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Abstract

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite

to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here,

we implemented a multiscale systems approach to shed light on the genetic basis of cell

wall degradability in maize. We demonstrated that allele replacement in two pairs of near-

isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall

degradability led to phenotypic variation of a similar magnitude and sign to that expected

from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line

progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines

and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines,

we annotated the genes present in the QTL interval and provided evidence that allelic varia-

tion at the introgressed QTL region gives rise to coordinated changes in gene expression.

The identification of a gene co-expression network associated with cell wall-related trait vari-

ation revealed that the favorable F288 alleles exploit biological processes related to oxida-

tion-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone

responses. Nested in modules of co-expressed genes, potential new cell-wall regulators

were identified, including two transcription factors of the group VII ethylene response factor

family, that could be exploited to fine-tune cell wall degradability. Overall, these findings pro-

vide new insights into the regulatory mechanisms by which a major locus influences cell wall

degradability, paving the way for its map-based cloning in maize.
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Introduction

Maize (Zea mays) is one of the most important staple crops, providing carbohydrates, proteins,

lipids and vitamins for billions of people. It also serves as an important energy resource for

ruminant animal. Indeed, maize silage is largely used for cattle feeding during winter and sum-

mer seasons, as well as a complementary resource with high-energy content in cow diets dur-

ing the year [1]. Thus, improved feeding value is a key target of silage maize breeding.

Investigations with sheep in digestibility crates have shown that silage maize energy value is

first related to cell wall degradability [2], which refers to the complex characteristics of cell wall

to protect its carbohydrates from degradation by enzymes [3–6]. Importantly, in vivo cell wall

degradability ranges from 36 to 60% in silage maize [2]. Correlatively, a similar two-fold varia-

tion was observed for in vitro cell wall degradability, which varies from 25 to 50% when deter-

mined as neutral detergent fiber (NDF) digestibility (IVNDFD) [7,8]. Consequently,

numerous studies have been successfully carried out in silage maize to identify genomic

regions (quantitative trait loci; QTL) involved in the variation of cell wall degradability [9–25].

Overall, they demonstrated that cell wall degradability is a highly multifactorial trait, primarily

related to lignin content, lignin structure, hemicellulose content, and p-hydroxycinnamic acid

cross-linkages [7,23,26–28].

In the majority of cases, QTL with ‘minor’ R2 values (R2 up to 15%) have been identified for

cell wall component and degradability traits [23,29]. However, in the QTL studies of the maize

recombinant inbred line (RIL) population derived from the cross between early dent lines

F288 and F271, a cluster of 10 stable QTL with ‘major’ effects (R2 values up to 42.5% for cell

wall components and accounting for 33.1% of the observed variation for IVNDFD) was

mapped in bin 6.05 of the maize chromosome 6 [22]. The identified QTL colocalized in the

124–134 cM interval (referred to as QTL6.05), corresponding to the physical position 150.4–

153.8 Mp in the B73 reference genome (AGPv3 sequence release). It is noteworthy that cell

wall degradability of F271 was reported to be lower than that of F288 and, according to QTL

detection [22], alleles of F288 at QTL6.05 increased cell wall degradability in the RIL popula-

tion derived from F288 x F271.

The dissection of highly complex traits into their underlying components offers practical,

technical, and commercial advantages. Specifically, trait dissection leads to the identification

of phenotypic attributes which can be measured with greater precision and at a lower cost, but

most importantly, these component traits typically display simpler inheritance patterns and

provide additional information as to how genes and their variants act together in biological

pathways to influence trait variation [30]. However, in complex genomes such as maize which

exhibits extensive genome content variation among lines [31–37], including massive expan-

sion of gene families, fine mapping remains a non-trivial process. Despite several attempts

[29,38], the mechanisms and genes underlying the QTL6.05 effects remain largely unresolved.

Selection of near-isogenic lines (NILs) have been performed to validate and fine map QTL in

several plant species including maize [39]. Additionally, coupling genetic information with

molecular phenotypes (e.g. transcript levels) can contribute to a better mechanistic under-

standing of trait variation [35,40–43].

Here, we implemented a multiscale systems approach to shed light on the mechanisms by

which the QTL6.05 locus influences cell wall degradability. We developed and selected NILs in

which the favorable F288 alleles at an 18–20 Mb region encompassing the QTL6.05 (referred

to as the introgressed QTL6.05 region or QTL6.05i) had been introgressed into the background

of the recurrent parent F271. We demonstrated that substitution of F271 alleles with that of

F288 at QTL6.05i led to variation in cell wall degradability. Using Illumina RNA sequencing

(RNA-seq) datasets from NIL internodes, we then captured the QTL6.05i allelic variation
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consequences at the transcript level relative to a maize reference genome that included F271-

and F288-specific genomic sequences at the targeted QTL6.05 locus. Finally, we explored how

the variation in gene expression contribute to the variation in cell wall-related traits observed

between the selected NILs. Genes associated with the cell wall-related traits were identified,

paving the way for pinpointing the causal genes at the QTL6.05 locus in future follow-up

studies.

Materials and methods

Plant materials

The RIL122 from the F288 x F271 RIL progeny was crossed with F271 to produce F1 seeds.

Then, 31 BC1 lines from the F1 plants x F271 progeny were backcrossed with F271. Genotyp-

ing of 31 BC2 lines (25 plants sown per BC1 progeny) was performed using a 50K single-nucle-

otide polymorphism chip from TraitGenetics. After quality controls based on missing data,

heterozygosity, and minor allele frequency, 12,758 markers were retained for genotyping and

two BC2 lines (30–16 and 31–04) were selected (S1 Table). Genotyping of BC2S1 lines (30–16

progeny referred to as 1F271 and 1F288; 31–04 progeny referred to as 2F271 and 2F288) was con-

firmed by High Resolution Melting (S2 Table). The selected BC2S2 lines were then grown in

the field at Mauguio (Hérault, France) in 2015 with two row replicates. Irrigation was applied

during summer to prevent water stress. For RNA-seq analysis, the bottom third of upstream-

ear internodes (without nodes) of three representative plants in each of the two replicates were

harvested two days before silking at tasseling stage. All samples were immediately frozen in liq-

uid nitrogen and stored at -80˚C. Because of the presence of borer on the stem in two plants,

one of the two 1F288 samples was removed from the downstream analysis. For cell wall investi-

gations, ears were removed by hand from plants at silage stage the day before and/or the day of

harvest. Representative samples of 1 kg chopped material per plot were collected, dried in a

ventilated oven 72 h at 55˚C and ground with a hammer mill gondard to pass through a 1-mm

screen. Genotyping of BC2S2 lines was further assessed by PCR (S2 Table and S1 Fig).

Cell wall composition and degradability assessment

Dried samples from plants without ears were dried at 50˚C for at least 14 h to exclude any

moisture, before scanning through the Antaris II near-infrared reflectance analyzer (Thermo-

Fisher). Briefly, for each sample, the measurement consisted of an average of 16 scans done

while rotating the cups over the 10,000 cm-1–4,000 cm-1 range with a resolution of 8 cm-1,

resulting in absorbance data every 4 cm-1. The resulting spectra were loaded into the TQ ana-

lyst software (v.9.4.45; ThermoFisher) and smoothed with a running average in a window size

of 9 data points. Their first derivate was computed, normalized and used to estimate the cell

wall-related traits of each sample using a formula that was previously calibrated for plants

without ears [16]. A two-way ANOVA analysis was then conducted using R software (v.3.4.1;

http://cran.at.r-project.org) as described [44].

Pangenome construction

Oriented reads (sizing 150) of both F288 and F271 1.5 Mb-genomic sequences which included

the QTL6.05 peak were first simulated using wgsim (v.0.3.0, depth = 20). Mapping of these

simulated reads and AGPv3.22 real reads to one parental DNA sequence was then performed

using Bowtie2 (v2.2.3, sensitive parameter). Then 2,322 representative transcript assemblies

(RTAs) [34] that were lower than 45% coverage and 80% identity to the AGPv3.22 or absent in

the AGPv3.22 sequence were mapped to both genomic sequences using gmap (v.2011-08-15,
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default parameter). Genomic sequences aligned with at least one of the previous sequences

were then hard masked with N using maskfasta (v.2.25.0) with default parameters (S2 Fig).

RNA-seq datasets

The internodes were crushed in liquid nitrogen using an Ika Mill crusher (IKA, Staufen-Im-

Breisgau, Germany) prior RNA extraction. Total RNA was isolated using the TRIzol Reagent

(Invitrogen) and purified with the Qiagen RNeasy Plant Mini kit and RNase-free DNase set

according to the suppliers’ instructions. Total RNA integrity was evaluated using the Agilent

2100 bioanalyzer according to the Agilent technologies (Waldbroon, Germany). Individual

Illumina TruSeq stranded RNA-seq libraries were prepared for each of the genotypes accord-

ing to the supplier’s instructions. Libraries were sequenced in four lanes on the Illumina HiSeq

2000 platform at the Centre National de Séquençage (CNS, Evry, France) to generate paired-

end stranded reads (sizing 260). For each library, RNA-Seq pre-processing was performed

including adapters removing and quality control assessment with fastx toolkit (http://

hannonlab.cshl.edu/fastx_toolkit/). The fastq datasets were trimmed for Phred Quality Score

(Qscore>20, read length >30 bases), and free of ribosome sequences with tool sortMeRNA

[45]. All steps of the experiment, from growth conditions to bioinformatic analyses, were man-

aged in CATdb database [46] according to the international standard MINSEQE ‘minimum

information about a high-throughput sequencing experiment’.

