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Abstract
Many artificial intelligence models have been developed to predict clinically relevant biomarkers for colorectal
cancer (CRC), including microsatellite instability (MSI). However, existing deep learning networks require large
training datasets, which are often hard to obtain. In this study, based on the latest Hierarchical Vision
Transformer using Shifted Windows (Swin Transformer [Swin-T]), we developed an efficient workflow to predict
biomarkers in CRC (MSI, hypermutation, chromosomal instability, CpG island methylator phenotype, and BRAF
and TP53 mutation) that required relatively small datasets. Our Swin-T workflow substantially achieved the
state-of-the-art (SOTA) predictive performance in an intra-study cross-validation experiment on the Cancer
Genome Atlas colon and rectal cancer dataset (TCGA-CRC-DX). It also demonstrated excellent generalizability in
cross-study external validation and delivered a SOTA area under the receiver operating characteristic curve
(AUROC) of 0.90 for MSI, using the Molecular and Cellular Oncology dataset for training (N = 1,065) and the
TCGA-CRC-DX (N = 462) for testing. A similar performance (AUROC = 0.91) was reported in a recent study,
using �8,000 training samples (ResNet18) on the same testing dataset. Swin-T was extremely efficient when
using small training datasets and exhibited robust predictive performance with 200–500 training samples.
Our findings indicate that Swin-T could be 5–10 times more efficient than existing algorithms for MSI prediction
based on ResNet18 and ShuffleNet. Furthermore, the Swin-T models demonstrated their capability in accurately
predicting MSI and BRAF mutation status, which could exclude and therefore reduce samples before subsequent
standard testing in a cascading diagnostic workflow, in turn reducing turnaround time and costs.
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Introduction

Artificial intelligence (AI) and deep learning (DL)
models using hematoxylin and eosin (H&E)-stained
histology whole-slide images (WSIs) have been
developed to predict clinically relevant molecular
biomarkers for colorectal cancer (CRC), such as

microsatellite instability (MSI) [1–3], genetic muta-
tions [4–6], tumor-infiltrating lymphocytes (TILs)
[7], and molecular subtypes [6,8]. In particular, MSI
prediction is of great clinical utility since it is one of
the approved biomarkers to select patients for immune
checkpoint inhibitors [9]. The US Food and Drug
Administration (FDA) granted accelerated approval
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for anti-PD1 antibodies (such as pembrolizumab and
nivolumab) for the treatment of MSI-high or mismatch
repair deficient (dMMR) cancers, including CRC (the
FDA’s first tissue/site-agnostic approval) [10,11].
Kather et al [1] developed the first fully automated

DL model for predicting MSI/dMMR status in CRC in
2019. Since then, multiple models have been
published [1–4,6,12–17]. Recently, the Vision Trans-
former (ViT) [18] has emerged as a new modeling
framework in the field of computer vision and has
shown great potential to replace the convolutional neu-
ral network (CNN) [15,18], which has been the back-
bone of the vast majority of DL models in digital
pathology (including MSI models). Earlier versions of
ViT still require very large datasets to achieve a per-
formance comparable to that of CNN models [18,19].
In the medical imaging domain, datasets are usually

limited and often accompanied by weak (slide-level)
labels [20]. In addition, attention-based DL models
such as ViT are complex and data-hungry in nature
[20,21]. These challenges pose a significant barrier to
the development and application of DL models in digi-
tal pathology. For example, the current state-of-the-art
(SOTA) performance for predicting MSI status was
achieved using extremely large pooled datasets from
different studies (N > 8,000 WSIs) [12]. Therefore,
achieving clinical-grade prediction of MSI status and
other key biomarkers for CRC using limited data
remains an active research question. The latest Hierar-
chical Vision Transformer using Shifted Windows
(Swin Transformer; Swin-T hereafter) reduces compu-
tational complexity and can flexibly process pictures
with different scales [19]. Therefore, Swin-T may have
the potential to circumvent the limitations of small
datasets in medical image studies.
In this study, we aimed to develop an efficient

workflow using Swin-T that can use relatively small
training datasets but achieve the best SOTA predictive
performance for MSI status and other key biomarkers
in CRC (BRAF mutation, TP53 mutation, CpG island
methylator phenotype [CIMP], hypermutation, and
chromosomal instability [CING]), using H&E-stained
images of colorectal tumors.

