
����������
�������

Citation: Zauner, R.; Wimmer, M.;

Dorfer, S.; Ablinger, M.; Koller, U.;

Piñón Hofbauer, J.; Guttmann-

Gruber, C.; Bauer, J.W.; Wally, V.

Transcriptome-Guided Drug

Repurposing for Aggressive SCCs.

Int. J. Mol. Sci. 2022, 23, 1007.

https://doi.org/10.3390/

ijms23021007

Academic Editor: Terrence Piva

Received: 3 December 2021

Accepted: 13 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Transcriptome-Guided Drug Repurposing for Aggressive SCCs
Roland Zauner 1,*, Monika Wimmer 1, Sonja Dorfer 1, Michael Ablinger 1, Ulrich Koller 1 ,
Josefina Piñón Hofbauer 1 , Christina Guttmann-Gruber 1 , Johann W. Bauer 1,2 and Verena Wally 1

1 EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology
and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
mo.wimmer@crcs.at (M.W.); so.dorfer@crcs.at (S.D.); m.ablinger@salk.at (M.A.); u.koller@salk.at (U.K.);
j.d.pinon@salk.at (J.P.H.); c.gruber@salk.at (C.G.-G.); joh.bauer@salk.at (J.W.B.); v.wally@salk.at (V.W.)

2 Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University,
5020 Salzburg, Austria

* Correspondence: rolan.zauner@salk.at

Abstract: Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in
recent years, most SCCs are well treatable. However, against the background of pre-existing risk
factors such as immunosuppression upon organ transplantation, or conditions such as recessive
dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly
aggressive course. Notably, such SCC types display molecular similarities, despite their differing
etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant
recipients and RDEB-patients, augmented with data from more common head and neck (HN)-
SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is
based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways
that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined
tumor-specific signatures based on differentially expressed genes, which were then used to mine
drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of
thousands of small molecule compounds, we identified drugs including selumetinib that specifically
target key molecules within the MEK signaling cascade, representing candidates with the potential to
be effective in the treatment of these rare and aggressive SCCs.

Keywords: epidermolysis bullosa; organ transplant recipients; squamous cell carcinoma; drug repurposing

1. Introduction

While cutaneous squamous cell carcinomas (SCC) arising in the general population
are well treatable, in some patient cohorts they arise more frequently, are particularly
aggressive, and are associated with poor prognosis. In organ transplant recipients (OTR),
long-term immunosuppression is associated with a 65 to 250-fold increase in the risk
of developing cutaneous SCCs, with the frequency recurrence and metastasis reflecting
the aggressiveness of these tumors [1–3]. In these patients, decreased immune-mediated
tumor surveillance and an increased susceptibility to infections, including those caused
by exposure to oncogenic viruses, are likely direct consequences of immunosuppression.
Indeed, 90% of cutaneous SCCs arising in OTR patients are human papillomavirus (HPV)-
positive, compared with only 40% in immunocompetent individuals [4]. Additionally,
immunosuppressive agents themselves can contribute to the initiation of skin cancers, by
sensitizing cells to ultraviolet (UV)-radiation, and consequently to mutation, e.g., in the
tumor-suppressor gene Tumor Protein 53 (TP53) [4].