RNA-seq reads (35 million to 55 million quality-filtered RNA-seq reads per RNA-seq

library) were then mapped to panB using TopHat2 (v. 2.0.14) without gene annotation file with

minimum intron length set to 5 bp and maximum intron length to 60 kb, with default settings

for other parameters. Next, transcript prediction was performed using Cufflinks (v.2.2.1, default

parameters). Using bedtools getfasta (v.2.25.0, default parameters), coding sequences were then

extracted leading to the CuffpanB dataset. To quantify expression levels, RNA-seq reads were

mapped to panB using TopHat2 (v. 2.0.14) with a gene annotation file and the parameters

described above. Expression quantification was determined using HTseq-count (v.0.6.0) with

stranded orientation and ‘union’ option. The RNA-Seq project was submitted into the interna-

tional repository NCBI-Gene Expression Omnibus [47] project ID GSE115157.

Gene annotation

Genes were predicted using an improved and maize dedicated version of the TriAnnot pipe-

line (v.5.2p04) [48,49] as described below.

Step 1: Similarity search against mitochondria, chloroplast, non-coding RNAs and

transposable elements, and masking. Mitochondrial and chloroplast similarities were iden-

tified using BLAST [50] against EMBL databanks release 129; non-coding RNAs were identi-

fied using tRNAscan [51], RNAmmer [52] and Infernal (http://infernal.janelia.org - infernal-

1.1) based on RFAM database (EMBL RFAMEcm_v11). Transposable elements were identi-

fied using the maize transposable element database (http://maizetedb.org/~maize/). They were

then all masked using RepeatMasker (cross_match engine, cutoff 250; http://repeatmasker.

org).

Step 2: Similarity search against transcripts and related proteomes. This was per-

formed using BLAST on the transposable element-masked sequence. Spliced alignments of

BLAST hits were then generated using EXONERATE [53]. The following datasets were used:

the CuffpanB dataset; all available Zea ESTs and full-length cDNAs (EMBL release 129), non-

redundant proteomes of barley (UniProt Release 2016_03 and High confidence proteins

IBGSC 2012), Brachypodium (UniProt Release 2016_10 and phytozome v11), rice (UniProt

Release 2016_10, IRGSP 2005 and phytozome v11), Sorghum (UniProt Release 2016_10 and
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phytozome v11), Triticeae (UniProt Release 2016_10 and phytozome v11) and maize (UniProt

Release 2016_10).

Step 3: Gene modeling. Two ab initio gene finders trained with a monocot and maize-

specific matrix were used: FGeneSH (SOFTBERRY, http://linux1.softberry.com/berry.phtml)

and AUGUSTUS [54] respectively. Evidence-driven gene prediction was also computed

through the use of two different modules implemented in TriAnnot. The first module is based

on BLASTX-EXONERATE spliced alignments of protein sequences from rice (phytozome

v11), Brachypodium (phytozome v11), Sorghum (phytozome v11) and barley (High confi-

dence proteins IBGSC 2012) which have been checked for Methionine start. In case of missing

start and/or stop codons in the derived coding sequence model, iterative extension was applied

in a range of 200 codons until an in frame start and stop codon could be found. If no start and/

or stop codon could be find, the model was flagged as pseudogene. The second module

(named SIMsearch, derived from FPGP pipeline [55] focused on similarity with maize tran-

scripts: full-length cDNAs (EMBL release 129), CuffpanB and coding sequence-derived gene

models from rice (phytozome v11 and IRGSP 2005), Brachypodium (phytozome v11), Sor-

ghum (phytozome v11) and barley (High confidence proteins IBGSC 2012). For every locus

showing similarity with transcripts, SIMSearch predicts the coding sequence borders by con-

sidering similarity with known proteins from related Poaceae.

Step 4: Selection and functional annotation of the best gene model at every locus. Tri-

Annot delivered six outputs with gene models: two ab initio gene finders, BLASTX-EXONE-

RATE, and three SIMsearch-derived models. Therefore, a final step was required to select the

best model at each locus. This was made according to a scoring system that considers the met-

rics of the alignments of each gene model against known proteins (taking into account the per-

centage of identity and coverage). Finally, if the retained gene model had a canonical structure

but shared similarity over less than 70% of the length of its best BLAST hit, it was classified as

pseudogene. Putative function for the best gene model was then assigned via a combination of

similarity search (BLASTP) against several protein databanks, including Arabidopsis, Brachy-

podium, Hordeum, Glycine, Oryza, Prunus, Populus, Saccharum, Sorghum, Setaria and Vitis

families, as well as the Pfam [56,57] protein domain collection using HMMER 3.0 (http://

hmmer.janelia.org/software). The alignment with the best hit was parsed in order to check for

the presence of gaps (>9 amino acids). TriAnnot follows a nomenclature based on the guide-

line established in 2006 by the IWGSC annotation working group and provides gene ontology

(GO) terms for each gene model and protein domain predictions based on InterProScan [58]

search against Pfam, Prosite [59], and SMART [60]. Final GFF output files were post-treated

to be used with the graphical editor GenomeView [61]. Several round of manual expertise,

made by different curators, were intensively followed to obtain a final structural and functional

annotation of F271 and F288 DNA sequences at the targeted QTL6.05 locus (S3 Table).

Differential expression analysis

RNA-seq data were normalized using TMM implemented in the edgeR package (v 3.18.1)

[62,63] in R. Gene-wise RNA-seq counts were then analyzed using a negative binomial gener-

alized linear model with a stepwise procedure for increasing the power to detect QTL6.05i-spe-

cific differentially expressed (DE) genes between NILsF288 (i.e. both 1F288 and 2F88) and

NILsF271 (i.e. both 1F271 and 2F271) as follows:

In step I, the differential expression was assessed for the two pairs of NILs using a negative

binomial generalized linear model with allele and NIL main effects, and an allele × NIL inter-

action. A Benjamini-Hochberg adjusted P-value of 0.05 was used as the cut-off criterion to

identify genes with significant allele × NIL interactions.
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In step II, the differential expression was assessed for each pair of NILs (e.g. 1F288 vs 1F271)

using a negative binomial generalized linear model with allele main effect for each gene. A

Benjamini-Hochberg adjusted P-value of 0.05 was used as the cut-off criterion to identify

genes with significant allele effect for both NILs 1 and 2.

In step III, to identify DE genes that were not a result of NIL effects but were due to the

QTL6.05i region only, step II DE genes were further dissected by making the intersection

between the step I genes with no significant differential expression for NIL effects (i.e. no sig-

nificant differential expression for both NIL and allele × NIL interaction) and the step II DE

genes for both NILs 1 and 2.

In the final step, the intersection between the step III DE genes for NILs 1 and the step III

DE genes for NILs 2 delivered DE genes for which the differential expression between the

NILsF288 and the NILsF271 was declared QTL6.05i-specific.

Hierarchical clustering of gene expression profile

Hierarchical clustering analyses of the set of common QTL6.05i DE genes were performed

using Euclidean distances and unweighted pair group averages as the aggregation method with

the R function hclust.

Functional annotation of common QTL6.05i genes

MapMan [64] was first used to identify homologous genes in Arabidopsis. GO term enrich-

ment analysis based on the GO classification was then performed by comparing the relative

occurrence of a GO term into each DE list (downregulated or upregulated gene list) to its rela-

tive occurrence in the genome (reference list) by a hypergeometric test with the R function

phyper. A Benjamini-Hochberg adjusted P-value of 0.05 was used as the cut-off criterion.

Correlation analyses

For correlation analysis between gene expression levels and cell wall-related traits, Pearson

correlation coefficients (PCCs) were calculated between each DE gene and each trait over the

two pairs of NILs using the R cor function. The Student’s t-distribution was used to test the sig-

nificance of the PCC as follows: t = r/
p

[(1-r2)/(n-2)] with a level of significance set at 0.05 and

n = 4, absolute PCCs higher than 0.95 were significant. The expression pattern of the set of DE

genes correlating positively or negatively with at least one cell wall-related trait in both pairs of

NILs were visualized using the R cim function from MixOmics (v. 6.3.1) [65].

Gene co-expression network analysis was performed to group DE genes into connected

components based on absolute PCCs higher than 0.995 (level of significance of 0.01) and visu-

alized using Cytoscape (v. 3.3.0) [66]. A node corresponded to a DE gene; an edge was deter-

mined by the similarity between expression profiles of paired genes calculated with PCCs.

Connected modules were identified using NetworkAnalyzer (v. 2.7) [67].