Materials and methods

The workflow for processing the WSIs and modeling
the data is illustrated in Figure 1. In this study, we
developed a novel Swin-T-based DL pipeline for
predicting key biomarkers in CRC patients, including
MSI status. This pipeline included two Swin-T

models: a tissue classifier to detect tumor tissue and a
biomarker classifier to predict the binary biomarker
status.

Imaging and clinical data
Two international CRC datasets were analyzed in this
study. The Molecular and Cellular Oncology (MCO)
[22,23] study prospectively enrolled more than 1,500
patients who underwent surgical resection for CRC
between 1994 and 2010. Germline DNA from patients
who had developed CRC and consented for genetic
research studies was obtained for this study. For MSI
status, all the ground-truth labels of the MCO dataset
were determined byMMR immunohistochemistry (IHC).
The presence of BRAF mutation (V600E) was done
by means of IHC, PCR assay, or Sanger sequencing.
The MCO CRC dataset was made available through
the SREDH Consortium (www.sredhconsortium.org,
accessed on 15 November 2022).
The TCGA-CRC dataset (‘The Cancer Genome

Atlas’, publicly available at https://portal.gdc.cancer.
gov/, USA) is a multicentric collection of tissue speci-
mens, which include tumors of all stages in the
TCGA-COAD and TCGA-READ datasets. For TCGA-
CRC, the ground-truth labels of MSI were obtained by
5-plex PCR [24] and the molecular analytical methods
of other biomarkers were provided by Liu et al [24].
Anonymized H&E-stained WSIs were collected from
two datasets with matched genomic data. Details of
selecting the patients and WSIs can be found in Supple-
mentary materials and methods. All the items in the
Standards for Reporting Diagnostic accuracy studies
(STARD) are provided in supplementary material,
Table S1.

Data preprocessing and training strategy
Scanned WSIs were downloaded in SVS format and
tessellated into small image tiles. A Swin-T tissue clas-
sifier was trained to detect and select tiles with tumor
tissue using a publicly available dataset. A stepwise
strategy was adopted during the model development.
Additional details are provided in the Supplementary
materials and methods.

Experimental setup
Three experiments were conducted to evaluate the per-
formance of our Swin-T models. First, we compared the
predictive performance of the Swin-T models with that
of SOTA models for predicting six CRC biomarkers
(hypermutation, MSI, CING, CIMP, BRAF, and TP53
mutations) from two recent publications [4,6] using
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intra-study cross-validation. For all six biomarkers, we
used the same training-to-test dataset split of The Cancer
Genome Atlas colon and rectal cancer (TCGA-CRC-
DX) dataset for four-fold cross-validation, used and
published by Kather et al [6] or/and Bilal et al [4]. The
split-match of the TCGA-CRC-DX cohort facilitated the
comparison of model performance with previous publi-
cations. In cross-validation, one-fold of the training set
was used as the validation set to select the best-
performing model, which was saved for testing on the
unseen test fold.
Second, the predictive performance of Swin-T models

was compared with SOTA models from recent

publications using cross-study external validation for
predicting MSI and BRAF mutation [12,15]. For the
external validation experiments, the pre-trained Swin-T
models were fine-tuned using the MCO cohort to
develop models for predicting MSI status, BRAF muta-
tions, and CIMP status, as the molecular data for these
three biomarkers are available in both TCGA and MCO
cohorts. In this experiment, the fine-tuned models were
tested externally on the unseen TCGA-CRC-DX cohort
to facilitate comparison with publications in which exter-
nal validation was performed on the same cohort.
Finally, sensitivity analyses were performed to