Similar to OTR patients, individuals suffering from the rare genodermatosis recessive
dystrophic epidermolysis bullosa (RDEB) develop particularly aggressive cutaneous SCCs,
which is the leading cause of early death in these patients [5]. While the etiology of RDEB-
SCCs is completely different to those arising in OTRs, and is attributed to the functional
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loss of the extracellular matrix protein type VII collagen (C7) due to congenital mutation,
molecular analyses have uncovered mechanistic and phenotypic similarities between these
two tumor entities. First, transforming growth factor (TGF)-ß, a key player in tumor
development and progression that has been associated with epithelial-to-mesenchymal
transition (EMT), was shown to be increased in both OTR- and RDEB-SCCs. Although TGF-
ß is constitutively overexpressed in RDEB skin and tumors as a consequence to the loss of
C7 [6,7], in OTRs TGF-ß up-regulation is triggered by commonly used immunosuppressants
such as cyclosporine [8,9]. Second, and potentially associated with TGF-ß signaling, a
subset of tumor cells in the tissue from both OTRs and RDEB patients present with an
EMT-like phenotype (i.e., cells of a typical spindle-like shape). These risk factors are highly
uncommon in cutaneous SCCs from otherwise healthy immunocompetent individuals;
however, in the rare cases of developing metastatic disease (2–5%), traits of EMT could
already be observed at the level of actinic keratoses and are discussed as prognostic markers
for an aggressive behavior of these SCCs. Overall, high tumor diameters and perineural
involvement are the key risk factors for metastasis of UV-induced cutaneous SCCs [4,10–13].

Furthermore, microbial triggers and responses to such, appear to be a factor shared by
both tumor entities. While HPV infection, a major risk factor in OTR-SCCs, is uncommon in
RDEB [14], the latter is associated with pathogenic bacterial infection [15]. Analysis of the
mutational landscape of RDEB-SCC has highlighted the apolipoprotein B mRNA editing
enzyme, and its catalytic polypeptide-like (APOBEC)-mediated cell-endogenous mutagenic
processes as a critical driver of tumor development [16]. APOBEC cysteine deaminases are
known components of host innate antimicrobial defenses that are also induced against HPV.
As such, HPV-positive head and neck (HN)-SCC [17], also feature a predominant APOBEC
mutational signature [16]. Indeed, significant parallels between HN- and RDEB-SCCs are
observed at both the transcriptome [18] and miRNome level (data not shown), in addition
to a high degree of resemblance between RDEB-SCC and OTR-SCC [19].

Thus, despite diverging etiologies, OTR-, RDEB-, and HN-SCCs feature distinct simi-
larities, both at the genomic and transcriptomic level, as well as in clinical behavior, which
distinguishes them from UV-induced SCCs in otherwise healthy individuals. Since OTR-
and RDEB-tumors are relatively rare, which severely restricts the search for new therapy
options, the fact that they share specific molecular patterns provides an opportunity to
leverage the similarities in their gene expression signatures and match them with abundant
data available for more prominent HN-SCCs. While mindful of the differences between
these tumors (e.g., loss of C7 in RDEB, immunosuppression in OTR, difference in epithelial
tissue type, in particular involvement of mucosa in HN-SCCs), we aimed here to perform
transcriptome-guided drug screening, in order to identify drugs that target shared, critical
cancer-related pathways, using computational methods for mining publicly accessible data
sets for drug repositioning.

Specifically, in this study we employed signature reversion, a method that relies on
the assumption that a drug is able to reverse a disease-associated gene expression profile,
thereby modulating the disease phenotype itself [20]. We were able to demonstrate a com-
mon activation of distinct cancer-associated signaling cascades based on gene expression
analysis and to identify a set of compounds, which could be considered in a repurposing
strategy to address the urgent need of additional treatment options in these rare cancers.

2. Results
2.1. Gene Expression Overlaps between HN-, OTR-, and RDEB-SCC

First, we were interested in extracting common gene expression patterns between
RDEB-, OTR- and HN-SCC tissues (Figure 1A). Therefore, transcriptome datasets represen-
tative of all three tumor entities and associated non-tumor controls were retrieved from
publicly available repositories (Table 1).
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Figure 1. Analysis and evaluation of transcriptome similarities between organ transplant recipient
(OTR)-, recessive dystrophic epidermolysis bullosa (RDEB)-, head and neck (HN)- squamous cell
carcinoma (SCC). (A) Scheme of data processing workflow. (B) Uniform Manifold Approximation
and Projection (UMAP) plot illustrates the distinct separation of tumor and control samples (dashed
line) from all three data sets. All genes expressed in the three data sets were considered for dimension
reduction. Gene expression data was z-transformed across samples within respective data sets.
(C) Overlap of differentially expressed genes (DEGs) (min. 2-fold, adjusted-p < 0.01) between tissue
data sets. (D) Heat map of 183 shared DEGs between all three data sets. Gene expression data
were z-transformed. Columns: samples, Rows: DEGs. Samples and genes were organized by
hierarchical clustering. (E) Plots show the Molecular Signature Database (MSigDB) hallmark gene
sets significantly (adjusted p < 0.05) enriched in shared DEGs.