Promoter motif analysis

The presence of conserved motifs in the 5’ regions of the co-expressed genes was determined

using the preferentially located motif (PLM) method [68], with minor modifications. Briefly,

the dataset was set up using 1,000 bases upstream the transcription start site and 5’ untrans-

lated region (UTR) from the maize AGPv3 plus [69] and the final GFF of the 1.5 Mb-genomic

sequences from F271 and F288. Promoters with a 5’ UTR smaller than 10 bases were excluded

in order to avoid false promoter regions. The final promoter dataset consisted of 119 promoter

sequences, which were divided into two regions. First, the [−1,000, −300] region was used to
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learn the distribution model using a simple linear regression and determine a 95% confidence

interval. Second, non-evenly distributed motifs (i.e. those exhibiting a peak above the confi-

dence interval) were searched within the [−300, UTR] region, leading to the identification of

33 PLMs among 419 motifs tested coming from PLACE [70] and AGRIS [71].

Quantitative RT-PCR analysis of candidate gene expression

Primer pairs were designed from the F271 and F288 1.5 Mb-genomic sequences at the QTL6.05

interval (S2 Table) using Primer-BLAST [72]. Quantitative RT (qRT)-PCR reactions were per-

formed using the Bio-Rad CFX384 touch (Bio-Rad, France) and the SYBR Premix Ex Taq (Tli

RNAseH Plus) (Takara, Ozyme, France) following the supplier’s instructions. A dilution series

of the pooled cDNAs and a melting analysis were used to validate the primer pairs. Each sample

was performed in duplicate. Gene expression was normalized with the mean of the two refer-

ence genes ZmGRP2 (GRMZM2G080603) and ZmUBC30 (GRMZM2G102471) coding for Gly-

cine-rich RNA-binding protein 2 and Ubiquitin-conjugating enzyme E2, respectively.

Differential expression for each gene was tested with a two-way ANOVA as described [44].

Results

Allelic variation at QTL6.05i leads to higher cell wall degradability

The RIL122 from the F288 x F271 RIL progeny carried F288 alleles at QTL6.05, although F271

alleles were already fixed at roughly more than half of the genome (Fig 1A) [21]. Therefore, this

RIL was backcrossed with the parental inbred line F271 for three generations to fasten the intro-

gression of F288 alleles at QTL6.05 into the background of F271. With the help of deep DNA geno-

typing, two BC2 lines (30–16 and 31–04) were selected that (1) showed a tremendous increase of

F271 alleles fixed throughout the genome (93% and 94.3% for 30–16 and 31–04, respectively) com-

pared to the RIL122 (53.8%) and (2) remained heterozygous at QTL6.05i with a relatively similar

introgressed genomic region size, ranging from 18 to 20 Mb (Fig 1A and S1 Table). According to

QTL detection [22], the QTL6.05i region included the QTL6.05 as well as a cluster of four QTL for

cell wall component and degradability (referred to as QTL6.07) with ‘minor’ effects relative to

QTL6.05 (R2 values ranging between 8 and 12% whatever the trait; Fig 2A). The two selected BC2

lines were then selfed twice to fix the introgressed genomic region at homozygous state and to mul-

tiply the progenies of 30–16 (1F271 and 1F288) and 31–04 (2F271 and 2F288) lines.

To assess the cell wall properties of the two pairs of NILs grown in the field (Fig 1B), near-

infrared spectroscopy data were then collected as was done in the past for QTL6.05 detection

[12,22]. The introgressed F288 alleles at QTL6.05i conferred on the NILs 1F288 and 2F288

(NILsF288) a higher cell wall degradability (as estimated by IVNDFD) than the F271 alleles on

the NILs 1F271 and 2F271 (NILsF271) (Fig 1B and 1C). Although the two pairs of NILs had simi-

lar lignin content, the NILsF288 exhibited lower cellulose content in the cell wall as compared

to the NILsF271 (S4 Table). The NILsF288 also tended to have higher hemicellulose content in

the cell wall as compared to the NILsF271 (S4 Table). Overall, these results evidenced that sub-

stitution of F271 alleles with those from F288 at the QTL6.05i region led to cell wall composi-

tion variation and confirmed the presence of the detected QTL.

Aligning RNA-seq reads to a pan-genomic reference genome: a tool to

assess the number and type of genes predicted at the targeted QTL6.05

locus

RNA-seq datasets from internodes of the selected NILs were produced at tasseling stage in

which transcript patterns of secondary cell wall cellulose synthase genes and lignin-related
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Fig 1. Selection and characterization of NILs with an introgressed genomic region at QTL positions for cell wall degradability. (A)

Experimental workflow used for introgression of F288 alleles at an 18–20 Mb region encompassing the QTL6.05 (referred to as the

introgressed QTL6.05 region or QTL6.05i) into the background of F271. SNP: single nucleotide polymorphism. (B) The selected BC2S2

NILs 1 (referred to as 1F271 and 1F288) and NILs 2 (referred to as 2F271 and 2F288) were grown in the field under well-watered conditions for

DNA and mRNA sampling and phenotyping. (C) Comparison of the cell wall degradability IVNDFD performance of NILs introgressed

with F288 alleles at QTL6.05i (blue) and their respective recipient lines with F271 alleles (red). Open circles represent the means of two

biological replicates.

https://doi.org/10.1371/journal.pone.0227011.g001
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Fig 2. Structure of the introgressed genomic QTL6.05i region. (A) Large structural variation between B73, F271 and F288 in

the introgressed genomic QTL6.05i region. Dark and light purple boxes represent clusters of QTL in bins 6.05 and 6.07,

respectively, as previously defined [22]. The grey dotted line insertion represents a zoom of the genomic region that included the

1.5 Mb-genomic sequences from F271 and F288. Orange and green lines indicate sense and antisense DNA strands, respectively,

of at least 910 bp and sharing at least 98% of identity; arrowed boxes represent genes and pseudogenes. (B) Number of annotated

genes supported by RNA-seq predicted genes in the targeted QTL6.05 locus. (C) Gene content distribution in B73, F288 and

F271 in the targeted QTL6.05 locus.

https://doi.org/10.1371/journal.pone.0227011.g002
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genes were shown to be highly abundant [73,74]. To take into account any genetic polymor-

phism, particularly putative present/absent genes, between F271 and F288 at the targeted

QTL6.05 locus, a pan-genomic sequence (panB) was assembled through an in lab pipeline and

used as a reference sequence for RNA-seq read mapping (Fig 2A and S2 Fig). This pan-geno-

mic reference sequence included (1) the B73 transcript reference sequences (AGPv3), (2) 2,322

RTAs absent in B73 [34] and (3) genomic sequences specific to either F271 or F288 at the

QTL6.05 locus which were kindly provided by the French Plant Genomic Resources Center

(CNRGV) (Fig 2A and S2 Fig). The pipeline evidenced total lengths of 40.7 kb and 13.1 kb that

were specific to F271 (3.1% of the F271 genomic region) and F288 (0.9% of the F288 genomic

region), respectively.

To achieve better mapping of the RNA-seq reads to the panB reference sequence, gene pre-

diction at the targeted QTL6.05 locus was then performed using (1) the TriAnnot pipeline [48]

through de novo and similarity-based methods and (2) the transcript prediction based on the

mapping of the RNA-seq dataset. About 80% of the predicted genes through the TriAnnot

pipeline were supported by the mapped RNA-seq dataset (Fig 2B), highlighting the quality of

the genomic sequences of each two lines at the QTL6.05 locus and the annotation. Of the 51

genes present in B73 at the targeted QTL6.05 locus, 39 (76%) were found in both F271 and

F288 (Fig 2C and S3 Table). Three genes (genes 23, 41 and 42) were found only in F288 and

B73; one gene (gene 43a) provided by the RNA-seq dataset was found only in F288 and F271;

one gene (gene 12) was found only in F271. Overall, four genes (genes 12, 23, 41 and 42) were

present in only one of the two F271 and F288 parental inbred lines at the targeted QTL6.05

locus.

Mapping of the RNA-seq dataset to the panB reference sequence yielded 32,446 genes,

including 1,198 RTAs. It is noteworthy that RNA-seq counts from the F271- and F288-specific

genomic sequences present in the panB reference sequence were identified (including counts

for genes 10, 11, 12, 13 and 21), highlighting the relevancy of the pan-genomic approach. Two

(genes 23 and 41) of the four genes present in only one of the two F271 and F288 parental

inbred lines at the QTL6.05 locus did not exhibited measurable expression in all the experi-

mental samples. In contrast, the gene 12 was expressed in all the experimental samples,

although it was found only in F271 at the QTL6.05 locus (S3 Table). The gene 42 was consis-

tently expressed at a very low level in the NILs 1F288 and 2F288, but not measurable in the NILs

1F271 and 2F271. Hence, this gene represents a case of single pattern expression (SPE) [75]. We

designated an observed pattern as SPE_F288 if genes were expressed in the NILsF288 (i.e. in

both 1F288 and 2F288), but not in the NILsF271 (i.e. in both 1F271 and 2F271). In contrast, we

referred to genes that were expressed in the NILsF271, but not in the NILsF288 as SPE_F271.