understand (1) the impact of the sample size of the

Figure 1. The workflow of the data preprocessing and the training process of the DL model. (A) Tiles images of NCT-CRC-HE-100K are
downloaded from the publicly available website (https://zenodo.org/record/1214456) to pre-train a tissue classifier based on Swin-T. The
classifier has excellent performance of classifying tissues (overall accuracy = 96.3%) and detecting tumor tiles (accuracy = 98%) in an
external dataset: CRC-VAL-HE-7K. (B) WSIs in the SVS format of the MCO dataset and TCGA dataset are preprocessed to tessellate into
nonoverlapping tiles with a size of 512 � 512 pixels. These tiles are then resized to the smaller 224 � 224 pixels tiles and color normal-
ized. The tumor tiles are selected. (C) For each patient, up to 500 tiles are randomly sampled for subsequent experiments. The pre-trained
tissue classifier model in (A) is then fine-tuned to predict biomarker status of each tile. The probability values of the tiles are averaged
to derive the prediction at the patient level. The performance of the models is evaluated in two separate experiments: an intra-cohort
four-fold cross-validation and an inter-cohort external validation.
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training data on the performance of the Swin-T models,
(2) contributions of non-tumor tissues to the model pre-
diction, (3) impact of different aggregation strategies on
the model prediction, (4) impact of overweighting, influ-
ential individual cases on model performance, and
(5) impact of number of tumor tiles (surrogate for tumor
volume) on model performance. Additional details are
provided in the Supplementary materials and methods.

Statistical analyses
The predictive performance of the DL models was
evaluated using different statistical metrics, such as the
area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall
curve (AUPRC). Please refer to the Supplementary
materials and methods for more details.

Reader study
To identify signature and important histological features
of MSI/true-positive (TP) and microsatellite stable
(MSS)/true-negative (TN) samples and the potential rea-
sons for misclassified cases, i.e. false-positive (FP) and
false-negative (FN) cases, we carried out a reader study.
An experienced pathologist (MMY), who was blinded
to other clinicopathological features, reviewed represen-
tative cases (n = 20 TP/TN cases and n = 15 FP/FN). In
addition, to better interpret the results of the reader
study, the Grad-CAM algorithm [25], a visualization
method using Python package pytorch_grad_cam
(https://github.com/jacobgil/pytorch-grad-cam), was
applied to visualize the activation feature map of the
Swin-T model and interpret the model-identified
features.

Results

Swin-T provides an excellent predictive
performance
Intra-study cross-validation using the TCGA-CRC-DX
dataset

In this experiment, six molecular biomarkers (MSI,
hypermutation, CIMP, CING, BRAF mutation, and
TP53 mutation) were predicted using Swin-T. Kather
et al [6] and Bilal et al [4] used the TCGA-CRC-DX
dataset to develop and evaluate their DL models for
MSI status and other key biomarkers for CRC, via
intra-study cross-validation (Figure 2). To facilitate
comparison with their existing models, we used the

same patient cohort and the same four-fold splits of
the TCGA dataset published by Bilal et al [4].
For predicting the MSI status, our Swin-T model

achieved a mean validation AUROC of 0.91 � 0.03
(mean � SD), which represented approximately 6 and
23% improvement over recently published AUROC
values on the same dataset, 0.86 from Bilal et al [4]
and 0.74 from Kather et al [13], respectively
(Table 1). For predicting the hypermutation status,
Swin-T also outperformed the models developed by
Kather et al [6] and Bilal et al [4] on the same dataset,
and significantly improved the predictive performance.
The AUROC based on Swin-T was 0.85 � 0.02, com-
pared with 0.81 and 0.71 reported by Bilal et al [4]
and Kather et al [6], respectively. Moreover, Swin-T
exhibited similar performance to that of Bilal et al [4]
for predicting TP53 mutation status (AUROC = 0.73)
but was significantly higher than that obtained by
Kather et al [6] (AUROC = 0.64). Furthermore,
although our mean cross-validation AUROC values
for predicting CING (versus genomic stability), BRAF
mutation status, and high CIMP status were slightly
lower than those reported by Bilal et al [4], the differ-
ence was only about 1–2%.
Overall, for a fixed sample size of training set (the

same TCGA-CRC-DX dataset), Swin-T significantly
improved the prediction of MSI and hypermutation
status in intra-study cross-validation over published
models. Moreover, Swin-T achieved the SOTA perfor-
mance in predicting TP53 mutations. Furthermore,
Swin-T provided similar or higher AUPRCs for MSI,
hypermutation, CIMP, and BRAF mutation status com-
pared with the models reported by Bilal et al [4],
suggesting that the Swin-T models could better predict
positive results (MSI-high, high mutation density,
CIMP high, and BRAF mutants) with a lower false
positive rate.