Table 1. Data sets used for determination of DEG-based tumor signatures.

Data Set Type Samples
Included Platform Reference

RDEB
(GSE111582) tissue

SCC (n = 8) RNA-seq, Illumina HiSeq [16]control (n = 9)

OTR (GSE32979) tissue
SCC (n = 15) Array, Illumina human-6 v2.0

expression beadchip [21]control (n = 13)

HN (TCGA) tissue
SCC (n = 263) RNA-seq [22]control (n = 31)
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An unsupervised profiling of genes detected in all three tumor sets was conducted
to assess similarities in gene expression. A UMAP plot illustrated a transcriptome-driven
separation of samples according to their disease state (tumor vs. control-tissue), rather
than their tumor type, further supporting our assumption of similarities between the three
tumor sets (Figure 1B).

In order to derive matching deregulated gene patterns, we applied linear models
(Limma) for normalized OTR (GSE32628) beadchip data, and the DESeq2 analysis pipeline
for HN curated TCGA [22], as well as RDEB (GSE111582) RNA-seq data, obtaining a list
of differentially expressed genes (DEGs) for each individual data set. Next, these DEG
lists were compared to identify genes commonly deregulated across all data sets. In total,
we identified 183 significantly deregulated genes (min. 2-fold, adjusted p-value < 0.01)
common to all three cancer types, representing 8.6% of all deregulated genes in RDEB,
29.9% in OTR, and 4.2% in HN-SCCs (Figure 1C). A heatmap representing the 183 shared
DEGs demonstrated a common gene expression pattern for RDEB- and OTR-SCC, as well as
for a subset of HN-SCC within distinct tumor- and control-tissue clusters (Figure 1C). Thus,
the integration of all three tumor data sets supported our hypothesis that the transcrip-
tome profiles of OTR-, RDEB-, and HN-SCCs comprise shared, critical tumor-pathways.
Moreover, functional analysis suggested a significant (adjusted p-value < 0.05) enrichment
of the MSigDB hallmark gene sets representing major cellular programs known to be
frequently hijacked by tumor cells, such as EMT or KRAS signaling (Figure 1E). Taken
together, transcriptome profiles of OTR-, RDEB-, and HN-SCCs reflect common malignant
cellular programs and substantiate our rationale that drugs potentially efficacious in all
three tumor entities can be identified based on available transcriptome data.

2.2. In Silico Identification of Drugs for the Treatment of SCCs

The proposed computational drug screening approach is based on data and algorithms
developed within the Library of Integrated Network-Based Cellular Signatures (LINCS)
program [20]. This program was established to further enhance the understanding of
cellular pathway responses to perturbation by small molecules (perturbome), capitalizing
on publicly released omics data generated in the course of decades of therapeutic develop-
ment (www.lincsproject.org, accessed 26 November 2021 [20]). To identify compounds able
to reverse SCC-related cellular programs and potentially modulate a disease course, we
screened publicly accessible drug perturbation datasets, specifically the L1000 catalogue,
which contains over 33,000 chemically perturbed gene expression profiles based on more
than 3900 small molecules. DEGs more than 2-fold up-/down-regulated in tumors vs.
controls were used in a L1000CDS2 database query employing the reverse gene set mode.
Separate queries were conducted for each tumor entity. The algorithm developed by the
Ma’Ayan lab compared the submitted tumor gene expression signatures to differentially
expressed genes computed from LINCS L1000 perturbome and returned descriptive in-
formation on 50 drug candidates that can potentially reverse the input signature for each
tumor entity (Figure 2A) [23]. Drug candidates that appeared in all three screens were
selected and reported with their respective mechanisms of action.