Allelic variation at QTL6.05i leads to transcriptional variation

To test the hypothesis that the substitution of F271 alleles with those of F288 at QTL6.05i led to

transcriptional variation, RNA-seq counts were analyzed using a stepwise procedure to detect

DE genes upon the NILsF288 relative to the NILsF271 that depend only on the QTL6.05i region.

As shown in Fig 3A, this stepwise statistical analysis identified 241 and 2,794 DE genes for the

NILs 1 and the NILs 2, respectively. Since our goal was to identify DE genes that were due to

the introgressed QTL region, we ensured the robustness of the DE gene dataset by keeping

only the DE genes that were common to both NILs. This selective approach delivered 125 DE

genes, which are referred to as common QTL6.05i DE genes (Fig 3A and S5 Table). As shown

in Table 1, these included one RTA (cov45_id80_joint_Locus_58585), which highlighted once

again the relevancy of the pan-genomic approach, and 18 genes located in QTL6.05i, of which

five were located in the targeted QTL6.05 locus: (1) a δ-1-pyrroline-5-carboxylate synthase
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(gene 03; ZmP5CS1), (2) an aldo-keto reductase (AKR) (gene 06a; hereafter named ZmAKR4C9
according to [76]), (3) a FK506-binding protein (gene 10; hereafter named ZmFKB20-1 accord-

ing to [77]), (4) one gene (gene 14a) with homology to Arabidopsis ESMERALDA1 (ESMD1),

a putative O-fucosyltransferase [78], hereafter named ZmESMD1, and (5) a 40 S ribosomal pro-
tein S23 (gene 36; ZmRPS23).

This prompted us to compare our common QTL6.05i DE gene dataset to the deregulated

transcriptome of four RILs derived from the cross of F288 x F271 [38]. Interestingly, five of the

125 common QTL6.05i DE genes exhibited DE patterns between F271 and the set of four RILs

(Table 1): (1) ZmFKB20-1 described above, (2) an universal stress protein (USP) (GRMZM2G
009719), (3) the maize J3 ortholog (GRMZM2G028218; ZmHSP40) encoding an HSP40

known to function in meristem size control in Arabidopsis [79], (4) one gene (GRMZM2G
041714) with homology to Arabidopsis hypoxia-induced gene domain 3, and (5) GRMZM

Fig 3. Transcriptomic adjustments in internodes of NILs introgressed at QTL6.05i. (A) Venn diagram of upregulated or downregulated genes in the NILsF288

relative to the NILsF271. (B) Hierarchical clustering of DE genes in the NILsF288 relative to the NILsF271. The indicated scale is the natural log value of the normalized

level of gene expression. (C) GO Biological Process analysis of DE genes in the NILsF288 relative to the NILsF271. Only Biological Processes with a Benjamini and

Hochberg adjusted P-value below 0.05 are represented. Down_List: analyzed downregulated gene list; Up_List: analyzed upregulated gene list; Ref_List: reference list;

ACC biosynthetic process: 1-aminocyclopropane-1-carboxylate biosynthetic process; Cell wall macrom. metabolic process: Cell wall macromolecule metabolic

process; JA metabolic process: jasmonic acid metabolic process; Reg. hydrogen peroxide met. Process: Regulation of hydrogen peroxide metabolic process; SA-

mediated signaling pathway: salicylic acid-mediated signaling pathway.

https://doi.org/10.1371/journal.pone.0227011.g003
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Table 1. Comprehensive list of the 125 common QTL6.05i DE genes.

Correlated cell wall-related traits

AGPv3 gene ID and/or gene

name

Trend in

NILF288
Cell wall

degradabilty

Hemicellulose

content

Cellulose

content

Lignin

content

Connected modules in

the gene co-expression

network

MapMan annotation

GRMZM2G051683 Down -0.9968 -0.9825 0.9570 0.9668 M1 flavonoids.dihydroflavonols

AC203754.4_FG008

ZmP5CS1 (gene 03)

Down -0.9955 -0.9853 0.9572 0.9769 M1 glutamate family.proline

GRMZM2G094666 Down -0.9978 -0.9849 0.9597 0.9678 M1 myo-inositol.InsP-Kinases

GRMZM2G119766 Down -0.9965 -0.9924 0.9693 0.9682 M1 not assigned

GRMZM2G162127 Down -0.9825 -0.9810 0.9561 0.9633 M1 not assigned

Locus_58585SPE_F271 Down -0.9918 -0.9978 0.9837 0.9469 M1 NA

GRMZM2G050917SPE_F271 Down -0.9918 -0.9978 0.9837 0.9469 M1 not assigned

GRMZM2G088349 Down -0.9724 -0.9936 0.9852 0.9264 M1 not assigned

GRMZM5G894619 Down -0.9921 -0.9606 0.9187 0.9951 M1 ACC synthase�

GRMZM2G368838 Down -0.9892 -0.9718 0.9374 0.9832 M1 AP2/EREBP, APETALA2

GRMZM2G066153 Down -0.9673 -0.9606 0.9302 0.9612 M1 aromatic aa.tryptophan

GRMZM2G342509 Down -0.9958 -0.9703 0.9326 0.9912 M1 cell wall proteins.LRR

GRMZM2G353276 Down -0.9848 -0.9591 0.9188 0.9890 M1 cellulose synthesis.COBRA

GRMZM2G106190 Down -0.9771 -0.9543 0.9146 0.9827 M1 ferredoxin

GRMZM2G465835 Down -0.9986 -0.9743 0.9410 0.9821 M1 NAC domain transcription

factor family

GRMZM2G467184 Down -0.9954 -0.9693 0.9312 0.9917 M1 not assigned

GRMZM2G125649 Down -0.9934 -0.9749 0.9478 0.9643 M1 not assigned

GRMZM2G463493 Down -0.9916 -0.9614 0.9199 0.9944 M1 receptor kinases.leucine rich

repeat XI

GRMZM2G170602 Down -0.9850 -0.9396 0.8897 0.9996 M1 C1-metabolism

GRMZM2G040965 Down -0.9735 -0.9235 0.8687 0.9990 M1 not assigned

GRMZM2G069335 Down -0.9541 -0.9389 0.9016 0.9615 M1 not assigned

GRMZM2G430942 Down -0.9874 -0.9485 0.9081 0.9794 M1 stress.biotic

GRMZM2G169382

ZmERF71
Up 0.9967 0.9937 -0.9720 -0.9657 M1 AP2/EREBP, APETALA2

GRMZM2G147399 Up 0.9986 0.9899 -0.9662 -0.9678 M1 development.unspecified

GRMZM2G108997 Up 0.9993 0.9890 -0.9637 -0.9720 M1 not assigned

GRMZM2G084794SPE_F288 Up 0.9866 0.9945 -0.9779 -0.9513 M1 protein.postranslational

modification

GRMZM2G140609

ZmRPS23 (gene 36)

Up 0.9923 0.9977 -0.9816 -0.9529 M1 ribosomal protein.

eukaryotic.40S subunit.S23

GRMZM2G085964

ZmERF72
Up 0.9817 0.9962 -0.9895 -0.9236 M1 AP2/EREBP, APETALA2

GRMZM2G142802 Up 0.9737 0.9982 -0.9968 -0.9102 M1 auxin.induced-regulated-

responsive-activated�

GRMZM2G175805SPE_F288 Up 0.9918 0.9978 -0.9837 -0.9469 M1 development.late embryogenesis

abundant

GRMZM2G098875 Up 0.9919 0.9941 -0.9790 -0.9465 M1 glutamate decarboxylase

GRMZM2G059285

ZmAKR4C9 (gene 06a)

Up 0.9856 0.9919 -0.9809 -0.9328 M1 minor CHO metabolism.others�

GRMZM2G129234 Up 0.9570 0.9914 -0.9923 -0.8969 M1 not assigned

AC214451.3_FG005SPE_F288 Up 0.9918 0.9978 -0.9837 -0.9469 M1 not assigned

GRMZM2G005344SPE_F288 Up 0.9918 0.9978 -0.9837 -0.9469 M1 not assigned

GRMZM2G554314SPE_F288 Up 0.9918 0.9978 -0.9837 -0.9469 M1 not assigned

AC203989.4_FG001 Up 0.9674 0.9781 -0.9601 -0.9405 M1 serine-glycine-cysteine group�

(Continued)
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Table 1. (Continued)

