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The microRNA (miRNA) biomolecules have a significant role in the development of breast 
cancer, and their expression profiles are different in each subtype of breast cancer. Thus, 
our goal is to use the Next Generation Sequencing provided high-throughput miRNA 
expression and clinical data in an integrated fashion to perform survival analysis in order 
to identify breast cancer subtype specific miRNAs, and analyze associated genes and 
transcription factors. We select top 100 miRNAs for each of the four subtypes, based on 
the value of hazard ratio and p-value, thereafter, identify 44 miRNAs that are related to all 
four subtypes, which we call as four-star miRNAs. Moreover, 12, 14, 9, and 15 subtype 
specific, viz. one-star miRNAs, are also identified. The resulting miRNAs are validated 
by using machine learning methods to differentiate tumor cases from controls (for four-
star miRNAs), and subtypes (for one-star miRNAs). The four-star miRNAs provide 95% 
average accuracy, while in case of one-star miRNAs 81% accuracy is achieved for HER2-
Enriched. Differences in expression of miRNAs between cancer stages is also analyzed, 
and a subset of eight miRNAs is found, for which expression is increased in stage II relative 
to stage I, including hsa-miR-10b-5p, which contributes to breast cancer metastasis. 
Subsequently we prepare regulatory networks in order to identify the interactions among 
miRNAs, their targeted genes and transcription factors (TFs), that are targeting those 
miRNAs. In this way, key regulatory circuits are identified, where genes such as TP53, 
ESR1, BRCA1, MYC, and others, that are known to be important genetic factors for the 
cause of breast cancer, produce transcription factors that target the same genes as well 
as interact with the selected miRNAs. To provide further biological validation the Protein-
Protein Interaction (PPI) networks are prepared and Kyoto Encyclopedia of Genes and 
Genomes pathway and gene ontology (GO) enrichment analysis are performed. Among 
the enriched pathways many are breast cancer-related, such as PI3K-Akt or p53 signaling 
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INTRODUCTION
Breast cancer is the second most common type of cancer and 
a leading cause of death among women worldwide (Bray et al., 
2018; Siegel et al., 2019). Due to its heterogeneous nature, different 
approaches have been used to classify its molecular subtypes (Dai 
et al., 2015). Recent research has shown that breast cancer can be 
categorized into four subtypes, based on the regulatory activity 
of molecular receptors like estrogen, progesterone and human 
epidermal growth factor receptor 2 (HER2) (Blenkiron et al., 
2007; Banerji et al., 2012; Hon et al., 2016). The four subtypes are 
Luminal A, Luminal B, HER2-Enriched and Basal-Like. In the 
Luminal A (LA) subtype, estrogen and progesterone receptors 
are positive and HER2 receptor is negative. On the other hand, 
in Luminal B (LB) subtype, estrogen and progesterone receptors 
are positive, and HER2 receptor can be either positive or negative. 
In case of HER2-Enriched (HER2-E) subtype, HER2 receptor is 
positive and estrogen and progesterone receptors are negative. 
While in Basal-Like (BL) subtype, which is also known as triple-
negative breast cancer, all three receptors are negative. The 
Luminal A (LA) breast cancer is the most prevalent, constituting 
50–70% of female breast cancer cases (DeSantis et al., 2017; Kwan 
et al., 2009), while the latter three subtypes are less common, 
constituting approximately 10–20% of all cases for Luminal B 
and Basal-Like, and 5–20% for HER2-Enriched. The presence of 
one or more of these receptors suggests that a treatment targeting 
their pathways might be effective, thus the subtype identification 
and subtype-aware research are needed. For instance the HER2-
Enriched subtype tumors can be often effectively treated with 
therapies aimed at the HER2 protein (Brand et al., 2006). The 
breast cancer subtypes also vary in their clinical characteristics. 
For example, HER2-Enriched cancers tend to grow faster than 
Luminal A or B cancers and the outlook is usually worse. Crucially, 
it has been found that each subtype possess different expression 
profiles of miRNAs (Sørlie et al., 2001; Hon et al., 2016).

MiRNAs are non-coding RNA molecules of length 19-22 
nucleotides, first discovered in Caenorhabditis elegans (Lim et al., 
2003). Subsequently a range of studies revealed their important 
cellular functions (Bartel, 2009; Wahid et al., 2010). They are 
responsible for post-transcriptional gene regulation: they bind 
with their targeted mRNAs and degrade them, and as a result 
those targeted mRNAs are not able to take part in protein 
formation. Over the years, researchers were trying to understand 
the involvement of miRNAs in different malignancies (Reddy, 
2015; Peng and Croce, 2016; Hosseinahli et al., 2018) including, 
most importantly for this work, breast cancer (Takahashi 
et  al., 2015; Kurozumi et al.,2017). The advancement of Next 
Generation Sequencing (NGS) techniques (van Dijk et al., 2014), 

such as miRNA-seq, provided the data for more extensive studies 
of miRNAs. Subsequently it has been show in many studies, that 
genetic components such as miRNAs play a significant role in 
development, growth and metastasis of breast cancer (Chang 
et al., 2016). In this regard, a review (Takahashi et al., 2015) was 
carried out to find the functions of miRNAs associated with 
breast cancer and discuss their potential clinical uses. On the 
other hand, Li et al. (2015) focused on the role that miRNAs play 
in breast cancer, as well as discussed their potential as prognostic 
and predictive biomarkers. Moreover, breast cancer associated 
miRNAs were identified in order to understand the impact of 
expression change in this cancer type (Kawaguchi et al., 2017). 
In Wang and Lou (2015), the importance of the oncogene and 
tumor suppressor miRNAs associated with breast cancer are 
studied and developments in therapies are discussed, Kurozumi 
et al. (2017) conducted a survey on the recent trends of miRNA in 
breast cancer, focused on the association of miRNAs in particular 
breast cancer subtypes. For this purpose, Oztemur Islakoglu et al. 
(2018) proposed an approach, in which multiple microarray 
datasets were used to obtain a set of subtype-specific miRNAs. 
Studies also propose machine learning methods: Sathipati and 
Ho (2018) provide a method based on support vector machines 
and feature selection to predict cancer stage. Finally, a review 
(Bahrami et al., 2018) focused on circulating and tissue-specific 
miRNAs as biomarkers.