Cross-study external validation using the TCGA-CRC-DX
dataset

The generalizability of a model is often evaluated
through cross-study external validations. The TCGA-
CRC-DX dataset has been used for the external valida-
tion of multiple AI models for predicting MSI status. In
this experiment, we trained the Swin-T model using the
MCO dataset (N = 1,065) and externally validated the
model using the TCGA-CRC-DX dataset to compare
the model performance (Figure 3). The Swin-T model
yielded an excellent external validation AUROC of
0.904 (95% confidence interval [CI]: 0.849–0.952;
Table 2). In comparison, Echle et al [12] trained a
CNN model using a combined dataset from multiple
large international studies (N = 7,917) and achieved a
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similar external-validation AUROC of 0.91 (95% CI:
0.87–0.95). The model trained using ShuffleNet and a
similar size of training data (N ranging from approxi-
mately 1,000 to 2,000) only produced AUROC values
from 0.72 to 0.77 (Table 2) [13]. Therefore, Swin-T
achieved similar SOTA generalizability in external

validation compared with the most recently published
model trained on a large, pooled dataset.
Swin-T also displayed similar SOTA performance

to previously published methods for predicting BRAF
mutation status (AUROC: 0.80 versus 0.81) in exter-
nal validation using the TCGA-CRC-DX dataset. It is

Table 1. Comparison of predictive performance of Swin-T for key CRC biomarkers with published models using four-fold intra-study
cross validation on TCGA-CRC-DX

AUROC AUPRC

Biomarker Swin-T Kather et al [6] Bilal et al [4] Swin-T Bilal et al [4]

Microsatellite instability versus stability 0.91 � 0.02 0.74 0.86 � 0.03 0.66 � 0.09 0.62 � 0.10
High versus low mutation density 0.85 � 0.03 0.71 0.81 � 0.04 0.58 � 0.05 0.57 � 0.09
Chromosomal instability versus genomic stability 0.82 � 0.04 0.73 0.83 � 0.02 0.90 � 0.03 0.92 � 0.01
CIMP high versus CIMP low 0.77 � 0.06 Not done 0.79 � 0.05 0.60 � 0.15 0.51 � 0.05
BRAF 0.77 � 0.02 0.66 0.79 � 0.01 0.35 � 0.11 0.33 � 0.05
TP53 0.73 � 0.02 0.64 0.73 � 0.02 0.75 � 0.02 0.78 � 0.04

Numbers in bold represent the highest AUROC/AUPRC value for a biomarker.

Figure 2. Predictive performance of four-fold cross-validation of Swin-T based prediction of colorectal cancer biomarkers in the TCGA-
CRC-DX cohort. AUROC plots for prediction of hypermutation (HM), MSI, CING, CIMP, BRAF mutation status, and TP53 mutation status.
The true positive rate represents sensitivity and the false positive rate represents 1 � specificity. The red shaded areas represent the
SD. The value in the lower right of each plot represents mean AUROC � SD.
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Figure 3. Predictive performance of intra-cohort four-fold cross-validation in the MCO cohort and inter-cohort external validation in
the TCGA-CRC-DX cohort: MSI, BRAF mutation status (BRAF), CIMP. (A) AUROC plots for four-fold cross-validation in MCO cohort. The
red shaded areas represent the SD. The value in the lower right of each plot represents mean AUROC � SD. (B) AUROC plots for inter-
cohort external validation in TCGA-CRC-DX cohort. The red shaded areas represent the 95% confidence interval (CI), calculated by
1,000� bootstrap. The values in the lower right of each plot represent mean AUROC (95% CI).

Table 2. Comparison of predictive performance of MCO-trained Swin-T for MSI status and BRAF mutation with published models using
external validation on TCGA-CRC-DX
Network Training dataset Number of training samples AUROC (95% CI) AUPRC (95% CI)

MSI
Swin-T (ours) MCO 1,065 0.90 (0.85–0.95) 0.718 (0.605–0.820)
ViT [15] (2022) DACHS 2,069 0.89 (0.83–0.93) 0.672 (0.558–0.769)
ResNet18 [12] (2022) Pooled international datasets 7,917 0.91 (0.87–0.95) Not done
ShuffleNet [13] (2020) QUASAR 1,016 0.76 (0.70–0.79) Not done

DACHS 2,013 0.77 (0.73–0.79) Not done
NLCS 2,197 0.72 (0.71–0.78) Not done

BRAF
Swin-T (ours) MCO 1,026 0.80 (0.74–0.87) 0.392 (0.279–0.541)
EfficientNet [15] (2022) DACHS 2,069 0.81 (0.75–0.86) 0.360 (0.253–0.487)