Correlated cell wall-related traits

AGPv3 gene ID and/or gene

name

Trend in

NILF288
Cell wall

degradabilty

Hemicellulose

content

Cellulose

content

Lignin

content

Connected modules in

the gene co-expression

network

MapMan annotation

AC209215.4_FG004SPE_F288 Up 0.9827 1.0000 -0.9922 -0.9304 M1 transport.sugars

GRMZM2G136344 Up 0.9676 0.9957 -0.9932 -0.9111 M1 zeaxanthin epoxidase�

GRMZM5G859099 Up 0.9926 0.9643 -0.9307 -0.9740 M1 auxin.signal transduction

GRMZM2G131421 Up 0.9745 0.9603 -0.9256 -0.9732 M1 development.unspecified

GRMZM2G018820 Up 0.9975 0.9677 -0.9300 -0.9891 M1 glycerophosphodiester

phosphodiesterase

GRMZM2G123480 Up 0.9875 0.9557 -0.9125 -0.9945 M1 not assigned

GRMZM2G050384 Up 0.9700 0.9598 -0.9274 -0.9665 M1 not assigned

GRMZM2G010673 Up 0.9994 0.9803 -0.9481 -0.9842 M1 not assigned

GRMZM2G387341 Up 0.9904 0.9671 -0.9292 -0.9889 M1 not assigned

GRMZM2G399136 Up 0.9924 0.9533 -0.9100 -0.9924 M1 stress.abiotic.heat

GRMZM2G009719 Up 0.9971 0.9667 -0.9277 -0.9919 M1 stress.abiotic.unspecified

GRMZM2G026523 Up 0.9830 0.9666 -0.9431 -0.9460 M1 transport.peptides and

oligopeptides

GRMZM2G376661 Up 0.9847 0.9401 -0.8903 -0.9996 M1 allene oxidase synthase�

GRMZM2G004377 Up 0.9618 0.8989 -0.8373 -0.9969 M1 not assigned

GRMZM2G371462 Up 0.9628 0.9189 -0.8656 -0.9907 M1 not assigned

GRMZM2G012631 Up 0.9564 0.9184 -0.8676 -0.9828 M1 stress.abiotic.heat�

GRMZM2G069651 Up 0.9674 0.9159 -0.8594 -0.9971 M1 stress.abiotic.heat�

GRMZM2G316362 Up 0.9497 0.9391 -0.9044 -0.9539 M1 ACP desaturase�

GRMZM2G083716 Up 0.9364 0.9030 -0.8534 -0.9655 M1 protein.folding�

GRMZM2G024668 Up 0.9409 0.8949 -0.8384 -0.9783 M1 stress.abiotic.heat�

GRMZM2G028218 Up 0.9375 0.8816 -0.8196 -0.9823 M1 stress.abiotic.heat�

GRMZM2G164405 Down -0.8584 -0.8310 0.7812 0.9004 M1 ACC synthase�

GRMZM2G092432 Down -0.9418 -0.9350 0.9024 0.9445 M1 amino acid metabolism.misc

GRMZM2G302245 Up 0.8952 0.8675 -0.8190 -0.9298 M1 cell.division

GRMZM2G179685 Down -0.8536 -0.8496 0.8145 0.8740 M1 flavonoids.dihydroflavonols

GRMZM5G881369 Down -0.9043 -0.8614 0.8042 0.9496 M1 N-metabolism.misc

GRMZM2G140763 Down -0.8631 -0.8682 0.8395 0.8721 M1 not assigned

GRMZM2G034623 Up 0.9224 0.9251 -0.8976 -0.9205 M1 not assigned

GRMZM2G177458 Up 0.9351 0.9353 -0.9069 -0.9323 M1 not assigned

GRMZM2G041714 Up 0.8949 0.8619 -0.8101 -0.9342 M1 not assigned

GRMZM2G113355 Up 0.9106 0.8732 -0.8196 -0.9500 M1 not assigned

GRMZM2G316721 Up 0.9060 0.9093 -0.8814 -0.9074 M1 not assigned

GRMZM2G440313 Up 0.8613 0.8396 -0.7934 -0.8975 M1 not assigned

GRMZM5G822947 Up 0.9161 0.8959 -0.8531 -0.9390 M1 not assigned

GRMZM2G056252 Up 0.8884 0.8765 -0.8377 -0.9097 M1 omega 6 desaturase�

GRMZM2G118610 Up 0.8853 0.9017 -0.8818 -0.8768 M1 phenylpropanoids.lignin

biosynthesis.CAD�

GRMZM2G149422 Down -0.8683 -0.8354 0.7826 0.9132 M1 signalling.in sugar and nutrient

physiology

GRMZM2G128179 Down -0.8939 -0.9152 0.8993 0.8775 M1 stress.abiotic.drought/salt

GRMZM2G300965 Up 0.8939 0.9187 -0.9053 -0.8733 M1 stress.biotic.respiratory burst�

GRMZM2G158328 Down -0.9097 -0.8873 0.8427 0.9362 M1 WRKY domain transcription

factor family

GRMZM2G173192 Up 0.9578 0.9018 -0.8537 -0.9596 M2 fermentation.LDH�

(Continued)
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Table 1. (Continued)

Correlated cell wall-related traits

AGPv3 gene ID and/or gene

name

Trend in

NILF288
Cell wall

degradabilty

Hemicellulose

content

Cellulose

content

Lignin

content

Connected modules in

the gene co-expression

network

MapMan annotation

GRMZM2G035890 Up 0.9671 0.9278 -0.8913 -0.9491 M2 not assigned

GRMZM2G411216 Up 0.9528 0.8993 -0.8541 -0.9489 M2 not assigned

GRMZM2G165530 Down -0.9452 -0.8774 0.8212 0.9613 M2 not assigned

GRMZM2G179827 Down -0.9176 -0.9142 0.9069 0.8510 M2 ARR

GRMZM2G313272 Up 0.8990 0.8926 -0.8851 -0.8320 M2 aspartate family.asparagine

GRMZM2G124921 Up 0.9057 0.8377 -0.7870 -0.9095 M2 development.storage proteins

GRMZM2G126732 Up 0.8616 0.8439 -0.8321 -0.8003 M2 ethylene.synthesis-degradation�

GRMZM2G087186 Up 0.8691 0.8802 -0.8858 -0.7825 M2 fermentation.PDC�

GRMZM2G170958 Up 0.9004 0.9130 -0.9167 -0.8176 M2 HB,Homeobox transcription

factor family

GRMZM2G178546 Down -0.8441 -0.8457 0.8473 0.7627 M2 minor CHO metabolism.

trehalose.TPP

GRMZM2G100158 Up 0.8619 0.8353 -0.8177 -0.8096 M2 misc.cytochrome P450�

GRMZM2G133407 Up 0.8471 0.8207 -0.8044 -0.7928 M2 misc.misc2

GRMZM2G021388 Up 0.9020 0.8502 -0.8120 -0.8838 M2 N misc.alkaloid-like

GRMZM2G008972 Down -0.9132 -0.8350 0.7747 0.9349 M2 not assigned

GRMZM2G050556 Down -0.9090 -0.8697 0.8399 0.8772 M2 not assigned

GRMZM2G552956 Down -0.9096 -0.8857 0.8662 0.8612 M2 not assigned

GRMZM2G055802 Up 0.8067 0.8213 -0.8332 -0.7103 M2 not assigned

GRMZM2G119705 Up 0.8766 0.8460 -0.8247 -0.8304 M2 not assigned

GRMZM2G122543 Up 0.8544 0.8188 -0.7957 -0.8108 M2 not assigned

GRMZM2G127418 Up 0.8944 0.9171 -0.9271 -0.8029 M2 phenylpropanoids

GRMZM2G039993 Up 0.9138 0.8562 -0.8126 -0.9053 M2 salicylic acid.synthesis-

degradation

GRMZM2G123973 Down -0.9190 -0.8483 0.7937 0.9301 M2 transport.misc

GRMZM2G019183 Up 0.8756 0.8887 -0.8949 -0.7884 M2 trehalose.potential TPS/TPP

GRMZM2G101000 Up 0.7969 0.7826 -0.7393 -0.8373 M3 DNA.synthesis/chromatin

structure

GRMZM2G311961 Down -0.7418 -0.7117 0.6575 0.8051 M3 G-proteins

GRMZM2G381404 Down -0.7918 -0.7719 0.7250 0.8383 M3 not assigned

GRMZM2G176774 Down -0.7895 -0.7898 0.7559 0.8165 M3 protein.glycosylation

GRMZM2G015333 Down -0.7922 -0.7849 0.7460 0.8265 M3 stress.biotic

AC213621.5_FG002

ZmESMD1 (gene 14a)

Up 0.9530 0.9601 -0.9552 -0.8857 M4 auxin.induced-regulated-

responsive-activated

GRMZM2G023982 Up 0.9560 0.9694 -0.9676 -0.8852 M4 not assigned

GRMZM2G035922

ZmFKBP20-1 (gene 10)

Down -0.9458 -0.9710 0.9766 0.8649 M4 protein.folding

GRMZM5G869403

ZmEXO70B1
Up 0.9289 0.9657 -0.9790 -0.8375 M4 RNA.regulation of transcription.

unclassified

GRMZM2G464572 Down -0.9551 -0.8847 0.8220 0.9870 M5 protein.degradation.ubiquitin.

E2

GRMZM2G428391 Up 0.9290 0.8454 -0.7750 -0.9742 M5 stress.abiotic.heat�

GRMZM2G389416 Down -0.6438 -0.5225 0.4477 0.6940 M6 glutamate family.proline

GRMZM2G086590 Down -0.6438 -0.5225 0.4477 0.6940 M6 isoprenoids.terpenoids

GRMZM2G006206 Down -0.9286 -0.9805 0.9947 0.8479 M7 G-proteins

GRMZM2G159393 Down -0.9227 -0.9776 0.9960 0.8331 M7 misc.oxidases

(Continued)
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2G169382, an ortholog of Arabidopsis group VII ethylene response factor (ERF-VII) ERF71/
HYPOXIA RESPONSIVE ERF2 (ZmERF71/HRE2) that may supervise plant intracellular reac-

tive oxygen species (ROS) homeostasis [80]. It is noteworthy that the gene 42 with unknown

function did not belong to the common QTL6.05i DE gene dataset, which is not in favor of a

direct role of this gene in cell wall-related trait variation. Importantly, none of the common

QTL6.05i DE genes were located in the QTL6.07 confidence interval.