One of the key methods in studying the role of miRNAs 
in breast cancer is survival analysis. Several tools have been 
developed to perform survival analysis, including Kaplan-Meier 
Plotter (Györffy et al., 2010), BreastMark (Madden et al., 2013) 
or SurvMicro (Aguirre-Gamboa and Trevino, 2014). These, 
however, can be used on microarray datasets, and do not make 
full use of the NGS data. Among the tools that use such data, 
are PROGgeneV2 (Goswami and Nakshatri, 2014), which 
focuses on genes, and PROGmiR (Goswami and Nakshatri, 
2012) which allows for comparison of survival between high 
and low expression groups, but does not relay information about 
cancer subtypes. Finally, integrated solutions begin to emerge, 
like KM-express (Chen et al., 2018), that combines survival data 
as well as gene and cell line expression. Overall, majority of the 
tools and studies are still concerned about the functional and 
expression change of miRNAs associated with breast cancer, but 
the survival analysis of those miRNAs for breast cancer subtypes 
is limited to the best of our knowledge. Moreover, while studies 
employ survival analysis at the validation step, using survival 
data to identify candidate miRNAs is not common. This fact 
motivated us to conduct the present study on survival analysis 
using the NGS-provided high-throughput expression and clinical 
data of miRNAs associated with breast cancer subtypes.

pathways, and contain proteins such as TP53, also present in the regulatory networks. 
Moreover, we find that the genes are enriched in GO terms associated with breast cancer. 
Our results provide detailed analysis of selected miRNAs and their regulatory networks.

Keywords: breast cancer, Kaplan-Meier estimator, miRNA-seq, Nelson-Aalen estimator, protein-protein 
interaction, regulatory circuit, survival analysis
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To address the above fact, we propose a method of identifying 
miRNAs related to breast cancer and its intrinsic subtypes based 
on survial analysis. We use the Kaplan-Meier estimator (Jager 
et al., 2008; Hosmer Jr et al., 2013) and the log-rank test (Bland and 
Altman, 2004; Koletsi and Pandis, 2017) to rank the miRNAs by 
their influence to the patient survival in each breast cancer subtype. 
The results of the survival analysis provide us with four different 
sets of miRNAs with their rank based on the difference of hazard 
ratio (Sedgwick and Joekes, 2015), and p-value of the log-rank test. 
By selecting 100 miRNAs for each subtype and intersecting the 
lists, five different sets of miRNAs are prepared and named as four-
star and one-star miRNAs. The four-star miRNAs are involved in 
all four subtypes, which means that this set of miRNAs can be used 
to discriminate the tumor and control samples of breast cancer. On 
the other hand, the four one-star miRNAs sets contain miRNAs 
specific to the subtypes such as Luminal A, Luminal B, HER2-
Enriched and Basal-Like. These one-star miRNAs can be helpful 
for the identification of breast cancer subtypes.

In order to validate our findings computationally, we use seven 
well-known machine learning methods: Logistic Regression 
(LR, Hosmer Jr et al., 2013), Decision Tree (DT, Rokach and 
Maimon 2008), Artificial Neural Network (ANN), also known 
as Multilayer Perceptron (Huda et al., 2014), Support Vector 
Machine with linear kernel (SVM, Ben-Hur and Weston 2010), 
K-Nearest Neighbors (K-NN, Kramer 2013), Random Forest (RF, 
Qi 2012), and finally Naive Bayes Classifier (NB, Barber 2012). 
Using these methods we performed five 2-class classification 
tasks and obtained the average accuracy of 95%, 68%, 73%, 81% 
and 77% for four-star and one-star miRNAs, respectively. We 
also compared these results, with the accuracy obtained on the 
sets of miRNAs from other studies, where the four-star miRNAs 
identified by us provided superior performance on our expression 
dataset. Next, we investigate the changes in expression of the 
selected miRNAs in different stages of breast cancer. We identify 
10 miRNAs that exhibit variable expression in cancer stages I and 
II, and for 8 of which there is an increase as the stage progresses. 
In order to perform biological validation we analyze the networks 
of miRNAs, genes targeted by those miRNAs, and transcription 
factors (TFs), that target the miRNAs. To do this, we gradually 
refine the sets of miRNAs, genes and TFs, incorporating mRNA 
expression data, to obtain a network of closely interacting 
miRNAs, genes, and TFs that are all associated with breast cancer. 
As a result, we find several regulatory circuits, in which a miRNA 
targets a gene, that produces a transcription factor, that targets 
the same miRNA. We also analyze protein-protein interaction 
networks for the refined set of transcription factors. Finally, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway and gene 
ontology (GO) enrichment analysis is performed, where we 
find cancer-related pathways and GO terms to be significantly 
enriched in genes targeted by the four-star and one-star miRNAs.

MATeRIAlS AND MeThODS
This section describes briefly the Kaplan-Meier and Nelson-
Aalen estimators, the Log-Rank Test, the preparation of the 
dataset and the proposed framework.

Survival Analysis
One of the widely used non-parametric methods for analyzing 
survival is the Kaplan-Meier (KM) estimator (Clark et al., 2003; 
Jager et al., 2008; Stel et al., 2011). The KM estimator refers to 
a certain population and estimates the survival function S(t), 
describing the probability of a certain event (in our case, a 
patient’s death) happening before a certain point in time t, as 
given in the Equation 1.

 S( ) ( ),t P T t t= > < < ∞0  (1)

where T is the random variable representing the time of death. 
A less steep shape of survival function means better prognosis for 
the population, for which the function has been estimated. The 
Kaplan-Merier estimator is defined as in Equation 2.
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where, tk is the time when at least one event (i.e. death) 
occurred, Ek is the number of events occurring at time tk, and 
the so-called “individuals known to survive” at tk (event of 
death not occurred, or right-censored) is expressed by Nk. The 
expression data, along with the status and last days to follow up 
information, is used to compute the KM plots. The log-rank test 
is a non-parametric statistical test used to compare the survival 
curves of the two samples. The test statistic is described by 
Equation 3,
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where Oik and Eik are the observed and expected numbers 
of events (deaths) in group i (one of the two) at time k = 1,…, 
T. The test statistic Z converges to the normal distribution as 
T approaches infinity. The null hypothesis is that there is no 
difference between the populations in the probability of an event 
at any time point. While the log-rank test provides a p-value for 
the difference between groups, it does not yield an estimate of the 
effect size. For this purpose, we compute the hazard ratio (HR): 
the ratio of the hazard rates (probabilities of death at a give time) 
in the two compared groups of patients. Taking our data as an 
example: if HR > 1, then the high expression group has a higher 
chance of dying at any given time point. Under the null hypothesis 
of the log-rank test, i.e. when no difference in the probability of 
death between the two groups, the hazard ratio is equal to 1.

For comparison, we also include another non-parametric 
method of analyzing survival, named as Nelson-Aalen estimator 
(Colosimo et al., 2002; Borgan, 2005). It estimates the cumulative 
hazard rate Λ(t), which is given in the Equation 4:

 Λ( ) log ( ),t S t t= − < < ∞0  (4)

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 1047

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of miRNAs for Breast Cancer SubtypeDenkiewicz et al.