Numbers in bold represent the highest AUROC/AUPRC value for a biomarker.
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worth noting that Swin-T produced substantially better
AUPRC values compared with previous publications
for predicting both MSI status (AUROC: 0.66 versus
0.62) and BRAF mutation (AUROC: 0.35 versus
0.33).
Furthermore, the Swin-T architecture demonstrated

a great potential for minimizing overfitting, which is
often observed in DL modeling, and produced very
similar predictive performance between the training
and external validation datasets. In the four-fold
cross-validation experiment of the MCO dataset
for predicting MSI status, Swin-T achieved a mean
AUROC value of 0.926 � 0.055, compared to 0.904
(95% CI: 0.849–0.952) in the external validation
dataset TCGA-CRC-DX. A similar pattern was
observed for BRAF (AUROC: 0.88 versus 0.80) and
CIMP (AUROC: 0.766 versus 0.759) (Figure 3).

Swin-T models as diagnostic tools
Based on external validation using the TCGA-CRC-DX
cohort, we also evaluated the feasibility of using Swin-T
models as diagnostic tools for MSI/dMMR status, BRAF
mutation, and CIMP status, based on routine digitized
H&E-stained tissue slides of CRC (Figure 4). Computer-
based AI systems are often positioned as pre-screening
tools before the gold standard confirmatory tests [12].

Therefore, the clinical utility of these pre-screening tools
is primarily to minimize false negative predictions but
exclude as many true negative samples as possible from
the subsequent confirmatory test runs.

Pre-screening for MSI status

For diagnostic purposes, a cutoff value is required to
determine the diagnostic outcome. Table 3 shows that
for a cutoff that can provide 95% sensitivity for
detecting MSI-high patients (cutoff = 0.16), the nega-
tive predictive value (NPV) was 98% and the false-
negative fraction (FNF) was 0.7%. Meanwhile, the
true-negative fraction (TNF) was 34% with this cutoff,
which implied that 34% of patients could be safely
excluded from confirmatory tests in clinical settings.
Similar results were reported by Echle et al [12] for
MSI detection. When a fixed cutoff of 0.25 was used,
the sensitivity was reduced slightly to 92%. The NPV
remained almost the same at 98%, whereas the FNF
increased slightly to 1.2%. However, with a cutoff of
0.25, 55.4% of the patients were excluded from the
confirmatory tests. These results confirmed previous
reports that AI models can serve as pre-screening pur-
poses for MSI status [9,12,13].

Pre-screening for BRAF mutation

For the Swin-T model for BRAF mutations, the cutoff
for 95% sensitivity was 0.17. At such a cutoff, the
NPV was 96%, the FNF was 0.4%, and the TNF was
10%, suggesting that 10% of BRAF WT patients
would be safely excluded from the gold standard con-
firmatory testing for BRAF mutation. However, if we
used a fixed cutoff of 0.25, 27.2% of patients could be
correctly determined as BRAF WT, whereas the false-
negative cases (patients incorrectly determined as
BRAF WT) remained low (0.8%). Of the predicted
BRAF WT cases, 96% were BRAF WT at a cutoff of
0.25. The Swin-T model for BRAF mutations exhibited
potential as a pre-screening AI diagnostic tool for
BRAF mutations.

Pre-screening for CIMP status

A cutoff of 0.1 can provide 95% sensitivity for
predicting CIMP status. At this cutoff, 1.3% CIMP high
would be incorrectly identified as CIMP low, whereas
16.2% true CIMP low can be excluded from subsequent
confirmatory molecular testing. However, when the cut-
off was increased to 0.25, the false negatives substan-
tially increased to approximately 5%. Therefore, the
performance of the current Swin-T model for the CIMP
may not be optimal as a diagnostic tool.

Figure 4. Test statistics for the pre-screening tool. Test perfor-
mance of MSI status, BRAF mutation, and CIMP status in the
TCGA-CRC-DX cohorts displayed as patients classified true/false
positive/negative by the Swin-T model based on 95% sensitivity
threshold and fixed thresholds (0.25, 0.5, and 0.75).
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Sensitivity analyses
Our sensitivity analyses (Supplementary results) dem-
onstrated that (1) the Swin-T models were robust with
small training data (e.g. n = 250; supplementary
material, Figure S1); (2) including non-tumor tissues
(normal mucosa or stroma) compromised the model pre-
diction for MSI (supplementary material, Figure S2);
(3) different aggregation methods produced similar
prediction performance (supplementary material,
Figure S3); (4) influential individual cases appeared
not to have a large impact on the model prediction
performance (supplementary material, Figure S4);
and (5) more tumor volume may help to improve pre-
diction of true MSI-H status, but may not be able to
reduce false negatives (supplementary material,
Figure S5).