Of note, the most prominent top-ranked drug candidates were associated with a drug
class targeting the MAPK/ERK-pathway (Figure 2B), which is in line with results from our
previous gene set enrichment analysis (Figure 1E). This well-characterized kinase cascade
is frequently triggered by oncogenic mutations (mostly RAS or RAF) or by growth factor
signaling (e.g., EGFR), and its prominent role in many different types of cancers is reflected
by the number of mitogen-activated protein kinase (MAPKK, aka MEK)-inhibitors currently
under clinical investigation [24].

www.lincsproject.org
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Figure 2. Drug candidate nomination. (A) Schematic workflow of the employed computational
drug screening approach. (B) L1000CDS2 search engine-derived drug catalogues with common
drugs targeting the MEK signaling cascade. (C) Schematic of the MEK signaling cascade and
target molecules of selected perturbation drugs based on results of our in silico screening approach.
(D) Barplot shows MSigDB hallmark gene sets significantly enriched in, e.g., up-regulated RDEB
DEGs, which are putative targets of vemurafenib reported by the L1000 characteristic direction
signature (CDS)2 drug screening algorithm.

Within the MEK signaling cascade, four out of the five listed drugs directly target
MEK, while one, vemurafenib, is a BRAF inhibitor (Figure 2C). An enrichment analysis
performed on putative drug targets derived from the computational perturbation data
screening, which were up-regulated in, e.g., RDEB-SCC, suggests a modulatory effect of
vemurafenib on cell-cycle-related processes, and thereby further supports the meaningful
applicability of our suggested approach (Figure 2D).

2.3. Transcriptome Profiles Highlight Activation of MAPK Signaling

As our in silico drug screening suggested compounds that were targeting critical play-
ers of the MAPK signaling, we were curious about an increase in the MAP kinase pathway
activity supported by transcriptome data. Therefore, we assessed the overexpression of
growth factors (GF), receptor tyrosine kinases (RTK) and RAS homologues associated with
the Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived classical MAPK signaling
network (Figure 1A). Various extracellular signals able to initiate the signaling cascade
as well as signaling receptors and mediators showed abundant expression in tumors,
potentially contributing to MAPK activity. Stimuli, which appeared to be significantly
up-regulated (min. 1.5-fold, adjusted p-value < 0.05) in all three tumors included angiopoi-
etin 2 (ANGPT2) and vascular endothelial growth factor C (VEGFC), factors shown to
act in concert to facilitate permissive angiogenic events [25,26]. Furthermore, an elevated
expression of platelet-derived growth factor receptor ß (PDGFRB) was observed across
all three tumors, which has been reported to promote distant metastasis in cancer stem
cells of advanced skin carcinoma [27]. A common feature of all three tumors on the signal
mediation level was the high level of Ras-related protein 2 (RRAS2) expression, which is in
line with a study of malignant skin cancer demonstrating increased expression of RRAS2
in highly aggressive skin tumors [28]. Overall, several members of the MAPK pathway,
including extracellular triggers, showed increased expression in malignant tissue and thus
indicate aberrant MAPK signaling activity. This is further corroborated by the observed
significant up-regulation of the mitotic serine/threonine kinase aurora kinase A/B (AU-
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RKA, AURKB) expression (Figure 3B–D), both being downstream targets of MAPK that
contribute to the regulation of cell cycle progression [29].
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Figure 3. MAPK signaling activity. (A) Gene expression patterns of major classical MAP kinase
pathway components (derived from KEGG pathway hsa04010). Node colors (green: down-regulated,
red: up-regulated in tumor) illustrate relative gene expression levels (log2 foldchange of tumor
vs. normal) in three sub-compartments (left box: RDEB, center box: OTR, right box: HN). In the
case where the nodes represent multiple genes, e.g., GFs, the gene with the highest foldchange is
visualized for the corresponding tumor entity. (B–D) Boxplots show gene expression of MAPK
pathway members in (B) HN-, (C) RDEB- and (D) OTR-data sets belonging to functional class GF,
RTK, RAS homologues, or are considered as downstream targets of MAPK signaling. Normalized
counts (RDEB, HN) or intensity signals (OTR) were log2 and z-transformed to present the data on a
common scale. Non-parametric, unpaired Wilcox test was applied to test significance.