4

The Nelson-Aalen estimator has the form given in 
Equation  5, with the similar symbols as mentioned in the 
Kaplan-Meier estimator.

 ˆ ( )
:

H t E
NNA k t t

k

kk
=

≤
Σ  (5)

Data Preparation
The expression and clinical data of miRNA-seq of breast invasive 
carcinoma (BRCA) is obtained from The Cancer Genome Atlas 
(TCGA Network, 2012). TCGA provides miRNA-seq data in the 
form of reads per million (RPM) of 842 patients. However, the 
cancer subtype information is provided only for 231 patients: 190 
with breast cancer and 41 controls. For this dataset, the subtype 
categorization based on Prediction Analysis of Microarray 50 
genes (PAM 50) is taken (Ohnstad et al., 2017). The statistics for 
each breast cancer subtype are provided in Table 1. With this 
expression data, we have the clinical information such as age, 

gender, last day to followup and status (alive or dead). Moreover, 
we select only those miRNAs for which at least 60% expression 
values are non-zero.

Method
Figure 1 shows the framework of our method in detail. First, 
we perform survival analysis using the KM method separately 
for each cancer subtype. For each subtype of breast cancer, 

FIgURe 1 | Framework of proposed method.

TABle 1 | Statistics of four breast cancer subtypes and control samples.

Subtype Code Sample 
size

Average 
age

Average days to 
last follow-up

Luminal A LA 86 56.96 1704.55
Luminal B LB 39 55.07 1431.86
HER2-Enriched HER2-E 24 52.87 1307.12
Basal-Like BL 41 56.41 1402.34
Control Control 41 54.73 1632.60
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we combine the set of patients having the expression of 
miRNA in cancer subtype with the controls. With such data 
we enter to the survival analysis, where patients are split into 
two balanced groups, based on the high-expression (above 
median) and low-expression (below median) of miRNA. For 
these two groups, we use KM estimator and log-rank test 
to obtain the hazard ratio (HR) and p-value. Using these 
statistics we create four ranking lists of miRNAs (one for each 
breast cancer subtype), based on the difference of hazard 
ratio and p-value, from highest to lowest. We then select 100 
top miRNAs from each of the four subtype-related lists. In 
this way, we obtain filtered lists of miRNAs, each of which 
is most related to one of the breast cancer subtypes. A given 
miRNA can be present in any of these four lists related to the 
subtypes. In this study we focus on sets of miRNAs obtained 
by analyzing the intersection of the four lists. These are: the 
four-star miRNAs which are present in all lists, and one-star 
miRNAs, that are present only in a single list. The four-star 
miRNAs are considered to be relevant in all subtypes, while 
the one-star miRNAs are subtype-specific.

Finally, in order to rank the four-star miRNAs, we use an 
objective function Ψ, which provides a measure of relevance 
incorporating both statistical significance in terms of p-value 
and strength of influence of miRNA to the subtypes, i.e. hazard 
ratio. The objective function Ψ is defined in Equation 6 for each 
miRNA as sum of the difference of hazard ratio and p-value over 
the four subtypes.

 
Ψ Σ= −

=i

S

i iHR p value
1
( )-

 
(6)

where HRi and p-valuei are hazard ratios and p-values obtained 
for a given miRNA for the i-th cancer subtype and S is the 
number of subtypes i.e. equal to 4.

For the computational verification of the miRNAs, we use 
seven popular machine learning methods (Logistic Regression, 
Decision Tree, Artificial Neural Network, Support Vector 
Machine, K-Nearest Neighbour, Random Forest and Gaussian 
Naive Bayes Classifier) to assess the relevance of the four-
star and one-star miRNAs in predicting breast cancer and 
distinguishing its type. As an input for the classifiers, we use the 
expression datasets of patients, in order to perform two different 
experiments. First, for the four-star miRNA set, we perform 
binary classification, by differentiating between tumor vs. control 
cases, without the division into different breast cancer subtypes. 
This is because the four-star miRNAs are related to all subtypes. 
Then, for each set of one-star miRNAs, we train the classifiers 
to distinguish the patients with the particular cancer subtype 
vs. all other patients (those with other breast cancer subtypes 
and controls). Moreover, we compare the accuracy of the above 
machine learning methods on our four-star miRNA set, to other 
sets of miRNAs proposed in the literature as either biomarkers 
or otherwise associated with breast cancer. The analysis is 
conducted in exactly the same fashion as with our miRNAs, as 
described above. Only those sets of miRNAs proposed by other 
studies are used, for which expression data existed in the TCGA 
dataset. These studies are listed along with the results.

ReSUlTS AND DISCUSSION
In this section, we first describe the results of miRNA selection 
procedure based on survival analysis, through which we obtain 
the four-star and one-star miRNAs. Next, we discuss the accuracy 
of classifiers that distinguish cancer patients from controls, as well 
as differentiate the breast cancer subtypes, based on the miRNAs 
expression data. Finally, we validate biological significance of the 
five miRNA sets identified by our method.

In order to validate our results, we perform the following 
analyses: first, we use miRTarBase (Chou et al., 2018) for finding 
miRNA-targeted genes, TransmiR v2.0 (Tong et al., 2019) for 
finding transcription factors targeting the miRNAs, and TRRUST 
v2 (Han et al., 2018) for transcription factor’s targeted genes. 
This data, after refinement, is used to create regulatory networks 
of miRNAs, genes and TFs. Next, we create protein-protein 
interaction (PPI) networks of the transcription factors targeting 
the miRNAs, and identified highly connected nodes, that are 
important in the network. For this purpose, the STRING database 
(Szklarczyk et al., 2018) is used. Thereafter, we perform Kyoto 
Encyclopedia of Genes and Genomes (KEGG, Kanehisa and Goto 
2000) pathway analysis, in order to find pathways influenced by 
the miRNAs’ targeted genes. Finally, Gene Ontology enrichment 
analysis is performed, to find the biological processes, cellular 
components, and molecular functions on which the miRNAs have 
influence through their targeted genes. Both pathway and gene 
ontology analysis is performed using STRING database as well.

Selection of miRNAs Using Survival 
Analysis
We perform the survival analysis using MATLAB software 
(MATLAB, 2018). From the initial set of patients, we retain 
only those, for whom two conditions are met: 1) the breast 
cancer subtype information is known and 2) at least 60% of 
the expression values are non-zero. Using these criteria, 190 
patients are entered into the analysis, forming four groups for 
the breast cancer subtype, as described in the Method section. 
Each group is divided into high and low expression subgroups 
by median split, and hazard ratio is computed between the low 
and high expression groups. The log-rank test comparing the 
two groups is also performed to obtain a p-value. Moreover, the 
survival functions of the high and low-expression groups are 
estimated using the KM estimator, and survival plots are created. 
Then, four rankings (one for each breast cancer subtype) of the 
initial 587 miRNAs are created, based on difference of the hazard 
ratio and p-value relevant to the given subtype, and the top 100 
miRNAs are taken from each list. We inspect, how these lists of 
100 miRNAs intersect, since a given miRNA can be present in 
more than one list, and the intersection is visualized using a Venn 
diagram in Figure 2.

