio [OR] 2.19, p = 2.7 × 10-16) and
rs9348697 in the locus of SLC17A3-SLC17A2-TRIM38 (OR 1.34, p =
1.4 × 10-8), were significantly associated with NAFLD in this lean
group. The HFE rs1800562 is also known as the non-synonymous
variant C282Y, which is primarily identified in the European
population with a minor allele frequency of 5.88% (<2% among
other ethnic populations) and is known to be associated with the
autosomal recessive hereditary haemochromatosis (HH), which
features excessive iron absorption and iron overload.21,22

Another lead SNP, rs9348697, is located in an intergenic region
between SLC17A3 (solute carrier family 17 member 3) and
SLC17A2 (solute carrier family 17 member 2), and in the up-
stream of TRIM38 (tripartite motif containing 38) (Fig. S2). This
SNP was demonstrated as an expression quantitative trait locus
(eQTL) of TRIM38 (r = 0.195, p = 6.9 × 10-125) in the blood.23 Ac-
cording to the Genotype-Tissue Expression (https://gtexportal.
org/) database,24 rs9348697 is a significant eQTL for SLC17A4 (p
= 8.6 × 10-6) and a splicing QTL for SLC17A2 in liver (p = 8.8 × 10-
13). A conditional analysis by adjusting for HFE rs1800562
demonstrated that SLC17A3-SLC17A2-TRIM38 locus SNP
rs9348697 remained to be statistically significant (adjusted p =
2.6 × 10-3). No other independent association signals in this
genomic locus were observed (Fig. S3).

The effect of HFE rs1800562 C282Y on lean NAFLD was likely
imposed in a recessive model (OR 22.95, p = 7.9 × 10-33) (Table
S3). Either the C282Y homozygous Y/Y genotype or a com-
pounded heterozygous genotype of C282Y and H63D
(rs1799945) was associated with HH.25 Moreover, the partici-
pants carrying the diplotype 282Y–63H/282C-63D were signifi-
cantly susceptible to lean NAFLD (OR 2.39, p = 7.2 × 10-6) (Table
S4). These lean 282Y–63H/282C-63D compound heterozygotes
also had significantly higher WL-PDFF levels than C282Y het-
erozygotes, H63D heterozygotes, and H63D homozygotes
(ANOVA, p = 1.4 × 10-83) (Fig. S4).
4vol. 5 j 100744
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In the overweight participants, in addition to the PNPLA3 and
TM6SF2 variants, we also identified rs882551, which is located in
an intergenic region close to the SGCD (sarcoglycan delta) gene
(Fig. S5) and rs429358 of the APOE (apolipoprotein E) gene, to be
associated with NAFLD (p <5 × 10-8) (Table 1). The lead SNP
rs882551 is an eQTL of FADXC2 (fatty acid hydroxylase domain
containing 2), a positive regulator of protein phosphorylation
that plays a role in oxidoreductase activity and iron ion bind-
ing.23 The lead SNP rs429358 (OR 0.76, p = 1.1 × 10-11) in APOE,
the gene encoding apolipoprotein E, has been associated with
fatty liver disease in a previous study.26
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Among obese cases, the PNPLA3 and TM6SF2 variants were the
only two reaching the genome-wide significance level (Table 1). In
the GWAS (n = 32,941) combined all obesity categories, no addi-
tional association signals were observed (Table 1 and Fig. S6).

SNP-based heritability (h2SNP) of lean, overweight, and obese
NAFLD was estimated to be 6.5, 14.1, and 10.0%, respectively.

We also checked the known variants that are associated with
NAFLD and/or PDFF-quantified liver fat content.12,27–29 We found
that the majority of these variants were replicated (p <0.05),
including those located near or in MTARC1, GCKR, MBOAT7, TRIB1,
GPAM, C2orf16, ZNF512, SUGP1, and PBX4, in at least one of the
5vol. 5 j 100744



Table 1. NAFLD genetic association in multiple BMI strata.