Swin-T models improve interpretability
Coupling Swin-T with the Grad-CAM algorithm [25]
could improve the interpretability of the model. The
class activation mappings (CAMs) can produce
heatmaps highlighting the areas that have greater atten-
tion weights of the Swin-T model within a high-
resolution tile. The brighter the color of an area, the
higher the attention scores assigned to this area by the
model and more contributions to the model output.
We implemented CAMs to visualize the results in a
reader study.
The pathologist reviewed 20 TP cases with the

highest predictive scores for MSI and 20 TN cases
(MSS) with the lowest scores to identify signature
pathological features for TP and TN samples. As the
Swin-T model highlighted in Figure 5A, the most
apparent feature for the TP cases was the presence of

mucus, i.e. 60% of the cases showed mucinous histol-
ogy, such as mucinous adenocarcinoma and a large
amount of mucus in the stroma. Second, 50% of the
TP cases showed a large number of TILs (Figure 5B).
The heatmaps of these cases showed that the Swin-T
model assigned higher attentions (brighter colors) to
the lymphocytes in the stroma or tumor tissue
(Figure 5B). In addition, 30% of TP cases showed
poor differentiation (Figure 5C), and the representative
H&E tiles and heatmaps displayed tumor cell growth
in a solid pattern without well-differentiated tumor tis-
sue. Finally, 10% of cases exhibited a large number of
signet-ring tumor cells (Figure 5D), which is a known
and special histological feature of MSI samples
[26–28]. The most obvious signature for MSS samples
was well-moderately differentiated adenocarcinoma
and orderly glands (i.e. spots with brighter colors iden-
tified in the heatmaps and the corresponding H&E
tiles; Figure 5E). These findings were consistent with
the pathological characteristics of MSI or MSS sam-
ples [26–29], suggesting that CAMs for Swin-T
models could help pathologists to quickly zero-in on
the signature patterns of MSI and MSS samples,
potentially improving the turnaround time.
Additionally, the model visualization can also help to

analyze the potential reasons for misclassifications. Our
pathologist reviewed 15 FP cases with the highest pre-
dictive scores for MSI and 15 FN cases with the lowest
scores. The most common reason for the FP was abnor-
mal staining (Figure 6A), i.e. 66.7% of the FP cases
showed abnormal colors (e.g. purple and vague color-
ing), which led to false classification/identification of
tumor tissue tiles. In addition, 20% of the FP cases
showed poor differentiation (Figure 6B) with tumor
cells having solid growth pattern highlighted in the

Table 3. Statistics results using different thresholds of external validation of predictions for MSI, BRAF, and CIMP status in the TCGA-
CRC-DX cohort
Biomarker Threshold Sensitivity Specificity PPV NPV TNF FNF F1 score

MSI 0.160 0.95 0.402 0.209 0.980 0.340 0.007 0.343
0.250 0.918 0.647 0.304 0.979 0.554 0.012 0.457
0.500 0.721 0.939 0.667 0.953 0.804 0.040 0.693
0.750 0.213 0.997 0.928 0.883 0.853 0.113 0.346

MSI benchmark [12] 0.220 0.950 0.530 0.250 0.980 0.465 0.007 0.400
BRAF 0.170 0.950 0.114 0.123 0.959 0.095 0.004 0.218

0.250 0.930 0.307 0.148 0.971 0.272 0.008 0.255
0.500 0.649 0.827 0.327 0.948 0.732 0.040 0.435
0.750 0.263 0.977 0.600 0.911 0.865 0.085 0.366

CIMP 0.100 0.950 0.201 0.263 0.927 0.162 0.013 0.411
0.250 0.796 0.536 0.339 0.898 0.413 0.047 0.475
0.500 0.556 0.845 0.517 0.864 0.651 0.102 0.536
0.750 0.278 0.945 0.600 0.814 0.728 0.166 0.380