We note the 44 miRNAs present in all four lists as constituting 
the set of four-star miRNAs. Subtype-specific sets (miRNAs 
present in exactly one of the lists) are also identified, comprising 
12 miRNAs for the LA subtype, 14 for LB subtype, 9 for the 
HER2-E subtype, and finally 15 for the BL subtype. The results 
of survival analysis of four-star miRNAs are presented in 
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Table 2. Apart from the value of the previously described scoring 
function, the hazard ratios and corresponding p-values for each 
of the cancer subtype are reported in the same table.
Overall, 26 out of 44 miRNAs are significant (p-value < 0.05) 
after log-rank test for at least one cancer subtype. In all except 
one case there is a negative relation between survivability and 
the expression of the miRNA (HR > 1). The exception was hsa-
miR-361-3p for HER2-E subtype, where the HR = 0.933 and 
p-value = 0.967. Since the sample is not very large, and we were 
mainly interested in ranking based on hazard ratio, and not in 
the influence per se, we do not reject any miRNAs on the base 
of p-value, and proceed with biological validation. The Kaplan-
Meier survival plots of top five miRNAs from the list of four-
star miRNAs are shown in Figure 3 for each subtype. Similarly, 
survial plots of top four one-star miRNAs for each subtype are 
presented in Figure 4, and the obtained statistics in Table 3. Both 
the Kaplan-Meier plots and the cumulative hazard ratio plots, 
created using Nelson-Aalen estimator, indicate in concordance, 
that increased expression increases breast cancer risk. The hazard 
ratio and p-value obtained from the log-rank test for 100 miRNAs 
of each subtype are reported in the Supplementary Table 1. 
Moreover, both Kaplan-Meier survival plots and cumulative 
hazard ratio plots using Nelson-Aalen estimator are provided in 
Supplementary Figures S1–S10.

Selected miRNAs for Classification of 
Breast Cancer
Using seven machine learning methods viz. Logistic Regression, 
Decision Tree, Artificial Neural Network, Support Vector 
Machine, K-Nearest Neighbour, Random Forest and Gaussian 
Naive Bayes Classifier, we perform five binary classification 
tasks by considering four-star and one-star miRNAs for which 

the results are presented in Table 4. The implementations of the 
algorithms is provided by the scikit-learn Python library version 
0.19.1 (Pedregosa et al., 2011), and the detailed parameters of 
each algorithm are reported in the Supplementary Table  2, 
by following the literature (Pedregosa et al., 2011). For each 
breast cancer subtype, the machine learning methods are able 
to distinguish patients with that subtype from other breast 
cancer subtypes and controls, using the expression data of the 
relevant sets of four-star and one-star miRNAs, by achieving 
average accuracy of 95%, 68%, 73%, 81%, and 77% using 5-fold 
cross-validation. Among the seven machine learning methods, 
Random Forest achieves on average the highest accuracy of 84% 
over five sets of miRNAs. Moreover, the four-star set of miRNAs 
provides a higher average accuracy of the classifiers, than 
the sets that have been obtained from the literature, using the 
same expression data. Here 7 studies have been considered, and 
average accuracy (listed in Table 4) ranges from 77% to 94% on 
tumor vs control classification task.

Furthermore, the hierarchical clustering analysis has been 
performed, in the same schema as in the classification task, to 
visualize the comparison between miRNA expression in cancer 
patients and controls for the four-star miRNAs and between the 
cancer subtype and control for one-star miRNAs. The resulting 
heatmaps are provided in the Supplementary Figures 11 and 12.

Selected miRNAs for the Analysis of 
Cancer Stage
We analyze the relationship between miRNA expression and the 
stage of breast cancer, using the R statistical package (R Core 
Team, 2019). We assign each patient to one of breast cancer stages 
(I-IV), according to the AJCC stage data obtained from the TCGA 
database. Moreover, we restrict the analyses to stages I and II, as 
it is more clinically relevant to detect cancer in earlier stages. For 
the one-star miRNAs, only patients having that particular cancer 
subtype are taken, while for the four-star miRNAs all patients, 
for whom stage data were available, are included. The statistics 
of the samples of breast cancer stage for different subtypes are 
presented in the Supplementary Table 3.

For each miRNA, we execute a one-way ANOVA, with 
the independent variable being the stage of cancer, and the 
dependent variable being the expression value of the miRNA. 
We find, among the four-star and one-star miRNA sets, 10 
miRNAs with significant (p-value < 0.05) expression change 
between the stages. The four-star miRNAs identified are: hsa-
miR-224-5p (p-value = 0.004), hsa-miR-574-3p (p-value = 
0.028), hsa-miR-339-5p (p-value = 0.033), hsa-miR-584-5p 
(p-value = 0.035), hsa-miR-452-5p (p-value = 0.040) and hsa-
miR-10b-5p (p-value = 0.050). Moreover, in the Luminal A 
one-star miRNA set, hsa-miR-24-3p (p-value = 0.024), hsa-
miR-455-5p (p-value = 0.037) and hsa-miR-505-3p (p-value 
= 0.038) are having significant p-values. Finally, in the HER2-
Enriched one-star miRNA set, the hsa-miR-30c-5p (p-value = 
0.029) is significant. For all except hsa-miR-30c-5p and hsa-
miR-10b-5p miRNAs, the expression increases with stage. 
This increase is concordant with the increased hazard in the 
group with high expression of these miRNAs, as indicated by 

FIgURe 2 | Venn diagram of top 100 miRNAs for four breast cancer 
subtypes.
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the survival analysis, and implies, that the miRNA expression 
increases with stage progression. For example, overexpression 
of hsa-miR-10b-5p is known to trigger invasion and metastasis 
of breast cancer (Ma et al., 2007), which can be inhibited by 
silencing this miRNA (Ma et al., 2010) in a mouse model. 
Different survival characteristics of high and low expression 
groups can also induce changes in stage expression of miRNAs, 
as patients with high hazard value progress more rapidly 
through stages of cancer. On the other hand, an expression 
change in a given cancer stage can indicate a potential miRNA, 
that is associated specifically with a given stage. The plots 
showing the miRNA expression in different cancer stages are 

given in Figure 5. The full results of ANOVA are available in the 
Supplementary Table 4, as well as plots for all miRNAs in four-
star and one-star sets are given in Supplementary Figure 15.