Of the common QTL6.05i DE genes, 52 and 73 were found to be downregulated and upre-

gulated in the NILsF288 relative to the NILsF271, respectively (Fig 3A and 3B, and Table 1).

Interestingly, two of the 52 downregulated genes showed SPE_F271 patterns, while seven of

the 73 upregulated genes showed SPE_F288 patterns (Table 1). Additionally, GO analysis

revealed that the downregulated genes had significant enrichment in the “1-aminocyclopro-

pane-1-carboxylate (ACC) biosynthetic process”, which is the first committed and in most

instances the rate-limiting step in ethylene biosynthesis (Fig 3C and S5 Table). For the upregu-

lated genes, enriched GO terms associated with biological processes were related to oxidation-

reduction, regulation of hydrogen peroxide metabolism, response to hypoxia, jasmonic acid

(JA) metabolism, salicylic acid (SA)-mediated signaling pathway, protein folding, response to

heat, cell wall macromolecule metabolism and xylem development (Fig 3C and S5 Table).

Almost two-thirds of the common QTL6.05i DE genes are associated with

the cell wall-related traits

To test the ability of the 125 common QTL6.05i DE genes to be associated with the cell wall-

related traits, linear correlation between gene expression levels and traits was determined by

calculating PCCs between the expression level of each of the common QTL6.05i DE genes

and each cell wall-related trait. We found 79 DE genes significantly associated with at least

one of the traits, referred to below as the correlating DE gene set (Table 1 and S6 Table). This

included the cov45_id80_joint_Locus_58585 and the five DE genes (ZmP5CS1, ZmAKR4C9,

ZmFKB20-1, ZmESMD1 and ZmRPS23) located in the QTL6.05 locus (Table 1).

Table 1. (Continued)

Correlated cell wall-related traits

AGPv3 gene ID and/or gene

name

Trend in

NILF288
Cell wall

degradabilty

Hemicellulose

content

Cellulose

content

Lignin

content

Connected modules in

the gene co-expression

network

MapMan annotation

GRMZM2G077662 Down -0.9182 -0.9667 0.9744 0.8547 NA G-proteins

GRMZM2G067122 Up 0.9408 0.9827 -0.9955 -0.8542 NA not assigned

GRMZM2G431039 Down -0.7376 -0.7720 0.7604 0.7348 NA misc.beta 1,3 glucan hydrolases

GRMZM2G164074 Up 0.7721 0.7447 -0.7324 -0.7121 NA misc.cytochrome P450�

GRMZM2G093246 Down -0.5015 -0.6296 0.6882 0.3994 NA misc.myrosinases-lectin-jacalin

GRMZM2G087824 Down -0.8454 -0.7783 0.7336 0.8378 NA not assigned

GRMZM2G071846 Up 0.8348 0.7815 -0.7156 -0.9027 NA phosphoribosyltransferases.aprt

GRMZM2G054448SPE_F288 Up 0.6488 0.5684 -0.4839 -0.7639 NA protein.degradation

GRMZM2G105348 Down -0.6933 -0.6953 0.6608 0.7321 NA stress.abiotic.heat

DE genes located at QTL6.05i and/or displaying SPE patterns are in bold and/or underlined, respectively. Dark gray indicates DE genes with expression levels negatively

and significantly correlating with cell wall-related traits. Light gray indicates DE genes with expression levels positively and significantly correlating with cell wall-related

traits. Co-expression modules as determined by NetworkAnalyzer are designated M1-M7. Cell wall degradability, sugar content and lignin content were estimated by

IVNDFD, hemicellulose content in % NDF, cellulose content in % NDF and acid detergent lignin in % NDF. Locus_58585: cov45_id80_joint_Locus_58585; NA: not

appropriate.

� DE genes with significant enrichment in Biological processes.

https://doi.org/10.1371/journal.pone.0227011.t001

Systems biology of maize cell wall degradability

PLOS ONE | https://doi.org/10.1371/journal.pone.0227011 December 31, 2019 15 / 29

https://doi.org/10.1371/journal.pone.0227011.t001
https://doi.org/10.1371/journal.pone.0227011


The number of correlating DE genes ranged from 15 for one trait up to 20 for three traits

(Fig 4A and S6 Table). A subset of three upregulated genes (AC209215.4_FG004, GRMZM2
G085964 and GRMZM2G142802) were associated with six traits (S6 Table). Among them, one

gene (AC209215.4_FG004) with homology to Arabidopsis voltage dependent anion channel 1
showed SPE_F288 pattern (Table 1). Interestingly, the subset of three upregulated genes also

included a transcription factor (TF) with homology with Arabidopsis ERF72/RELATED TO
APETALA2.3 (RAP2.3) (GRMZM2G085964; hereafter named ZmERF72/RAP2.3) linked to the

hypoxia response [81]. The third upregulated gene (GRMZM2G142802) was annotated as a

stem-specific protein TSJT1 and related to enriched GO terms “SA-mediated signaling path-

way”, “regulation of hydrogen peroxide metabolic process” and “hypoxia” (Table 1 and S5

Table).

The expression levels of the 79 correlating DE genes and their correlation with the cell wall-

traits were visualized in a clustered map, revealing opposite correlation of individual DE genes

with multiple traits (Fig 4B). It is worth noting that upregulated genes (including ZmAKR4C9,

ZmESMD1 and ZmRPS23 located in the QTL6.05 locus) showed positive correlations with cell

wall degradability and hemicellulose content, and negative correlations with cellulose content

(Fig 4B). In contrast, downregulated genes (including ZmP5CS1 and ZmFKB20-1 located in

the QTL6.05 locus) showed negative correlations with cell wall degradability and hemicellulose

content, while exhibiting positive correlations with cellulose content (Fig 4B).

Toward a co-expression network of genes associated with QTL6.05i

To get more insights into the putative coregulation of the 125 common QTL6.05i DE genes, a

network analysis of co-expression relationships among the common QTL6.05i DE genes was

performed using PCCs between the gene expression levels. The resulting gene co-expression

network incorporated 116 DE genes and 329 edges (Fig 5 and S7 Table). Seven connected

modules (designated M1-M7) were determined and significant correlations with cell wall

degradability and sugar content were visualized in the gene co-expression network for each

DE gene (Table 1). As shown in Fig 5, modules M1 (77 DE genes and 283 edges), M4 (4 DE

genes and 3 edges) and M7 (2 DE genes and 1 edge) brought together the majority of the corre-

lating DE genes since 58% (45/77), 100% (4/4) and 100% (2/2) of their nodes, respectively,

were correlated with at least two of the three cell wall-related traits. It is also worth noting that

70% (54/77) of the genes in module M1 correlated with cell wall degradability (Table 1). In

contrast, DE genes within modules M2 (24 DE genes and 34 edges), M3 (5 DE genes and 6

edges), M5 (2 DE genes and 1 edge) and M6 (2 DE genes and 1 edge) tended to be almost not

correlated with cell wall-related traits (Table 1 and Fig 5). Interestingly, up to two-thirds of the

genes in module M1 that were associated with at least one of the three cell wall-related traits

were related to the enriched biological processes we identified. One noteworthy gene of mod-

ule M1 that negatively correlated with cell wall degradability and hemicellulose content was an

ACC synthase (ACS) gene (GRMZM5G894619; hereafter named ZmACS7) involved in the eth-

ylene biosynthetic pathway (Fig 5). Also related to hormone responses were the two ERF-VIIs
(ZmERF71/HRE2 and ZmERF72/RAP2.3) that showed positive correlation with the three cell

wall-related traits (Fig 5). Another class of genes correlated with cell wall degradability are heat

shock proteins (HSPs) known to affect protein folding and response to heat (Fig 5). Two posi-

tively correlating genes (GRMZM2G012631 and GRMZM2G069651) with homology to Arabi-

dopsis HSP90 were connected to a limited set of other genes, including another maize HSP90
ortholog (GRMZM2G024668) and ZmHSP40.

