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The 5-hydroxytryptamine 2C receptor (5-HTR2C) is a class G protein-coupled receptor
(GPCR) enriched in the hypothalamus and the brain stem, where it has been shown to
regulate energy homeostasis, including feeding and glucose metabolism. Accordingly, 5-
HTR2C has been the target of several anti-obesity drugs, though the associated side
effects greatly curbed their clinical applications. Dissecting the specific neural circuits of 5-
HTR2C-expressing neurons and the detailed molecular pathways of 5-HTR2C signaling in
metabolic regulation will help to develop better therapeutic strategies towards metabolic
disorders. In this review, we introduced the regulatory role of 5-HTR2C in feeding behavior
and glucose metabolism, with particular focus on the molecular pathways, neural
network, and its interaction with other metabolic hormones, such as leptin, ghrelin,
insulin, and estrogens. Moreover, the latest progress in the clinical research on 5-HTR2C
agonists was also discussed.

Keywords: 5-HTR2C, feeding behavior, glucose homeostasis, obesity, hypothalamus, neural network, energy
metabolism, lorcaserin
INTRODUCTION

Serotonin, or 5-hydroxytryptamine (5-HT), is an essential neurotransmitter that has been shown to
be involved in the regulation of multiple physiological and behavioral functions, including emotion,
cognition, sleep, exercise, and energy homeostasis (1, 2). There are seven classes of receptors in the
5-HT family, most of which are G-protein coupled receptors (3, 4). Among them, 5-HTR2C has
been shown as a key regulator for feeding and glucose homeostasis. Knock-out of 5-HTR2C in mice
resulted in increased food intake, insulin resistance, and obesity (5, 6), while pharmacological
activation of the 5-HTR2C inhibits food intake (7). Thus, 5-HTR2C has become a hot target for
anti-obesity treatment. For example, the non-selective 5-HTR2C agonist D-Fenfluramine (d-Fen)
(Table 2), and selective 5-HTR2C agonist lorcaserin (Table 2) were approved by Food and Drug
Administration for body weight management. However, they were withdrawn due to associated side
effects. A better understanding of the mechanism of 5-HTR2C on energy homeostasis will facilitate
the development of improved drugs targeting 5-HTR2C pathways for metabolic diseases. In this
review, we recapped the molecular mechanisms and discussed the neural circuits of 5-HTR2C in
regulating energy metabolism. In addition, the functional interactions between 5-HTR2C and other
n.org July 2021 | Volume 12 | Article 6942041
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appetite-regulatory signaling pathways were discussed. Since 5-
HTR2C has become one of the most promising targets for
treating obesity, we also discussed the clinical application of 5-
HTR2C as a potential therapeutic target in treating
metabolic diseases.
5-HTR2C SIGNAL TRANSDUCTION

5-HTR2C is one of the first sequenced and cloned 5-HT
receptors (8). The gene coding 5-HTR2C is located at
chromosome Xq24 in humans. It contains three introns
(instead of two, such as 5-HTR2A and 5-HTR2B) and encodes
a protein product with seven transmembrane regions. There is
more than 80% homology of 5-HTR2C in the transmembrane
regions among mice, rats, and humans (9). 5-HTR2C is widely
expressed in the central nervous system (CNS) compared to the
peripheral nervous system (10). In the CNS, 5-HTR2C is
expressed in these known brain areas that are related to energy
metabolism, including the ventral tegmental area (VTA), the
arcuate nucleus (ARC), the nucleus tractus solitarius (NTS),
paraventricular nucleus of the hypothalamus (PVN), and
lateral parabrachial nucleus (LPBN) (11). Genetic studies with
loss or gain function of 5-HTR2C indicate a key role of 5-HTR2C
in these brain regions in maintaining energy homeostasis (12).
Pharmacological studies using its agonists or antagonists also
revealed that central 5- HTR2C is involved in various metabolic
diseases such as diabetes and obesity (13). In line, a higher
density of 5-HTR2C was found in the hypothalamus in Prader-
Willi syndrome (PWS) patients showing hyper appetite and
obesity (14).

The best understood function of 5-HTR2C is food intake
regulation through 5-HTR2C action in pro-opiomelanocortin
(POMC) neurons in the hypothalamus (Figure 1). Serotonin
binding to 5-HTR2C leads to the dissociation of a heterotrimeric
G protein that binds to the second intracellular loop of 5-
HTR2C. Upon dissociation, the subunit Ga/q11, activates
phospholipase C, generating inositol triphosphate (IP3) and
diacylglycerol (DAG), which activates Protein Kinase C (PKC).
PKC activates the extracellular regulated kinase (ERK) pathway,
leading to the phosphorylation of c-Fos and POMC synthesis.
POMC is processed into a-melanocyte-stimulating hormone (a-
MSH) that activates neurons in the PVN via melanocortin 4
receptors (MC4Rs) (15). Activation of PVN neurons induces
satiety, i.e., cessation of eating, an anorexic response.