Selected miRNAs for Regulatory Network 
Analysis
In order to identify the genes that are targeted by miRNAs and 
TFs, and the TFs that target miRNAs for four-star and one-star 
miRNAs, we used recently published databases of miRTarBase, 
TRRUST and TransmiR respectively. Then we refine these three 
sets to select only those genes, TFs and miRNAs, that are closely 

TABle 2 | The four-star miRNAs ranked based on the sum (Ψ) of the difference of hazard ratio and p-value over the four breast cancer subtypes, along with the 
PubMed ID.

miRNA lA lB heR2-e Bl Ψ Score PubMed ID

hR p-value hR p-value hR p-value hR p-value

hsa-miR-365a-3p 3.308 0.001 2.467 0.044 3.503 0.007 4.851 0.000 14.076 23592263
hsa-miR-452-5p 2.311 0.019 3.039 0.012 4.922 0.000 2.367 0.065 12.542 23592263
hsa-miR-378a-3p 2.318 0.019 2.910 0.017 3.003 0.020 4.037 0.002 12.210 23592263
hsa-miR-215-5p 2.127 0.039 2.636 0.037 2.158 0.101 4.655 0.001 11.399 23592263
hsa-miR-103a-3p 3.664 0.000 2.182 0.086 3.713 0.004 1.572 0.376 10.664 21572407
hsa-miR-224-5p 3.193 0.001 3.435 0.005 2.372 0.061 1.095 0.996 9.031 23399735
hsa-miR-335-3p 2.203 0.035 2.119 0.100 4.142 0.002 2.317 0.068 10.576 23592263
hsa-miR-326 2.661 0.010 2.081 0.110 2.455 0.057 3.061 0.014 10.066 20216554
hsa-miR-10a-5p 1.344 0.471 1.934 0.157 2.217 0.110 4.203 0.001 8.958 23622248
hsa-miR-217 1.848 0.092 4.166 0.001 1.985 0.162 1.346 0.610 8.479 19008416
hsa-miR-10b-3p 2.091 0.054 2.098 0.112 1.521 0.443 3.878 0.003 8.976 22012620
hsa-miR-378a-5p 2.791 0.004 1.560 0.395 2.076 0.135 2.996 0.017 8.874 23592263
hsa-miR-193a-5p 2.372 0.016 1.803 0.215 3.078 0.016 1.922 0.172 8.757 23446348
hsa-miR-664a-3p 1.967 0.066 1.411 0.527 1.470 0.494 3.456 0.006 7.210 23592263
hsa-miR-30c-2-3p 2.731 0.006 1.847 0.208 2.197 0.118 2.093 0.117 8.419 23592263
hsa-miR-511-5p 2.245 0.030 2.316 0.064 1.956 0.176 2.366 0.064 8.549 23592263
hsa-miR-143-3p 2.400 0.014 1.841 0.206 1.157 0.901 2.567 0.042 6.802 17504027
hsa-miR-10b-5p 1.524 0.272 2.304 0.069 2.374 0.079 2.445 0.056 8.171 17898713
hsa-miR-22-3p 2.148 0.038 2.715 0.025 1.099 0.992 1.786 0.237 6.456 20371350
hsa-miR-140-3p 1.769 0.141 2.083 0.118 2.270 0.090 2.481 0.051 8.203 23446348
hsa-miR-338-3p 2.806 0.005 1.644 0.313 1.885 0.181 1.164 0.879 6.121 25945841
hsa-miR-451a 2.035 0.050 1.610 0.330 1.639 0.340 2.812 0.022 7.354 20227367
hsa-miR-486-5p 2.263 0.027 1.380 0.554 1.565 0.401 2.603 0.035 6.793 23592263
hsa-miR-28-3p 1.966 0.063 2.363 0.063 2.169 0.101 1.499 0.451 7.318 23592263
hsa-miR-139-5p 1.709 0.167 1.685 0.293 1.791 0.253 2.641 0.033 7.080 21925125
hsa-miR-125b-2-3p 1.869 0.089 1.821 0.223 0.986 0.850 2.683 0.034 6.162 23592263
hsa-miR-100-5p 1.868 0.089 1.811 0.235 1.771 0.280 2.311 0.086 7.071 19739117
hsa-miR-195-5p 1.547 0.253 1.351 0.608 1.430 0.550 2.642 0.036 5.524 18320040
hsa-miR-584-5p 1.623 0.200 1.812 0.218 2.546 0.053 1.442 0.512 6.442 23446348
hsa-let-7c-5p 1.835 0.099 1.821 0.223 1.118 0.972 2.224 0.094 5.610 17600087
hsa-miR-574-3p 2.434 0.022 1.330 0.624 1.489 0.467 1.304 0.665 4.780 23592263
hsa-miR-144-5p 2.184 0.032 1.239 0.747 1.387 0.574 1.822 0.214 5.065 26458302
hsa-miR-145-5p 1.696 0.158 1.446 0.497 1.296 0.701 2.191 0.098 5.175 20160723
hsa-let-7e-3p 2.092 0.054 1.159 0.875 1.460 0.502 1.491 0.449 4.322 24398324
hsa-miR-24-1-5p 1.443 0.348 2.057 0.123 1.045 0.915 1.900 0.191 4.868 23592263
hsa-miR-30a-3p 1.364 0.466 1.258 0.720 1.815 0.256 1.902 0.180 4.717 23592263
hsa-miR-362-5p 1.584 0.222 2.059 0.117 1.646 0.333 1.316 0.657 5.277 24495516
hsa-miR-339-5p 1.333 0.509 1.303 0.653 1.716 0.285 1.089 0.985 3.010 23592263
hsa-miR-361-3p 1.992 0.071 1.485 0.445 1.381 0.584 0.933 0.967 3.723 23592263
hsa-miR-30e-3p 1.518 0.280 1.748 0.253 1.327 0.656 1.076 0.977 3.504 23592263
hsa-miR-145-3p 1.684 0.164 1.435 0.506 1.264 0.743 1.760 0.257 4.473 24398324
hsa-miR-29a-3p 1.526 0.271 1.718 0.261 1.401 0.561 1.080 0.980 3.651 19850741
hsa-miR-34a-5p 1.653 0.178 1.830 0.197 1.603 0.360 1.403 0.539 5.216 18834855
hsa-miR-193b-5p 1.373 0.454 1.034 0.900 1.785 0.242 1.022 0.876 2.742 23446348
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FIgURe 3 | Survival plots of top five four-star miRNAs: (A–D):hsa-miR-365a-3p, (e–h):hsa-miR-452-5p, (I–l):hsa-miR-378a-3p, (M–P):hsa-miR-215-5p and 
(Q–T):hsa-miR-103a-3p as mentioned in Table 2 where blue line indicates low expression group and red line indicates high expression group.
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related. The procedure is described below and visualized in 
Figure 6.