Statistics describe the different thresholds when the network is trained on MCO cohorts and tested on TCGA-CRC-DX cohort.
FNF, false-negative fraction; NPV, negative predictive value; PPV, positive predictive value; TNF, true-negative fraction (rule out).
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heatmaps, compromising the model’s performance.
Furthermore, 13% of the FP cases showed a large num-
ber of TILs (Figure 6C), a signature feature for MSI
[26,27] as shown in our TP cases in Figure 5, and
thereby were misclassified as positive cases. For the
FN cases, 46.7% were well-moderately differentiated
carcinoma with mucinous histology (Figure 6D)
while 20% were well-moderately differentiated car-
cinoma without mucinous histology (Figure 6E). As
shown in the heatmaps in Figure 6D,E, the model
highlighted and assigned greater attention to the
well-moderately differentiated glands (a fingerprint
for MSS samples), and therefore misclassified these
samples. Misclassification reasons for 33% of FN
cases could not be identified (Figure 6F). This
might be due to uncommon morphology and/or
abnormal staining in these samples. These results
suggest that, in real-world clinical implementation

of the current AI models for predicting MSI status,
pre-screening by pathologists for samples with
abnormal staining and well-moderately differenti-
ated mucinous adenocarcinoma may be needed.
Future model refinement is warranted to mitigate
the risk for FP and FN.

Discussion

The Swin-T backbone represents the most advanced,
SOTA ViT network architecture, outperforming many
popular de facto standard networks such as ResNet
and EfficientNet, as well as early versions of ViT
[18,19]. It was proven that the Swin-T could replace
the classic CNN architecture and become a common
backbone in the field of computer vision [19].

Figure 5. Visualization of the reader study of representative TP (MSI) and TN (MSS) cases. (A–D) Tissue slides for TP cases and signature
pathological features identified by the pathologist. (E) Tissue slides for TN cases and signature pathological features identified by the
pathologist.
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However, to our knowledge, despite having achieved
great success in common computer vision tasks, our
work represents the first attempt to evaluate the perfor-
mance of Swin-T in digital pathology and as a back-
bone network to further improve the predictive
performance of MSI and biomarkers for molecular
pathways in CRC.
To facilitate comparison with previously published

models, the same dataset (TCGA-CRC-DX) and
training-to-test split of the dataset from previous publi-
cations were used. In an intra-study cross-validation
experiment, Swin-T substantially outperformed models
by Bilal et al [4] and Kather et al [13] for the predic-
tion of MSI and hypermutation status. In addition,
Swin-T achieved a similar SOTA performance for
predicting TP53 mutation status compared with that
reported by Bilal et al [4]. Similar mean cross-
validation AUROC values were also obtained for
predicting CING, BRAF mutation status, and high
CIMP status compared with the current literature [4].
Swin-T models also exhibited similar or higher
AUPRCs for MSI, hypermutation, CIMP, and BRAF
mutation status compared with previously published

computational algorithms [4], indicative of greater
power for handling imbalanced data, often seen in
clinical studies. So far, DL models using H&E images
have shown suboptimal prediction performance for
KRAS mutation (AUROC = �0.6), a key biomarker in
CRC [4,6]. Unfortunately, our preliminary modeling
using Swin-T also produced a similar, low, AUROC
value for KRAS mutation (data not shown).
It is well known that DL models perform better with

more available training data. This phenomenon has been
observed in predictionmodels developed forMSI/dMMR
status in CRC [13]. Recently, Echle et al trained a model
using pooled dataset from nine patient cohorts of 8,343
patients across different countries and ethnicities, and
achieved SOTA external prediction performance with an
AUROC of 0.91, using the TCGA-CRC-DX cohort as
the external validation dataset [12]. However, with
smaller training data (QUASAR: N = 1,016; DACHS:
N = 2,013; NLCS: N = 2,197), Echle et al (the same
research group) obtained an AUROC of 0.72–0.77, with
the same unseen external validation cohort [13]. Swin-T
demonstrated excellent generalizability in cross-study
external validation using the same TCGA-CRC-DX