Of note, 5-HTR2C is the only known GPCR whose mRNA
undergoes post-transcriptional editing to yield different receptor
isoforms (16). This RNA editing process further modulates the
basal activity of 5-HTR2C and/or the sensitivity of 5-HTR2C
(17). The 5-HTR2C mRNA is edited in 5 distinct sites (18)
resulting in at least 33 distinct mRNAs and 25 distinct isoforms
of the protein in humans (19). The activity of the 5-HTR2C is
regulated through the ratio of these truncated to full-length
receptors. An increase in the truncated receptor sequesters the
full-length receptor intracellularly, decreasing 5-HTR2C
signaling (20). Overexpression of fully-edited receptors
Frontiers in Endocrinology | www.frontiersin.org 2
decreased the expression of POMC in the hypothalamus and
caused hyperphagia in mice (21). In addition, mutation of
SNORD115, a small RNA that regulates alternative splicing of
5-HTR2C, is observed in most in PWS patients who are
characterised by hyperphagia and obesity (14).

Taken together, 5-HTR2C is associated with multiple signal
transduction pathways, mobilizing various intracellular signaling
molecules. An in-depth understanding of the gene-editing
processes of 5-HTR2C in the central regulation of metabolism
may help to identify the differentially expressed targets for
pharmacological operations and the development of new drugs.
FEEDING BEHAVIOR

5-HTR2C in POMC Neurons in the ARC
and NTS
POMC neurons in the ARC are characterized as the first-order
neurons that regulate energy balance in the hypothalamus (22).
In the ARC, most of POMC neurons co-express 5-HTR2C (23)
and receive inputs from serotoninergic nerve fibers terminate
(24). 5-HTR2C has also been proved to regulate energy
homeostasis. Mice with global mutation or knock-out of the 5-
HTR2C gene (2C-null) developed hyperphagia and obesity
(Table 1) (5, 25, 26), and 5-HTR2C agonist d-Fen was
reported to suppress mice food intake, contributing to the
anorexigenic effects (27). Electrophysiological studies showed
that selective 5-HTR2C agonists, including m-chlorophenyl
piperazine (mCPP), d-Fen (23), could activate ARC POMC
neurons and stimulate POMC expression by increasing the
mRNA level (28–30). ARC POMC neurons produce a-MSH,
an endogenous agonist of MC4Rs (31–33). It was reported that
the mutation of the MC4R gene led to insensitivity to the
anorectic effect of d-Fen (34), suggesting that the function of
ARC 5-HTR2C required a central melanocortin pathway. In
particular, the involved MC4R population was probably located
at the single minded-1 (SIM1) neurons in the PVN, because the
restoration of MC4Rs in SIM1 neurons in MC4R KO mice was
sufficient to rescue anorexigenic effects caused by the 5-HTR2C
agonist (32, 35, 36). Moreover, deleting the 5-HTR2C gene only
in POMC neurons (POMC-2C-null) increased mice food intake
(Table 1) (15), while re-expressed 5-HTR2C in POMC neurons
(POMC-2C-RE) could rescue this phenotype (Table 1) (25).
Further, at the cellular level, transient receptor potential cation 5
(TrpC5) was required to activate POMC neurons by 5-HTR2C,
as the intraperitoneal injections of 5-HTR2C agonist failed to
suppress food intake in TrpC5 KO mice (37). Thus, the feeding
inhibitory effect by activating 5-HTR2C was at least partly
mediated by the POMC neurons in the ARC (Figure 2) (23, 38).

In addition to the ARC, NTS, a brainstem center for satiety
signals, also contains substantial POMC-expressing neurons that
co-express 5-HTR2C (39, 40). Studies have shown that 5-HT2CR
in the NTS is involved in the anorexic effect of the two 5-HT2CR
agonists, lorcaserin and WAY161,503 and chemogenetics
activation of 5-HTR2C-expressing neurons in the NTS
decrease food intake in mice (38). Interestingly, different from
July 2021 | Volume 12 | Article 694204
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TABLE 1 | Phenotypes of the 5-HTR2C deficient mice.