• Step 1: for the miRNAs in a given set (either four-star or one of 
the one-star) we identify the targeted genes.

• Step 2: the TFs that target the miRNAs in the set are identified.
• Step 3: for the obtained TFs we identify a smaller subset of 

targeted miRNAs.

• Step 4: the genes targeted by this smaller subset of miRNAs is 
selected.

• Step 5: the set of TFs associated with the genes identified in 
step 4.

• Step 6: an intersection of the two sets of TFs (produced by 
steps 2 and 5) is computed. These TFs from both these sets 
target the initial miRNAs.

• Step 7: we find the genes targeted by TFs from step 6.

FIgURe 4 | Survival plots of top four one-star miRNAs for LA:(A) hsa-miR-30b-3p (B) hsa-miR-1247-5p (C) hsa-miR-221-3p (D) hsa-miR-186-5p LB:(e) hsa-miR-
485-3p (F) hsa-miR-582-3p (g) hsa-miR-491-5p (h) hsa-miR-22-5p HER2-E:(I) hsa-miR-30c-5p (J) hsa-miR-26b-3p (K) hsa-miR-29c-5p (l) hsa-miR-19b-3p 
BL:(M) hsa-miR-199b-5p (N) hsa-miR-889-3p (O) hsa-miR-26b-5p (P) hsa-miR-214-3p subtypes as mentioned in Table 3 where blue line indicates low expression 
group and red line indicates high expression group.
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• Step 8: genes, in turn, are targeted by the initial set of miRNAs.
• Step 9: the expression values of miRNAs are correlated with 

the mRNA expression, and only those mRNAs are selected, for 
which Pearson correlation is below −0.3.

• Step 10: the TFs targeting genes corresponding to the mRNAs 
are found.

• Step 11: the miRNA set is restricted by considering only the 
miRNAs targeted by TFs identified in the previous step.

The numbers of miRNAs, genes and TFs in each phase of the 
procedure is provided in Supplementary Table 5, and the details 
of each step, in the Supplementary Table 6.

TABle 3 | The one-star miRNAs ranked based on the difference of hazard ratio and p-value for four breast cancer subtypes.

miRNA lA miRNA lB

hR p-value Ψ Score hR p-value Ψ Score

hsa-miR-30b-3p 1.461 0.354 1.107 hsa-miR-485-3p 2.073 0.116 1.956
hsa-miR-1247-5p 1.458 0.352 1.105 hsa-miR-582-3p 1.892 0.179 1.713
hsa-miR-221-3p 1.373 0.437 0.936 hsa-miR-491-5p 1.603 0.348 1.255
hsa-miR-222-3p 1.363 0.478 0.885 hsa-miR-22-5p 1.588 0.352 1.236
hsa-miR-1180-3p 1.362 0.477 0.885 hsa-miR-1249-3p 1.531 0.401 1.131
hsa-miR-186-5p 1.332 0.505 0.827 hsa-miR-146b-3p 1.288 0.681 0.608
hsa-miR-107 1.331 0.509 0.823 hsa-miR-374b-5p 1.260 0.713 0.546
hsa-miR-505-3p 1.317 0.530 0.787 hsa-miR-151a-3p 1.209 0.795 0.414
hsa-miR-455-5p 1.308 0.534 0.774 hsa-miR-152-3p 1.004 0.844 0.159
hsa-miR-532-5p 1.221 0.689 0.532 hsa-miR-27b-5p 1.020 0.877 0.143
hsa-miR-502-3p 1.217 0.689 0.528 hsa-miR-181a-3p 1.019 0.876 0.143
hsa-miR-24-3p 1.208 0.689 0.519 hsa-miR-185-5p 1.027 0.889 0.138

hsa-miR-1307-3p 1.054 0.940 0.114
hsa-miR-425-3p 0.939 0.957 -0.019

miRNA heR2-e miRNA Bl

hR p-value Ψ Score hR p-value ΨScore

hsa-miR-30c-5p 1.746 0.295 1.451 hsa-miR-199b-5p 1.508 0.447 1.061
hsa-miR-26b-3p 1.175 0.867 0.308 hsa-miR-889-3p 1.240 0.753 0.486
hsa-miR-29c-5p 1.163 0.883 0.281 hsa-miR-26b-5p 1.230 0.769 0.461
hsa-miR-19b-3p 1.128 0.941 0.187 hsa-miR-214-3p 1.145 0.907 0.238
hsa-miR-20b-5p 1.019 0.871 0.148 hsa-miR-136-3p 0.999 0.836 0.163
hsa-miR-874-3p 1.038 0.900 0.138 hsa-miR-134-5p 1.011 0.856 0.156
hsa-miR-3127-5p 1.038 0.901 0.136 hsa-miR-101-5p 1.022 0.873 0.148
hsa-miR-299-5p 1.059 0.941 0.118 hsa-miR-30b-5p 0.992 0.844 0.148
hsa-miR-20a-3p 1.068 0.956 0.111 hsa-miR-542-3p 1.028 0.888 0.140

hsa-miR-154-5p 1.060 0.947 0.114
hsa-miR-375 1.066 0.958 0.108

hsa-miR-409-5p 0.971 0.893 0.078
hsa-miR-409-3p 0.929 0.972 -0.043
hsa-miR-539-5p 0.925 0.984 -0.059

hsa-let-7f-5p 0.920 0.993 -0.073

TABle 4 | Classification results of breast cancer using four-star miRNAs in comparison with other sets of miRNAs in the literature, as well as the results of one-star 
miRNAs. The four-star results are sorted according to average prediction accuracy. From other studies only those four-star miRNAs, for which expression data was 
available, are included.

miRNA set No. of Set 
of miRNA

lR DT ANN SVM K-NN RF NB Average

4-star (Our study) 44 0.965 0.914 0.935 0.922 0.978 0.965 0.974 0.951
[55] 23 0.927 0.922 0.927 0.952 0.974 0.948 0.897 0.935
[9] 12 0.901 0.901 0.909 0.923 0.957 0.953 0.953 0.928
[64] 3 0.888 0.918 0.883 0.888 0.905 0.922 0.931 0.905
[71] 2 0.827 0.836 0.836 0.814 0.862 0.844 0.818 0.834
[2] 3 0.780 0.806 0.858 0.780 0.871 0.832 0.801 0.818
[44] 2 0.706 0.762 0.823 0.693 0.823 0.805 0.849 0.780
[77] 3 0.732 0.749 0.809 0.719 0.806 0.789 0.788 0.770
1-star LA 12 0.663 0.667 0.711 0.597 0.710 0.710 0.676 0.676
1-star LB 14 0.577 0.745 0.775 0.635 0.805 0.810 0.732 0.726
1-star HER2-E 9 0.649 0.827 0.736 0.771 0.896 0.901 0.858 0.805
1-star BL 15 0.701 0.792 0.762 0.740 0.809 0.827 0.731 0.766
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We use these final, refined sets to create regulatory miRNA-
Gene-TF networks, that show the relationships among the 
miRNAs, genes and transcription factors. These networks 
are given in Supplementary Figures 13 and 14. All such 
networks have been created for each miRNA set. However in 
this article, a combined network of miRNA-Gene-TF is shown 
in Figure 7. This combined network shows all the miRNAs, 
genes, and TFs present in other five networks. For better 
visualization, each network is provided in two forms: in one, 
all the nodes (miRNAs, genes, TFs) are present, in the other, 
only those nodes are presented, that form loops, where the TF 
and a gene with the same name are both associated with the 
same miRNA.