3. Discussion

Drug repurposing, the discovery of novel applications for approved and investiga-
tional drugs, offers a cost-effective strategy for the treatment of human malignancies,
facilitating rapid clinical translation [30]. While rare tumor types, such as RDEB- or OTR-
SCCs, would greatly benefit from new therapeutic treatment options, research in this area
is often challenging due to the scarcity of patients and sample material [31]. To overcome
these limitations, we leveraged similarities between RDEB- and OTR-SCC and augmented
our data set with the more common HN-SCC [16]. In the course of this study, we were able
to substantiate the presence of overlapping gene expression patterns and could demonstrate
consistent enrichment of pathways associated with malignancies across all three tumor
types [10,32].
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Our results specifically highlight the MAPK/ERK-signaling cascade to be commonly
de-regulated in all datasets used in our study. Accordingly, drugs that target distinct
players within this cascade were proposed by the L1000CDS2 search engine, with most
targeting MEK directly, or upstream BRAF. Of note, BRAF inhibitors are commonly used
in, e.g., melanoma treatment. However, in that context, hyperproliferative skin conditions
due to paradoxical MAPK activation were a frequently seen side effect of treatment [33].
Interestingly, Escuin-Ordinas et al. showed that in two murine wound models, vemurafenib
accelerated cutaneous wound healing, without increasing the incidence of SCCs [34]. This
is of particular interest for the RDEB patient population, as these patients suffer from
extreme skin fragility and chronic wounds. Such chronic wounds are the primary site
of emergence of SCCs [35]. Therefore, it is essential that any tumor treatment applied
in this patient population shows efficacy against the tumor, without inhibiting wound
healing processes [36]. Furthermore, upon the co-administration of vemurafenib with the
MEK inhibitor trametinib, hyperproliferative skin changes, as observed during melanoma
treatment, improved significantly [37]. This could also be considered for HN- and OTR-SCC
patient populations, although the negative effects associated with trametinib monotherapy
on wound healing, as well as other reported cutaneous side effects (e.g., rash, increased skin
infection by Staphylococcus aureus) [34,37], need to be stringently evaluated in EB patients.
Taken together, there is rationale to investigate the use of vemurafenib alone, or the use of
MEK-inhibitors locally only for SCC treatment in these patient cohorts.

MEK inhibition is a treatment already clinically approved and frequently used for the
treatment of melanoma, and clinical trials investigating the efficacy of MEK inhibitors for
non-small cell lung cancer, colon cancer and thyroid cancer are currently ongoing (e.g.,
NCT03085056, NCT03704688). For RDEB, MEK inhibition has so far only been described
in the context of the development of a PLK1-targeting therapy. Rigosertib, an inhibitor of
polo-like kinase 1 (PLK1), was identified as a promising drug candidate for the treatment
of RDEB-SCC, and was shown to induce G2-M cell cycle arrest and apoptosis in RDEB-SCC
cells, as well as inhibiting tumor growth in xenograft studies in vivo. In this context, we also
identified PLK1 as part of a protein interaction network derived from putative vemurafenib
targets (data not shown), which is consistent with studies showing that rigosertib exerts
a minor effect on MEK by competing with RAS/RAF interaction; however, this showed
only a minor effect [38,39]. Currently, rigosertib is under clinical investigation in a phase I
clinical trial for RDEB (NCT04177498).