Of the 116 DE genes incorporated in the gene co-expression network, 16 (almost 14% of

the DE genes incorporated in the gene co-expression network) located in QTL6.05i, including
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Fig 4. Identification of DE genes associated with cell wall-related traits. (A) Number of common QTL6.05i DE

genes correlating with at least one of the cell wall-related traits. (B) Gene expression levels of the 79 correlating DE

genes in NILs introgressed into QTL6.05i. Columns represent gene expression profiles, and rows represent cell wall-

related traits as follows: cell wall content (black), degradability (orange), sugar content (pink), lignin content (green)

and p-hydroxycinnamic acids content (purple). IVNDFD: in vitro neutral detergent fiber digestibility; Hcell/NDF:

hemicellulose content in % NDF; IVDMD: in vitro dry matter digestibility; EsterFA: esterified ferulic acid content in
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the fives genes (ZmP5CS1, ZmAKR4C9, ZmFKB20-1, ZmESMD1 and ZmRPS23) located in the

QTL6.05 locus (Table 1 and Fig 5). Furthermore, we observed that 13 of these 16 DE genes

were in module M1 (including ZmP5CS1, ZmAKR4C9 and ZmRPS23), while three were in

module M4 (including ZmFKB20-1 and ZmESMD1). All these 16 DE genes were correlating

with at least two of the three cell wall-related traits. Of note, ZmRPS23 in module M1 had high

connectivity with 13 DE genes (including ZmERF71/HRE2 and eight of the nine DE genes dis-

playing SPE_patterns) that were all correlated with cell wall degradability and sugar content

(Fig 5). Moreover, seven neighbors of ZmRPS23 were connected with ZmAKR4C9, while four

neighbors of ZmRPS23 were connected with ZmP5CS1. It is also worth noting that

mg g-1 NDF; LK/NDF: lignin klason in % NDF; NDF: neutral detergent fiber; ADL/NDF: acid detergent lignin in %

NDF; Cell/NDF: cellulose content in % NDF; pCA: p-coumaric acid content mg g-1 NDF; EtherFA: etherified ferulic

acid content in mg g-1 NDF.

https://doi.org/10.1371/journal.pone.0227011.g004

Fig 5. Co-expression network of common QTL6.05i DE genes. Downregulated genes in the NILsF288 relative to the NILsF271 are represented by diamonds, and

upregulated genes by circles. Colored diamonds indicate genes with expression levels negatively correlating with cell wall degradability (IVNDFD) and/or

hemicellulose content (Hcell/NDF), and/or positively correlating with cellulose content (Cell/NDF). Colored circles indicate genes with expression levels

positively correlating with IVNDFD and/or Hcell/NDF, and/or negatively correlating with Cell/NDF. Node colors represent correlation with IVNDFD (yellow),

IVNDFD and Hcell/NDF (blue); IVNDFD, Hcell/NDF and Cell/NDF (red); Hcell/NDF and Cell/NDF (orange). The “i” present in the nodes indicates DE genes

located in the QTL6.05i region; numbered and larger nodes indicate genes located in the QTL6.05 locus (gene 03: ZmP5CS1; gene 06: ZmAKR4C9; gene 10:

ZmFKB20-1; gene 14a: ZmESMD1; gene 36: ZmRPS23). The letters “A”, “D”, “E”, “H”, “N” and “U” present in the nodes indicate genes encoding ACC synthase,

DREB TF, ERF-VII TF, HSP, NAC TF and universal stress protein, respectively. Blue stars indicate DE genes previously identified [38]; yellow stars indicate DE

genes with SPE patterns co-expressed with ZmRPS23 (gene 36). Thick borders indicate gene with the GCCGCC motif in their promoter. Edges colored blue

connect co-expressed genes with a PCC less than -0.995, red edges represent a PCC bigger than 0.995. Modules as determined by NetworkAnalyzer are

designated M1-M7.

https://doi.org/10.1371/journal.pone.0227011.g005
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ZmAKR4C9 had high connectivity with eight DE genes (including ZmERF2/RAP2.3) that were

all correlated with cell wall degradability and sugar content (Fig 5). Additionally, three of the

four DE genes of module M4 were located in QTL6.05i, namely ZmFKB20-1, ZmESMD1 and

one gene (GRMZM5G869403) annotated as exocyst subunit EXO70 family protein B1

(ZmEXO70B1).

Transcription factors associated with QTL6.05i

Genes having the same TF binding sites are assumed to be functional partners since they are

regulated by the same TFs. Therefore, a PLM study [68] was carried out to determine whether

there were any over-represented TF binding sites in the promoter of the common QTL6.05i

DE gene dataset. Among the promoters of the common QTL6.05i DE genes, we identified the

CATGTG motif (S8 Table) which is bound by NAC TFs [82]. Interestingly, there was one gene

(GRMZM2G465835) in module M1 (Fig 5) located in QTL6.05i and showing homology to

Arabidopsis NAC090, which is a negative regulator of SA-mediated leaf senescence [83]. Also

present in the promoters of the common QTL6.05i DE genes were (1) the TGACG motif

which is involved in transcriptional activation of several genes by auxin and/or SA [84] and (2)

the GCCGCC motif which is the core site of GCC-box required for the binding of AP2/ERF

TF family and for the regulation of JA-responsive gene expression [85,86]. It is noteworthy

that in module M1 the two ERF-VIIs (ZmERF71/HRE2 and ZmERF72/RAP2.3) were central in

the sense that together they covered 73% (19/26) of the DE genes (including ZmAKR4C9 and

ZmRPS23 located in the QTL6.05 locus) that were correlated with cell wall degradability and

sugar content. Additionally, a member (GRMZM2G368838) of the DREB (dehydration-

responsive-element-binding) subfamily A-4 of AP2/ERF TF family was also present in module

M1 (Fig 5). One noteworthy neighbors of GRMZM2G368838 was ZmACS7 (Fig 5). Finally,

several F271 or F288-specific PLMs were identified in the promoter of ZmAKR4C9,

ZmFKBP20-1, ZmESD1 and ZmRPS23 (S3 Fig). Although, the biological importance of these

genotype-specific motifs will require further investigation, these results, together with those of

Fig 5, support ZmAKR4C9, ZmFKBP20-1, ZmESD1 and ZmRPS23 as candidate genes for the

targeted QTL6.05 locus. Therefore, to confirm the differential expression, qRT-PCR experi-

ments were performed based on the same samples that had been used for the initial RNA-seq

analysis. Transcript levels of ZmAKR4C9 were not quantified because it was not possible to

design gene-specific primers of sufficient quality for qRT-PCR. The other three candidate

genes were significantly affected by the substitution of F271 alleles with that of F288 at

QTL6.05i with opposite effects: (1) downregulation of ZmFKBP20-1 in the NILsF288 relative to

the NILsF271; (2) upregulation of ZmESD1 and ZmRPS23 in the NILsF288 relative to the

NILsF271 (S9 Table). These results were in agreement with those obtained by RNA-seq (Table 1

and S5 Table), thus validating our differential expression analysis.

Discussion

Expanding maize genetic and genomic resources to shed light on the

mechanisms whereby the QTL6.05 locus influences cell wall degradability

We implemented a systems biology approach that combined genetic, genomic, transcriptomic

and phenotypic data to begin answering the mechanisms whereby the major QTL6.05 locus

influences cell wall degradability. The use of the NILs that we developed using the F271 inbred

line as the recurrent parent and the RIL122 carrying F288 alleles at QTL6.05 as donor enabled

us to show that substitution of F271 alleles with those of F288 at QTL6.05i led to an increase of

four percentage points of IVNDFD, as previously reported for QTL6.05 in QTL mapping
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experiments [21,22]. Consequently, the results obtained with the selected NILs most likely

reflected the QTL6.05 rather the QTL6.07, which had ‘minor’ effects [21,22]. Consistently,

none of the 125 common QTL6.05i DE genes were located in the QTL6.07 support interval.

Additionally, similar to what we observed for cell wall degradability, we found that hemicellu-

lose content tended to be higher in the NILsF288 compared to the NILsF271. In contrast, cellu-

lose content in the NILsF288 was significantly lower relative to the NILsF271. These data are

comparable to the previous characterizations of the F288 x F271 RIL progeny [12], as well as

those of a forage maize doubled haploid population [23], an association panel [87] and six

mapping populations derived from European elite maize germplasm [25]. Therefore, these

results, together with those of cell wall degradability, showed that the NILs developed in this

study provided the suitable biological tools to understand the underlying mechanisms and

genes that control cell wall-related trait variation at QTL6.05.

Gene prediction at the QTL6.05 locus from both F271 and F288 inbred lines highlighted

the three genes 23, 41 and 42 that are present in F288 but not in F271, and the gene 12 that is

present in F271 and not in F288. It is noteworthy that the gene 12 was expressed in the two

pairs of NILs, which might reflect relocated single-copy gene in F288. In contrast, we evi-

denced 10 genes displaying SPE patterns, including the gene 42. Hence, such SPE pattern was

consistent with the absence of the gene 42 in F271 at the QTL6.05 locus interval and suggests

that this gene is completely absent from the genome of F271. It was not possible to determine

the fraction of genes displaying presence/absence variation among the nine other identified

SPE patterns because of the lack of genomic data from both F271 and F288. Considering that

low proportions of presence/absence variations had been observed among genes displaying

SPE patterns [37,75,88,89], we anticipate that these nine genes (two-thirds of which have

unknown function) represent cases of genotype-dependent differential gene expression.

Alleles from the unfavorable NILs for cell wall degradability were activated in the favorable

NILs for cell wall degradability presumably via interactions with QTL6.05i-specific regulatory

factors from the favorable NILs. Consistently, the group of co-expressed genes that were

located in QTL6.05i included the maize NAC090 ortholog involved in SA-mediated signaling

pathway [83], which is one of the enriched biological processes observed here. Moreover, the

nine SPE patterns were correlated with cell wall-related traits. This observation confirms the

expectation that SPE can affect the phenotype variation directly [35,37] and suggests a biologi-

cal role of these SPE patterns in the variation of cell wall degradability controlled by the

QTL6.05 locus.