SNP CHR:BP Gene A0 A1 OR SE p value MAF

Lean (BMI <25 kg/m2)
rs9348697 6:25890834 SLC17A3-

SLC17A2-
TRIM38

C T 1.34 0.05 1.40 × 10-8 0.37

rs1800562 6:26093141 HFE G A 2.19 0.10 2.70 × 10-16 0.08
rs58542926 19:19379549 TM6SF2 C T 2.06 0.10 4$70 × 10-14 0.08
rs738409 22:44324727 PNPLA3 C G 1.54 0.06 8.60 × 10-13 0.22
Overweight (25 kg/m2 <− BMI <30 kg/m2)
rs882551 5:155015814 SGCD A G 1.21 0.03 1.60 × 10-08 0.02
rs58542926 19:19379549 TM6SF2 C T 1.84 0.06 2.10 × 10-28 0.07
rs429358 19:45411941 APOE T C 0.76 0.04 1.10 × 10-11 0.15
rs738409 22:44324727 PNPLA3 C G 1.60 0.04 2.70 × 10-41 0.21
Obese (BMI >−30 kg/m2)
rs58542926 19:19379549 TM6SF2 C T 1.76 0.07 4.90 × 10-15 0.07
rs738409 22:44324727 PNPLA3 C G 1.48 0.05 1.00 × 10-17 0.2
Combined (lean + overweight + obese)
rs1800562 6:26093141 HFE G A 1.25 0.03 3.10 × 10-11 0.08
rs429358 19:45411941 APOE T C 0.88 0.02 6.30 × 10-16 0.15
rs58542926 19:19379549 TM6SF2 C T 1.4 0.02 6.70 × 10-53 0.07
rs738409 22:44324727 PNPLA3 C G 1.27 0.01 1.20 × 10-66 0.21

The association tests were conducted in lean, overweight, or obese people using linear mixed models. An additional association test was also conducted in a combined cohort
without BMI stratification (combined). OR, SE, and p were calculated between phenotype and genotype using linear mixed models.
CHR, chromosome; BP, base pair; A0, the other allele; A1, effect allele; MAF, minor allele frequency; NAFLD, non-alcoholic fatty liver disease; OR, odds ratio; SE, standard error
of OR; SNP, single-nucleotide polymorphism.
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three BMI strata cohorts as well as in the combined GWAS with
the same direction and even similar ORs. Especially in the lean
group, variants in TRIB1, APOE, GPAM, SUGP1, and PBX4 were
replicated (p <0.05). However, the well-known variants in
HSD17B13 that are associated with NAFLD were not replicated in
either separate or the combined cohort (Table S5).

Sensitivity analysis for lean NAFLD GWAS
The HFE 282Y/Y homozygous is a cause of HH, an autosomal
recessive genetic disorder that featured iron overload in the liver
and blood.30 However, HH had a low penetrance possibly
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attributed to genetic variants in other genes that regulate iron
metabolism31 or obesity.32 Thus, International Classification of
Diseases 10th Revision (ICD-10) code for disorders of iron
metabolism (E831) could not be used to thoroughly exclude
patients with HH. We performed a sensitivity analysis that
excluded patients with potential HH based on individual geno-
types (homozygous pC282Y). We identified in total 2,889 HFE
rs1800562 homozygous individuals in the UK Biobank, of which
61 lean individuals had WL-PDFF measurements. After excluding
the potential HH, we confirmed that HFE rs1800562 was still
associated with lean NAFLD with a reduced effect (OR 1.31, p =
6vol. 5 j 100744
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9.0 × 10-3), whereas SLC17A3-SLC17A2-TRIM38 rs9348697 shared
a similar pattern (OR 1.18, p = 1.7 × 10-3).

Alcohol intake is another relevant issue when determining
genetic susceptibility of NAFLD, especially in the lean cohort. The
ICD-10 records may not be able to exclude heavy drinkers. Ac-
cording to the AASLD guidelines, we identified 369 heavy
drinkers in lean participants (Supplementary method). After
further eliminating heavy drinkers in lean participants, along
with excluding potential HH, HFE rs1800562 (OR 1.31, p = 6.8 ×
10-3) and SLC17A3-SLC17A2-TRIM38 rs9348697 remained signifi-
cant (OR 1.17, p = 0.03).

Other sensitivity analyses by controlling for additional
covariates also did not change the significance of these two lead
SNPs. Well-established SNPs PNPLA3 rs738409 and TM6SF2
rs58542926were significant in all sensitivity analyses (p <5 × 10-8)
(Table S6).
The causal role of liver iron in lean/obese NAFLD
We set out to explore whether there is a causal relationship be-
tween lean/obese NAFLD, HFE rs1800562, and liver iron content
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(Fig. 1, Phase 4). We first confirmed the association between lean
NAFLD and liver iron content in 10,892 leanparticipants (b = 0.12, p
= 8.1 × 10-29). As alcohol intake may increase iron absorption, we
further examined this association in 1,887 lean teetotallers
(Supplementary method) as a sensitivity analysis. After adjusting
for sex and age, the association between lean NAFLD and liver iron
in lean teetotallers persists (b = 0.12, p = 2.0 × 10-6). We also per-
formed a sensitivity analysis by controlling for gamma glutamyl-
transferase (GGT), a marker of excessive alcohol intake, to further
validate that the association between liver iron and lean NAFLD
wasnotbiasedbyalcohol intake.After controlling for theGGT level
in 10,892 lean participants, the association between liver iron and
lean NAFLD remains significant (b = 0.12, p = 8.2 × 10-27).