For HN-SCCs, approved therapies include platinum-based chemotherapy regimens,
checkpoint-inhibitors such as pembrolizumab, and the EGFR-targeting antibody cetuximab,
as well as combinatorial therapies [40]. In addition, the thymidylate synthase inhibitor
methotrexate, which is also listed as an approved drug for the treatment of HN-SCC, was
recently identified in an in silico approach similar to the method describe here, as a potential
candidate for the treatment of RDEB wounds [41]. While not currently approved for the
therapy of HN-SCC, MEK-inhibition was shown to enhance the efficacy in combinatorial
approaches, e.g., with PD-L- targeting antibodies or serine-threonine kinase CK2 inhibitors
in preclinical investigations [42].

A more detailed analysis of the MAPK signaling cascade illustrated an increase in
signaling activity in tumors based on the over-expression of growth factors, receptors
and signaling mediators. In addition to supporting our assumption that the proposed
compounds targeting the MAPK/ERK-pathway have potential use in restricting unchecked
tumor growth, the gene expression data of MAPK signaling components provide further in-
sights into molecular pathomechanisms. Our analysis highlighted an integration of various
factors to promote angiogenesis across all tumor entities. Despite several similarities, we
also found evidence for tumor-specific signaling programs. RDEB tumor profiles indicated
altered hepatocyte growth factor (HGF)/hepatocyte growth factor receptor (HGFR/MET)
and insulin-like growth factor II (IGF2)/insulin-like growth factor I receptor (IGF1R) dy-
namics, whereas HN-SCC appeared to take advantage of mitogenic fibroblast growth
factor-related communication (e.g., via FGF19, FGFR4). Our proposed selective MEK in-
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hibitor PD-184352 has a proven ability to suppress FGF-mediated angiogenesis in vivo and
decreases VEGF expression [43,44]. A specific pattern in RDEB and OTR was the elevated
expression of tyrosine kinase ephrin type A receptor 2 (EPHA2). Emerging evidence links
the abundant expression of EPHA2 with high malignant cells. Consequently, in addition
to its functional relevance in malignancies, EPHA2 is considered as a liaison to deliver
therapeutics to cancer cells [45].

Overall, based on the perturbome data deposited at the LINCS platform, compounds
with potential to impact disease-associated de-regulated pathways were identified by
extrapolation from SCC-transcriptome data. However, we acknowledge certain limitations
in the presented study, which is focused on bioinformatic analysis and the interpretation of
transcriptome data. Although we have drawn our conclusions from appropriately large
sample sizes supported by the integration of several datasets to provide reliable outcomes,
in vitro or in vivo validation is warranted to demonstrate specificity and efficacy, as well
as the transferability of the generalized LINCS data to a specific context, such as rare
aggressive cutaneous SCCs. However, to date, several publications attest to the innovative
application of the LINCS platform, which has facilitated the identification of potential
drug candidates for the treatment of various diseases, including cancer [46,47]. Given the
tremendous advances in the development of novel in silico screening methods, as well as
extensive publicly accessible drug perturbation repositories including FDA/EMA approved
compounds during the last years (such as LINCS), there is now ample opportunity to exploit
these new exciting tools for accelerated drug development whilst substantially reducing
risk and costs. Furthermore, these new approaches in virtual screening also enable non-
industrial research labs to conduct drug-screening programs for rare conditions. Future
studies are planned to address current limitations and further refine and advance the
proposed methodology.

In summary, we present here a use case describing the implementation of novel
computational techniques to advance new cancer treatments for patients with particularly
aggressive SCCs.