Figure 6. Visualization of the reader study of representative misclassified cases. (A–C) Tissue slides for FP cases and potential
confounding pathological features and misclassification reasons identified by the pathologist. (D–F) Tissue slides for FN cases and poten-
tial confounding pathological features and misclassification reasons identified by the pathologist.
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dataset and delivered a SOTA AUROC of 0.904 using a
relatively smaller training dataset (MCO, N = 1,065),
similar to what was achieved by Echle et al using�8,000
samples (ResNet18). Our additional experiment revealed
that Swin-T was extremely efficient when using small
training datasets. Using �250 samples for training, the
Swin-T model still managed to produce better predictive
performance than the model by Echle et al using
ShuffleNet and training data of 1,000–2,000 samples
[13]. These results suggest that our MSI model based on
Swin-T may be 5–10 times more efficient than current
SOTA MSI algorithms based on ResNet18 and
ShuffleNet.
Biomarker testing plays a critical role in the treat-

ment of CRC patients. Importantly, immunotherapies,
such as pembrolizumab and nivolumab, have been
approved by health authorities to treat CRC patients
with MSI-high [10,11]. The current clinical gold stan-
dard testing for MSI is based on IHC, which has a sen-
sitivity of 94% and specificity of 88% [30,31]. The
motivation to develop AI-based models is primarily to
replace current lab-based testing, reduce the turn-
around time, and save costs. Unfortunately, thus far,
no digital AI models for MSI have consistently
achieved this performance threshold, including the
most recent model developed by Echle et al [12].
Therefore, it is proposed to implement as a pre-
screening test, which primarily excludes and reduces
the samples before the subsequent conventional IHC
testing [12].
Recently, an AI-based diagnostic solution, MSIntuit™

CRC, developed by Owkin (Paris, France), has been
approved for use in Europe as pre-screening for MSI
(https://owkin.com/en/publications-and-news/press-
releases/two-first-in-class-ai-diagnostic-solutions-for-
breast-cancer-and-colorectal-cancer-developed-by-
owkin-are-approved-for-use-in-europe). Our Swin-T
models for MSI and BRAF mutation could also serve as
pre-screening diagnostics to rule out MSS and BRAFWT
samples. This may help to reduce the samples for time-
and tissue-consuming PCR or/and IHC testing [12],
allowing for cost saving and more efficient testing. The
ubiquitous availability of routine H&E slides makes
implementation of the DL models particularly attractive
for community hospitals where universal molecular biol-
ogy tests may not be accessible [13]. In addition, the
CAMs based on the Swin-T models can help pathologists
to concentrate their resources on model-identified
hot-spots and therefore improve their efficiency and
turnaround time.
Our approach also has limitations and may be fur-

ther improved in the future. First, there is a significant
association between MSI-H and high-grade dysplasia

in adenomas [28], i.e. MSI is more likely present in
adenomas with high-grade dysplasia compared to ade-
nomas with low-grade dysplasia [29]. However, our
current tissue classifier cannot identify these two types
of tissue. Therefore, development of a tissue classifier
that can differentiate high- and low-grade dysplasia
may further improve the predictive performance.
Second, although we have shown the robustness of the
model with small training datasets, it will be interest-
ing to see how well the Swin-T models can perform
with large-scale datasets such as the datasets used in
Echle et al (n > 8,000) [12]. For example, when the
sensitivity is fixed at 95%, even though our model for
MSI provided the same NPV (98%) and FNF (0.7%)
as Echle et al [12], the specificity and TNF (Table 3)
appear somewhat lower than those of Echle et al [12].
Training the Swin-T model on large-scale datasets
may further improve the model performance and its
utility as a pre-screening diagnostic. Finally, IHC is
one of the current standard testing methods for MSI.
However, so far, limited research has been done to
simultaneously analyze consecutive H&E and IHC
slides. Future research in this space may further
improve the performance of current DL models for
MSI status.

Conclusion

In this study, we developed a novel DL framework
based on a Swin-T backbone network to predict MSI
status and other key biomarkers for CRC. We have
demonstrated that novel Swin-T-based backbone net-
works have great utility in digital pathology and can
improve the predictive performance for MSI and other
key biomarkers in CRC. Our findings also demonstrate
the potential of this Swin-T-based AI system as an
important component in a cascading diagnostic
workflow (pre-screening + gold standard testing) for
MSI and BRAF mutation status, which are important
for patient selection in clinical trials and treatment
guidance for immune checkpoint inhibitors and combi-
nations of BRAF inhibitors/anti-epidermal growth fac-
tor receptor therapies, respectively.
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