A mediation model was used to explore the liver iron impact
on lean/obese NAFLD and determine the extent to which the
effect of HFE rs1800562 on lean NAFLD is exerted through
elevated liver iron content. A total of 10,892 lean participants and
3,765 obese participants were used in this analysis. Three
regression models were constructed to estimate the mediation
effect. The first regression revealed that HFE rs1800562 was
associated with lean NAFLD, which was estimated in our GWAS.
We further estimated the second regression showing that HFE
rs1800562 was positively correlated with liver iron in lean
NAFLD (b = 0.07, p = 1.1 × 10-35), and the last regression identified
that liver iron (b = 0.11, p = 1.5 × 10-25) and HFE rs1800562 (b =
0.04, p = 1.2 × 10-9) would share the effect of increasing the risk
of lean NAFLD. As a result, 17% effect of HFE rs1800562 on lean
NAFLD was mediated by liver iron content (b = 0.007, p <2.2 × 10-
16), whereas the direct effect remains significant (b = 0.038, p
<2.2 × 10-16) (Fig. 5A). Similar mediation models were con-
structed for obese NAFLD, but no significant mediation effect was
observed (p = 0.22).

MR was used to confirm this nonexisting causal relationship
as obese NAFLD was not associated with HFE. We first con-
structed PRS for liver iron in obese individuals, using 86 linkage
disequilibrium-clumped SNPs at the significance level of p <1 ×
10-5 (R2 = 0.18, p = 1.1 × 10-188) to obtain instrumental variables.
MR revealed that there was no causal relationship between liver
iron and NAFLD in obese individuals (b = 0.12, p = 0.20).

We further explored the causal effect of lean/obese NAFLD on
hepatic iron levels using MR. By using two well-established
variants PNPLA3 rs738409 and TM6SF2 rs58542926 as instru-
mental variants for lean/obese NAFLD, we found that NAFLD in
both lean and obese individuals do not causally result in
increased hepatic iron content (causal effect b = 0.09, p = 0.82,
and b = 0.09, p = 0.55, respectively). Details of the MR results are
in Table S7.

Clinical sequelae of lean NAFLD
We aimed to further examine the potential clinical sequelae of
lean NAFLD (Table S8) using observational analysis and MR
analysis. Four SNPs associated with lean NAFLD, namely, SLC17A3-
SLC17A2-TRIM38 rs9348697, HFE rs1800562, TM6SF2 rs58542926,
and PNPLA3 rs738409, were used to construct lean NAFLD PRS.
Using this lean NAFLD PRS as the instrumental variable, we
inferred the causal effects of lean NAFLD on clinical outcomes
with MR. Seven well-known NAFLD comorbidities were investi-
gated, namely, type 2 diabetes, metabolic syndrome, cardiovas-
cular disease, hyperlipidaemia, liver cirrhosis, hepatocellular
carcinoma, and hypertension. Lean NAFLD causally increased the
risk for type 2 diabetes (b = 0.10, p = 1.77 × 10-2) and non-alcoholic
liver cirrhosis (b = 0.02, p = 7.19 × 10-3), which agreed with
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observational analysis results (Table S9). BN analysis also showed
that lean NAFLD had a 62% probability of leading to type 2 dia-
betes, whereas liver fibrosis was not significant possibly because
of the limited number of cases. Fig. 5B summarised all the asso-
ciations between lean NAFLD and comorbidities.

As diabetes was a well-known complication of haemochro-
matosis, we also conducted sensitivity analysis by excluding
potential HH. After the exclusion of homozygous individuals, the
causal relationship between lean NAFLD and type 2 diabetes
remains significant (b = 0.14, p = 0.01). This result was also
confirmed by BN analysis (probability = 0.62).
Discussion
The aetiology and clinical profile of NAFLD in lean individuals
remain under investigated. In this study, we generated the WL-
PDFF and liver iron content of over 37,000 individuals from
magnetic resonance data using a noninterventional deep
learning approach. With these data, we for the first time
explored the genetic basis underlying lean NAFLD in a European
population at the genome-wide level. By leveraging the existing
rich data accumulated in the UK Biobank, we further demon-
strated the causal role of increased liver iron as well as the
potentially causal clinical sequelae of lean NAFLD. Our study
provides important data to accelerate the research and clinical
management for lean NAFLD.