4. Materials and Methods
4.1. Data Sets and Extraction of Differentially Expressed Genes

All data pre-processing, differential expression analysis and generation of uniform
manifold approximation and projection for dimension reduction (UMAP) and heatmap
plots were performed in the statistical software R [48]. Curated HN-SCC RNA-seq gene
expression data were retrieved from “The Cancer Genome Atlas” (TCGA, Bethesda, MD,
USA) using the Bioconductor package “curatedTCGAData” [20]. Trimmed mean of M-
values method (TMM, calcNormFactors function of “edgeR”) was applied to normalize
data. HumanWG-6 v2 Expression BeadChips (Illumina, Munich, Germany) OTR data (GEO
repository, Bethesda, MD, USA: GSE32628) was normalized with normalizeBetweenArrays
function from the “limma” linear models package [19]. RNA-seq data derived from tissue
biopsies (GEO repository: GSE111582) was TMM-normalized and utilized for character-
izing the tumor and skin-related transcriptome from patients carrying RDEB-associated
mutations in COL7A1 [14]. In both RNA-seq data sets, genes with low counts were removed
by application of the filterByExpr function from the “edgeR” package [49].

Differential gene expression analysis was performed with recommended standard
workflows in R packages “limma” for OTR data and “DESeq2” for both HN and RDEB
data. Benjamini–Hochberg correction for multiple testing was applied to obtain adjusted
p-values [50].

4.2. Evaluation of Similarities between Data Sets

UMAP was conducted on normalized, log2- and within-data set z-transformed gene
expression data (umap function with default parameters from “umap” package) including
all genes shared between the three datasets.
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The intersection of min. 2-fold de-regulated genes between tumor and control sam-
ples with adjusted p-value < 0.01 derived from all three tumor entities were defined as
“overlapping” DEGs.

Datasets were filtered for overlapping DEGs and respective gene expression data normal-
ized, log2-transformed, centered and scaled (z-transformed within datasets) and represented
in a heatmap (pheatmap function). Agglomerative hierarchical clustering of columns and
rows was performed with complete linkage on a 1-correlation distance measure.

4.3. Gene Set Enrichment Analysis of Overlapping DEGs

Overlapping DEGs were used as input in the Enrichr online enrichment tool. The top
ten “Molecular Signature Database” (MsigDB, San Diego, CA, USA) hallmark gene sets
that were significantly (adjusted p-value < 0.05) enriched were retrieved and represented in
barplots, according to significance [51].

4.4. Computational Drug Screening

The L1000CDS2 drug perturbation data search engine (maayanlab.cloud/L1000CDS2,
New York, NY, USA; 26 November 2021) was used for computational drug screening. Lists
of min. 2-fold up-/down-regulated genes from each of the three datasets were used in
the query. The search for small molecule signatures was performed on the latest database
version in reverse mode.

4.5. Gene Set Enrichment Analysis of Putative Drug Targets

Min. 2-fold up-/down-regulated genes were used in a L1000CDS2 drug search fol-
lowed by enrichment analysis performed on reported putative targets of the top ranked
compounds, with focus on a subset of up-regulated gene patterns, predicted to be reversed
by the drug. Top ten significantly (adjusted p-value < 0.05) enriched MsigDB hallmark gene
sets were retrieved from Enrichr and represented in a barplot, sorted by significance [51].
Gene set enrichment was performed using RDEB data as exemplary.

4.6. MAPK Signaling Pathway Analysis

Log2 foldchange values derived from differential gene expression analysis were mapped
to corresponding genes summarized in the KEGG MAPK signaling pathway (hsa04010) us-
ing function pathview from R/Bioconductor package Pathview in node.sum = “max” and
multi.state = TRUE mode [52]. Genes listed as GFs, RTKs or RAS homologues nodes
in the KEGG pathway with significant up-regulation in tumor tissue (min. 2-fold, adj.
p-value < 0.05) were used for boxplots. Boxplots show normalized count data (RDEB, HN)
adjusted with one pseudocount, and signal intensities (OTR), all log2 and z-transformed
(centered and scaled) to allow similar scaling between datasets.
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