Several important transcription factors are present in the 
combined networks, such as the MYC proto-oncogene protein, 
which is acting as an oncogene for breast cancer (Dang, 
2012), or the estrogen receptor 1 (ESR1), highly relevant to 
breast cancer (Clatot et al., 2017). Moreover, the breast cancer 
type 1 susceptibility protein (BRCA1), which acts as a tumor 
suppressor trough DNA repair (Friedenson, 2007) is present. 

Another node is the hypoxia-inducible factor 1-alpha encoded 
by HIF1A gene, whose abnormal expression is widely known 
to be involved in multiple cancers (Yeo et al., 2004). On the 
other hand, the nuclear factor NF kappa B encoded by NFKB1 
gene, suspected but not associated directly with breast cancer 
(Curran et al., 2002), is also present and interacting with 
other elements in the network, which may indicate an indirect 
relationship with this disease. The E2F1 and E2F3 transcription 
factors, implicated in breast cancer and other cancer types, 
are also present: E2F1 is promoting cancer cell proliferation 
(Berteaux et al., 2005), while overexpression of E2F3 can lead 
to development of cancer (Vimala et al., 2012).

Subsequently, from the interaction results of miRNA-Gene-TF 
networks, we identify a set of regulatory circuits, where a certain 
miRNA targets a gene, and is targeted by a TF which is a product 
of the same gene and interacting with each other. For example, 
hsa-miR-100-5p targets TP53 gene, which encodes the cellular 
tumor antigen p53, which is a tumor suppressor and alterations 
of which is associated with breast cancer (Børresen-Dale, 2003; 
Bourdon et al., 2005). These circuits are shown in Figure 8.

FIgURe 5 | Expression of miRNAs in cancer stages I and II, for those 10 miRNAs, that have shown significant difference in expression. For the four-star miRNAs, 
these are: (A) hsa-miR-224-5p, (B) hsa-miR-574-3p, (C) hsa-miR-339-5p, (D) hsa-miR-584-5p, (e) hsa-miR-452-5p, (F) hsa-miR-10b-5p; For LA one-star miRNA 
set: (g) hsa-miR-24-3p, (h) hsa-miR-455-5p, (I) hsa-miR-505-3p; For HER-2: (J) hsa-miR-30c-5p
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Selected miRNAs for Protein-Protein 
Interaction Network Analysis
Furthermore, we look at protein-protein interaction (PPI) 
networks of the refined sets of proteins (TFs) that interact with 
the four-star and one-star miRNAs. Using STRING database 

we create six networks: one for each of the five sets of miRNA, 
and a combined network, using the transcription factors 
present in all of the five networks. All networks have highly 
significant enrichment p-values, indicating that significantly 
more interactions are present, than expected. The p-values are: 

FIgURe 6 | Diagrams representing the steps of refining the miRNAs, gene and TF sets. The steps 1-8 are, while the steps 9, 10 and 11 are based on negative 
correlation. (A) four-star miRNAs and one-star miRNAs for (B) LA, (C) LB, (D) HER2-E and (e) BL.
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FIgURe 7 | Regulatory networks of miRNAs (yellow rectangle), genes (purple ellipse) and transcription factors (blue octagon), created using the combined list of 
transcription factors. The network (A) contains all elements. Network (B) contians only the loops between miRNAs and same-named Genes and TFs
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FIgURe 8 | Regulatory circuits identified from cross-referencing miRNA and TF targets for the four-star and one-star miRNAs. In each subfigure, a TF targets a 
miRNA, that in turn targets a Gene associated with that TF. Multiple miRNAs are combined in the plot for the same TF and gene. The miRNAs are represented by 
yellow rounded rectangles, genes by purple ellipses, and transcription factors by blue octagons.
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0.037 for Luminal A network, 5.88e−5 for Luminal B, 8.12e−5 
for HER2-Enriched, 0.012 for Basal-Like, and less than 1.00e−16 
for both the four-star network and the combined network. The 
combined network is presented in Figure 9, while the individual 
networks are shown in Supplementary Figure 16. From each 
PPI network, the degree of every node (number of interactions of 
a given protein) is computed, and shown alongside each network 
in respective figure. Here, our focus is to identify proteins 
forming hubs in the PPI networks, i.e. those having relatively 
large number of interactions. These highly connected proteins 
can be seen as significant, as cancer-related proteins tend to have 
more interaction partners and be located close to central hubs 
(Jonsson and Bates, 2006). They often are the very transcription 
factors discussed in the previous section. It is to be noted that 
several proteins with high number of interactions have been 
found in the combined network, starting with the protein MYC, 
being the most interacting for the combined network, as well as 
for the networks corresponding to the four-star miRNA set, and 
the one-star LB, HER2-E, and BL sets. Next, the BRCA1 protein 
is present and highly connected in the combined network and 
the LB network. Moreover, the estrogen receptor 1 (ESR1) is 
also present an highly connected in the combined network, as 
well as in HER2-E and BL network. The most interacting for 
the Luminal A breast cancer subtype, is the HIF1A protein, 
also mentioned in the discussion of the regulatory networks. 
Finally, one moderately connected protein not present in the 
combined regulatory network is the Polycomb group protein 
EZH2, identified as a marker of aggressive breast cancer (Kleer 
et al., 2003). The composition of the PPI networks is given in 
Supplementary Table 7, and the details of PPI interactions are in 
the Supplementary Table 8.