Patients with lean NAFLD manifest a distinctive metabolic
profile as compared with lean healthy individuals, individuals
with obese NAFLD, or individuals with obese non-NAFLD. We
observed that the liver iron content of lean NAFLD cases is higher
than that of obese NAFLD and lean healthy cases. Although in-
dividuals with lean NAFLD generally exert a milder metabolic
profile than NAFLD cases in the obese group, they demonstrated
significantly unhealthy levels of the majority of metabolic traits
when compared with the lean healthy group, which is consistent
with the previous observation.5 Although this may indicate a
logical correlation between the severity of liver histology and
overall metabolic health, it should be noted that these profile
data in the UK Biobank cohort are 8–10 years before the NAFLD is
defined, suggesting that (1) these comparisons may underesti-
mate the health condition of lean NAFLD and (2) deviations of
metabolic profiles from a healthy condition may occur earlier
before the development of NAFLD in lean individuals.

It is also important to know what long-term clinical sequelae
might be associated with lean NAFLD. Using MR analysis, we
found that lean NAFLD causally increased risks for type 2 dia-
betes and liver cirrhosis, suggesting (1) a potential contribution
of lean NAFLD to other metabolic diseases risks and (2) that
excessive fat accumulation in the liver of lean individuals also
increases risks for more severe liver damages. More large-scale
studies are needed to further investigate the natural history of
lean NAFLD.

Our study revealed the genetic bases underlying NAFLD
among individuals with different BMI strata. Interestingly, the
well-established29,33 PNPLA3 and TM6SF2 variants were found to
be top risk factors for NAFLD among all BMI-stratified groups,
highlighting the fundamental role of these two genes in the
aetiology of NAFLD, although adiposity may further exacerbate
the disease severity. In addition, we found that variants of two
candidate genes SGCD and APOE were more specifically associ-
ated with NAFLD among overweight individuals, as opposed to
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the lean or obese groups. The reason underlying these specific
associations in the overweight group remains unclear and thus
should be further investigated.

More specifically, iron homoeostasis genes may be involved in
the aetiology of lean NAFLD. Our study identified that the iron
homoeostasis variant HFE C282Y is associated with lean NAFLD
but not with NAFLD in obese individuals. Before our study,
whether this HFE variant is associated with NAFLD in humans is
inconclusive.34,35 A few studies have reported the association
between this variant and NAFLD,36,37 whereas others did not
confirm this association.35,38 Furthermore, in one Italian study,
the patients with NAFLD carrying the HFE C282Y variant were
reported to be leaner than the non-carriers.39 Our study for the
first time demonstrated that this variant is associated with
NAFLD only in lean individuals, which may explain the mixed
results of the aforementioned association studies.

HFE is a membrane protein acting to regulate cellular iron
intake by competing with transferrin for binding to the trans-
ferrin receptor, whereas transferrin is the transporter for ferric
iron. The missense variant C282Y in HFE has been demonstrated
to lead to hepcidin deficiency and subsequently increase iron
absorption by enterocytes and accumulation in the liver.40 We
observed in our mediation analysis that the impact of HFE C282Y
mutation on the development of lean NAFLD is only moderately
mediated via increased liver iron (about 17%), indicating that
non-iron modulation function of HFE may also contribute to the
development of lean NAFLD. Indeed, a recent study has identified
HFE as a negative regulator of LDL receptor expression in hepa-
tocytes,41 indicating a potential steatogenic role of HFE. Steato-
genic mechanisms of HFE C282Y rs1800562-A on lean NAFLD
may be attributed to oxidative stress,42 macrophage activation,43

stellate cell activation,44 endoplasmic reticulum stress,45 and
increased cholesterol synthesis.46

Hepatic iron overload has been associated with NAFLD, which
was deemed to be attributable to the increased oxidative stress
that further induces dysfunction of mitochondria47 and autoly-
sosomes,48 both resulting in insulin resistance49 in the liver, and
thus leads to cellular damage.50 The production of excessive
reactive oxygen species induced by elevated liver iron content
could also attack phospholipids with polyunsaturated acyl tails
to produce peroxided lipids and enhance ferroptosis, thus
causing steatohepatitis.51 Other studies also found that pertur-
bations of iron homoeostasis were frequently observed in pa-
tients with NAFLD.39,52 In our study, the causal association
between liver iron content and lean NAFLD was inferred using an
observational study and causal statistical models. We found that
liver iron has a causal effect on lean NAFLD, although lean NAFLD
does not causally lead to increased liver iron accumulation,
suggesting that liver iron is a pathogenic factor (although it may
not be necessarily a direct factor) for lean NAFLD.