Identification of hub genes associated with cell wall-related trait variation

at QTL6.05i

Additionally, the systems biology approach employed in this study revealed biological pro-

cesses occurring in response to allelic variation at QTL6.05i. First, a set of processes related to

oxidation-reduction and regulation of hydrogen peroxide metabolism was included in the

gene co-expression network. Two noteworthy genes are a ferulate 5-hydroxylase (GRMZM2
G100158) and a cinnamyl alcohol dehydrogenase (GRMZM2G118610) involved in lignin bio-

synthesis [90]. In addition, two plant cysteine oxidases (AC203989.4_FG001 and GRMZM2
G113355; PCOs), one ACC oxidase (GRMZM2G126732) involved in the ethylene biosynthetic

pathway, one respiratory burst oxidase homolog gene (GRMZM2G300965 or ZmRbohB)

encoding a NADPH-oxidase and ZmAKR4C9 were also observed in the gene co-expression

network. These results, together with those described previously [38], support the idea that a

tight and complex regulation, a long way upstream of the monolignol biosynthetic pathway, is

driven by the F288 alleles at QTL6.05i.
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Second, genes involved in hormone responses are co-expressed in the network. Notably,

ZmACS7, the maize PCO ortholog AC203989.4_FG001 and the two ERF-VIIs, ZmERF71/
HRE2 and ZmERF72/RAP2.3, were co-expressed in module M1 and associated with cell wall-

related trait variation. PCOs were shown to oxidize the penultimate cysteine of ERF-VIIs by

using oxygen as co-substrate, thereby controlling the lifetime of these proteins in Arabidopsis

[91,92]. A perspective is emerging in which a diversified set of mechanisms can influence

ERF-VII expression in order to specify their functions in a wider network of physiological

pathways, in particular those activated by hormones [81,93]. In that respect, a target of ERF-

VIIs, namely hypoxia responsive universal stress protein 1, has been shown to coordinate oxy-

gen sensing by PCO/ERF74 (also known as RAP2.12) with H2O2 production by NADPH oxi-

dases in Arabidopsis [94]. Consistently, module M1 also included one USP ortholog already

described [38] and one maize NADPH oxidase ortholog ZmRbohB. Co-expression of these

genes in module M1, together with the identification of the TGACG and GCCGCC motifs

(included in the maize PCO ortholog AC203989.4_FG001 and the USP gene) and the recent

observation that methyl jasmonate and SA are able to modify the cell wall structure in Brachy-

podium [95], thus opens the exciting possibility that ERF-VIIs might play a role in the mecha-

nisms whereby the QTL6.05 influences cell wall degradability.

Third, genes involved in protein folding and response to heat are co-expressed in the net-

work, including ZmHSP40 already described [38] and three maize HSP90 orthologs. HSP40

proteins can initiate a conserved chaperone assembly line that mediates conformational

changes required for the activity of many native proteins, including HSP70 and HSP90. In

plants, HSP90 chaperone pathway plays crucial role in development, and known clients

include auxin and JA receptors [96,97]. Furthermore, transcripts of the Arabidopsis HSP90
orthologs of GRMZM2G024668 and GRMZM2G069651 were reported to move in root-to-

shoot direction [98], which may indicate that they function in shoot. Overall, these results also

implicate protein folding in the mechanisms underlying the QTL6.05 effects.

Identification of four candidate genes for the targeted QTL6.05 locus

Finally, combining meta-analysis of gene co-expression network, phenotypic NIL data and

specific TF binding sites within promoters revealed ZmFKB20-1, ZmESMD1, ZmAKR4C9 and

ZmRPS23 as promising candidate genes for the targeted QTL6.05 locus. The first two genes

belonged to module M4. ZmFKB20-1 which was one of only two DE genes already identified

in the targeted QTL6.05 support interval [38] belongs to the FK506-binding protein family,

which contains up to 30 paralogous genes in the maize genome [77,99]. Although historically

linked to immunosuppression and proline bond rotation, the physiological importance of

FK506-binding proteins extends general protein folding to diverse biological processes,

including hormone signaling, DNA transcription and protein trafficking. In module M4,

ZmFKBP20-1 was co-expressed with a limited set of other genes, including ZmEXO70B1
involved in cell polarity and morphogenesis [100] and ZmESMD1 involved in cell adhesion

through as yet unidentified cell wall modifications in Arabidopsis [78]. Together, these results

indicate that ZmFKBP20-1 may function in cell wall-related trait variation and highlight the

potential importance of cell adhesion in the mechanisms underlying the QTL6.05 effects.

The two other candidate genes ZmAKR4C9 and ZmRPS23 belonged to module M1. They

both had high connectivity with other DE genes in the gene co-expression network, including

the two ERF-VIIs and eight of the nine DE genes displaying SPE_patterns, which were found

to be associated with cell wall-related traits. Comparison of multiple sequence alignments sug-

gests that ZmAKR4C9 may be involved in detoxification mechanisms similar to those of

AtAKR4C9 [101]. Consistently, gene expression of tomato AKR4C9 was shown to be induced
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by hydrogen peroxide and plant hormones such as SA and JA [102], which coincide with the

enriched biological processes we observed here. In contrast to ZmAKR4C9, ZmRPS23 belongs

to the ribosomal protein S12/S23 family that functions in translation fidelity [103]. Interest-

ingly, several studies identified RPS23 as an enzyme substrate for the oxygenase OFD1 in fis-

sion yeast [104]. When little oxygen is around, OFD1 cannot hydroxylate RPS23. This traps

OFD1 away from a TF called SRE1. As a result, unassembled RPS23 regulates SRE1 signaling

by sequestering OFD1 in an oxygen-dependent manner, thereby coupling hypoxic gene

expression to rates of ribosomal synthesis. Therefore, our findings raise the intriguing possibil-

ity that unassembled ZmRPS23 regulates an as yet undetermined TF-mediated signaling path-

way in which ERF-VIIs may be involved.

Conclusion

We expanded maize genetic and genomic resources to shed light on the mechanisms whereby

the QTL6.05 locus influences cell wall degradability. Our data showed that the F288 alleles

exploit processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism

and protein folding to modify cell wall degradability. Involvement of the SA, JA and ethylene

pathways in the mechanisms underlying the QTL6.05 effects is also supported by expression of

several related genes, identification of the TGACG and GCCGCC regulatory motifs, and co-

expression of two ERF-VIIs that function as central nodes in the gene co-expression network.

Overall, our work led to the identification of a subset of potential new cell wall regulatory

genes that could be exploited to fine-tune cell wall degradability.
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S1 Fig. Allelic variation in NILs introgressed into targeted QTL6.05i. The two selected pairs

of NILs (BC2-S2) were field grown under well-watered conditions for DNA and mRNA sam-
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S2 Fig. F271-specific sequence identification carried out to build the panB reference

genome. (i) Simulation of reads from the F288 genomic sequence using wgsim v.0.3.0. (i-ii)

Alignment of F288 simulated reads and B73 (AGPv3) real reads to the F271 genomic sequence

using Bowtie2 v2.2.3. (iii) Alignment of 2,322 representative transcript assemblies (RTAs) [34]

to the F271 genomic sequence using gmap v.2011-08-15. (i-iii) Hard masking (with N) of com-

mon F271 genomic sequence. The same pipeline was followed to identify F288-specific

sequences in the F288 genomic sequence. Together, the identified F271- and F288-specific
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S3 Fig. PLM distribution in promoters of the five DE genes located in the QTL6.05 locus.

PLMs colored red and blue indicate PLMs specifically present in the promoter of the consid-

ered DE gene in F271 and F288, respectively. 2: ASF1MOTIFCAMV; 5: MYBCOREAT

CYCB1; 6: TATCCAOSAMY; 7: ARR1AT; 8: MYCATERD1; 9: WBOXNTCHN48; 11:

SITEIIATCYTC; 12: SORLIP2AT; 13: DPBFCOREDCDC3; 14: MARTBOX; 15: TATA-box;

18: part of VOZ-binding sequence; 19: TATABOX4; 21: VIP1 response elements. For detailed

explanation, see ‘Materials and Methods‘ and S8 Table.
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Methodology: Clément Cuello, Véronique Brunaud, Johann Joets, Cécile Guichard, Ludivine

Soubigou-Taconnat, Marie-Laure Martin-Magniette, Philippe Leroy, Sylvie Coursol.

Software: Philippe Leroy.

Supervision: Sylvie Coursol.

Validation: Clément Cuello, Etienne Delannoy, Marie-Laure Martin-Magniette, Philippe

Leroy, Matthieu Reymond, Sylvie Coursol.

Visualization: Clément Cuello, Sylvie Coursol.

Writing – original draft: Clément Cuello, Sylvie Coursol.

Writing – review & editing: Clément Cuello, Aurélie Baldy, Véronique Brunaud, Johann
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