Selected miRNAs for Kegg Pathway 
Analysis
For four-star and one-star miRNAs, we performed a KEGG 
pathway analysis using STRING database online tool, in 
order to uncover the pathways affected. The analysis has 
been performed for the refined sets of genes, associated with 
each of the miRNA sets. All five sets of genes are found to 
be enriched in pathways relating to microRNAs in cancer 
(hsa05206). Similarly, all cases except Luminal A were 
enriched in breast cancer (hsa05224) and pathways in cancer 
(hsa05200). Moreover, in all except HER2-Enriched subtype, 
apoptosis (hsa04210) is enriched (Musgrove and Sutherland, 
2009). Many cancer-related pathways are also enriched in 
most of the five sets. These are for example the PI3K-Akt 
signaling pathway (hsa04151), which plays a significant role in 
tumor proliferation and endocrine resistance in breast cancer 
(Paplomata and O’Regan, 2014; Raphael et al., 2018), or the 
well studied p53 pathway [hsa04115, Sherr and McCormick 
(2002)]. Another example is the MAPK signaling pathway 
(hsa04010), aberrations in which are present in many tumor 
types (Downward, 2003), especially including the Basal-Like 
breast cancer (Giltnane and Balko, 2014). Significant pathways 
related to breast cancer for the four-star and one-star miRNAs 
are presented in Table 5. Full information about all enriched 
pathways is provided in Supplementary Table 9.

Selected miRNAs for gene Ontology 
enrichment Analysis
Finally, we analyzed the GO annotations of targeted genes of 
four-star and one-star miRNAs, also using STRING database. 

FIgURe 9 | The PPI network created for the combined set of transcription factors. The barplot shows the number of connections for the proteins. Colors of edges 
represent protein-protein association type, as indicated in the legend. Node colors are for aesthetic purposes.
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Significantly enriched terms, related to breast cancer, are presented 
in Table 6, and the full results of GO enrichment analysis are 
available in the Supplementary Table 10. Most importantly, 
among the enriched biological processes are regulation of cell 
cycle (GO:0051173) and regulation of cell population proliferation 
(GO:0010604), that are linked to cancer (Yuan et al., 2015). These 
are enriched in the four-star miRNAs and in one-star HER2-E 
and BL sets, the latter also in the LB set. Among the molecular 
functions obtained from GO enrichment analysis are chromatin 
binding (GO:0003682) and protein binding (GO:0005515), 
significant in the four-star miRNAs, and LB, HER2-E and BL sets. 
In the one-star LA miRNAs, on the other hand, (GO:0003677) 
DNA binding and (GO:0019901) protein kinase binding are 
significantly enriched, both also enriched in the four-star 
miRNAs. For the four-star miRNAs, most notable significantly 

enriched cellular components include nucleus (GO:0005634), 
chromatin (GO:0000785) and heterochromatin (GO:0000792). In 
the case of one-star miRNAs the nucleus (GO:0005634) was also 
significantly enriched in all sets, except LA.

CONClUSION
In this article, we proposed a method allowing to investigate the 
miRNAs related to breast cancer, based on Kaplan-Meier survival 
analysis and expression data obtained from sequencing of miRNAs. 
This method provides a subset of miRNAs specific to breast cancer 
subtypes. In particular, using our method, we have identified 
miRNAs for which increased expression decreases the odds of 
survival across all subtypes (four-star), and those related in this way 

TABle 5 | KEGG pathways significantly enriched in the refined gene set.

ID Description 4-star lA lB heR2-e Bl

hsa05224 Breast cancer ✓ ✓ ✓ ✓
hsa05200 Pathways in cancer ✓ ✓ ✓ ✓
hsa05206 MicroRNAs in cancer ✓ ✓ ✓ ✓ ✓
hsa05202 Transcriptional misregulation 

in cancer
✓ ✓

hsa04210 Apoptosis ✓ ✓ ✓ ✓
hsa04215 Apoptosis - multiple species ✓ ✓ ✓ ✓
hsa04115 p53 signaling pathway ✓ ✓ ✓ ✓
hsa04151 PI3K-Akt signaling pathway ✓ ✓ ✓ ✓
hsa04010 MAPK signaling pathway ✓ ✓ ✓
hsa04110 Cell cycle ✓ ✓ ✓ ✓

TABle 6 | Gene Ontology terms significantly enriched in the refined gene set.

ID Description 4-star lA lB heR2-e Bl

GO: Biological Process
GO:0051173 Regulation of cell cycle ✓ ✓ ✓
GO:0010604 Regulation of cell population proliferation ✓ ✓ ✓ ✓
GO:0000122 Negative regulation of transcription by RNA polymerase II ✓ ✓ ✓ ✓
GO:0010332 Response to gamma radiation ✓
GO:0045892 Negative regulation of transcription, DNA-templated ✓ ✓ ✓
GO:0006974 Cellular response to DNA damage stimulus ✓ ✓ ✓ ✓
GO:1902043 Positive regulation of extrinsic apoptotic signaling pathway ✓

via death domain receptors
GO: Molecular Function
GO:0003682 Chromatin binding ✓ ✓ ✓ ✓
GO:0005515 Protein binding ✓ ✓ ✓ ✓
GO:0003677 DNA binding ✓ ✓ ✓
GO:0019901 Protein kinase binding ✓ ✓ ✓
GO:0019900 Kinase binding ✓
GO:0008139 Nuclear localization sequence binding ✓
GO:0043565 Sequence-specific DNA binding ✓ ✓ ✓
GO: Cellular Component
GO:0044454 Nuclear chromosome part ✓ ✓
GO:0005634 Nucleus ✓ ✓ ✓ ✓
GO:0000785 Chromatin ✓ ✓
GO:0000792 Heterochromatin ✓ ✓
GO:0005737 Cytoplasm ✓ ✓ ✓
GO:0000803 Sex chromosome ✓
GO:0005829 Cytosol ✓ ✓ ✓
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only to one subtype (one-star). With the use of four-star miRNAs, 
we are able to classify patients into tumor and control by achieving 
95% average accuracy, while the one-star miRNAs provide 
maximum of 81% average accuracy for subtype identification 
over seven machine learning methods. Moreover, the miRNAs 
described in the stage expression analysis can be the focus of future 
studies concerning cancer stage progression and its mechanisms. 
Additionally, investigating the miRNA-Gene-TF networks allowed 
us to identify miRNAs involved in regulatory circuits, where a 
miRNA targets and is being targeted by a certain Gene-TF pair. 
Moreover, PPI network analysis shows known cancer-related 
proteins, such as TP53, ESR1, BRCA1, MYC and others, which are 
encoded by genes targeted by some of the four-star and one-star 
miRNAs, adding to the validity of our study. Furthermore, KEGG 
pathway and GO enrichment analyses confirmed the biological 
relevance of our four-star and one-star miRNAs by showing that 
several pathways, processes and functions known to be associated 
with breast cancer as their targeted genes are enriched.

The outcome of this research can help to advance the 
understanding of miRNAs involvement in breast cancer and 
its subtypes. The key miRNAs can be further tested for use as 
biomarkers, which are crucial for the development of breast 
cancer detection and treatment response in the clinical setting 
(Gasparri et al., 2018). They can also potentially serve as targets 
for therapeutic modulation, which is a promising application of 
miRNAs (Mehrgou and Akouchekian, 2017).
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