The moderate effect of liver iron on lean NAFLD leads to a
small difference in liver iron content between patients with
lean NAFLD and lean healthy patients. Therefore, we compared
the degree of steatosis between lean patients with haemo-
chromatosis (patients with exact high liver iron content) and
lean individuals without HH to further validate the causal as-
sociation between steatosis and liver iron. In a smaller available
cohort consisting of 24 lean patients with haemochromatosis
and 10,897 lean individuals without HH, both the average he-
patic fat fraction (5.01 vs. 3.11%, t test, p = 0.01) and NAFLD
prevalence (33.33 vs. 5.79%, Fisher’s exact test, p = 4.18 × 10-5)
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were higher in lean patients with haemochromatosis than in
lean individuals without HH. Taken together, our study sug-
gests that increased hepatic iron level is a causal factor for
NAFLD in lean individuals.

The mechanism by which liver iron specifically affects NAFLD
in lean participants also remained to be investigated. However,
current works of literature together with our results suggest that
excessive adipose tissue accumulation may reduce iron absorp-
tion. Our BMI-stratified analysis indicated that the effect of the
HFE C282Y variant on NAFLD risk was attenuated by increased
BMI. Meanwhile, the liver iron content of obese participants was
lower than that of lean participants and played no causal role in
NAFLD. This implicates that liver iron load itself and effect on
liver fat deposition are possibly reduced by adiposity. At the
same time, it is known that the serum iron load in obese in-
dividuals was lower than that in lean healthy controls,53,54 which
is likely the result of impaired absorption of supplemented
iron.55 Increasing studies over the past decades suggested that
accumulated adiposity reduces iron absorption from enterocytes
of the duodenum,56–58 which is at least in part attributed to
increased inflammatory cytokine production from adipose tissue.
These elevated inflammatory cytokines can induce the hepatic
production of the iron-regulatory hormone hepcidin, which is
also associated with reduced intestinal absorption of iron.59

However, weight loss in overweight and obese individuals
decreased inflammatory and hepcidin levels60 and restored the
serum iron level.61 Therefore, it is plausible that increased BMI
associated with obesity may reduce intestinal iron absorption,
thus attenuating the effect of increased iron uptake of hepato-
cytes caused by HFE deficiency. Collectively, adiposity and HFE
deficiency may reciprocally interact with each other, which leads
to the specific association between the HFE variant and NAFLD in
lean individuals. Notably, unknown causality other than liver
iron was also indicated in our mediation analysis, with the
detailed underlying mechanism remaining to be further eluci-
dated. Our study further underscores the notion that NAFLD in
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lean individuals may be a disease subtype with unique genetic
and pathobiological basis.

There are limitations in our study. First, the definition of
NAFLD in our study is just based on the fat content quantified by
WL-PDFF, which may not coincide with the disease diagnosed
based on liver histology. Future studies should validate our
findings in clinically and histologically characterised individuals.
Second, because the participants in this study are primarily from
the UK Biobank, the causal relationship between hepatic iron
and lean NAFLD needs to be further studied in non-European
cohorts, especially in ancestry with a low frequency of HFE
C282Y. Third, this study lacked independent cell/animal experi-
ments to confirm this causality. Fourth, alcohol intake is known
to be associated with increased hepatic iron load62 and steatosis.
Unfortunately, the unavailability of more specific alcohol bio-
markers, such as phosphatidyl ethanol or carbohydrate-deficient
transferrin63 limited our chance to further validate the impact of
alcohol intake on confounding the association between liver iron
and lean NAFLD. We attempted to use self-report alcohol con-
sumption combined with GGT measurements to define teeto-
tallers, moderate drinkers, and heavy drinkers and discovered
that the association between liver iron and lean NAFLD is inde-
pendent of alcohol intake. However, self-report alcohol con-
sumption used in this study is based on 1-day recall, which may
give false-negative results as patients tend not to drink the day
before the hospital visit.

Conclusion
Lean NAFLD is a subtype of fatty liver disease with a distinct
metabolic profile and pathobiological process. The HFE C282Y
variant and increased liver iron content are associated with
NAFLD in lean people, rather than in obese people. With the high
prevalence and potential underdiagnosis, it is necessary to
screen people with normal body weight for lean NAFLD. Our
findings generated novel scientific hypotheses warranting
further investigations.
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