Mice Model Body Weight Fat Mass Lean Mass Food Intake Binge-like Eating Hepatic Glucose Production Reference

2C-null ↑ ↑ ↓ ↑ ↓ ↑ (5, 25)
POMC-2C-null ↑ ↑ ↓ ↑ ↓ ↑ (15)
POMC-2C-RE ↔ ↔ ↔ ↔ / ↔ (25)
DA-2C-RE / / / ↑ ↔ / (15)
DA-2C-KO / / / ↑ ↓ / (15)
Frontiers in Endocrin
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‘↑’, Increased; ‘↓’, Reduced; ‘↔’, No change; ‘/’, Unknown. 2C-null is a loxed transcription blocker (loxTB) 5-HTR2C mouse line lacking functional 5-HTR2C globally; POMC-2C-null mice
with previously characterized animals in which cre is constitutively (developmentally) expressed in POMC neurons to ablate 5-HTR2C specifically; POMC-2C-RE mice with 5-HTR2C re-
expressed specifically and only in POMC neurons; DA-2C-RE mice with the expression of endogenous 5-HTR2C only in DA neurons; DA-2C-KO with deletion of endogenous 5-HTR2C
only in DA neurons.
FIGURE 1 | Signaling of 5-HTR2C in POMC neurons generating food intake. Activation of aq/11 promotes phospholipase C (PLC) to produce diacylglycerol (DAG)
and inositol-1,4,5-triphosphate (IP3). IP3 promotes release of intracellular calcium (Ca2+) while DAG binds to downstream effector protein kinase C (PKC), both of
which activates c-Fos via the extracellular regulated kinase pathway (ERK). C-Fos turns on the pro-opiomelanocortin (POMC) promoter, which signals to neurons
regulating the food intake signal. This signal is also regulated by 5-HTR2C agonist and serotonin.
icle 694204
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ARC POMC neurons, NTS POMC neurons decreased food
intake more significantly and rapidly, in other words, 5-
HTR2C agonist lorcaserin required a longer time to decrease
mice food intake in the ARC as effectively as in the NTS (38, 41).
Therefore, NTS POMC neurons appear to mediate the inhibitory
effects of lorcaserin on feeding, but the downstream pathway
remains elusive (Figure 2). Studies had shown that PVN and
central amygdala (CeA) could be innervated by NTS POMC
neurons (42). Both of them are key brain regions involved in the
regulation of feeding behavior, but the roles of these brain
regions warrant further investigation.

5-HTR2C in Dopamine Neurons in the VTA
Apart from homeostatic feeding, 5-HTR2C is also involved in
hedonic feeding behaviors, defined as ingestion of a large amount
of food in a short timeframe for pleasure (43, 44). The central
dopamine (DA) system has been implicated in the
pathophysiology of binge eating (45); 5-HT releasing neurons
in the dorsal raphe nucleus (DRN) directly innervate DA
neurons in VTA (46). In the VTA, DA neurons were proved
to co-express 5-HTR2C (47), suggesting that 5-HTR2C probably
Frontiers in Endocrinology | www.frontiersin.org 4
interacted with VTA DA neurons to regulate binge eating.
Moreover, intraperitoneal injections of 5-HTR2C agonists
significantly suppressed binge-like eating in wild-type mice,
while the 2C-null mice showed no effect (48). Indeed, specific
knock-out of 5-HTR2C gene in the VTA DA neurons (DA-VTA-
KO) blunted the suppression of binge-like eating by 5-HTR2C
agonist (Table 1) (48). These observations indicate that 5-
HTR2C can act downstream the DRN 5-HT neurons to inhibit
food intake. However, the feeding control by VTA DA 5-
HTR2C-expressing neurons seemed specific to hedonic rather
than hunger-driven eating, as re-expression of 5-HTR2C in DA
neurons (DA-2C-RE) did not affect normal food intake in mice
even when administered with the 5-HTR2C agonist (Table 1)
(48). But the downstream neural circuits of the DA 5-HTR2C-
expressing neurons still remain unclear. Studies have found that
administration of cocaine can increase DA releases in the nucleus
accumbens (NAc), an effect that can be blocked by local
injections of 5-HTR2C agonist in the VTA (49). Given the
abundant connectivity between VTA neurons and the NAc, it
would be interesting to know that DA 5-HTR2C neurons in the
VTA regulate binge eating by projecting to the NAc (Figure 2).
FIGURE 2 | Central neuronal circuits of 5-HTR2C that regulate feeding behavior and glucose homeostasis. Central Nervous System (CNS) 5-hydroxytryptamine
receptor 2C (5-HTR2C) may regulate energy metabolism through neuronal circuits. Red arrows designate circuits that regulate three types of feeding behavior which
are binge-like eating, sodium intake and hunger-driven eating, while the green arrows show the circuits that regulate glucose homeostasis by reducing
gluconeogenesis, increasing insulin sensitivity and glucose disposal. Pink boxes indicate nuclei containing POMC neurons that co-express 5-HTR2C (POMC5-HTR2C);
Green boxes indicate nuclei containing cholinergic neurons that co-express melanocortin 4 receptors (ChATMC4R); Yellow boxes indicate nuclei containing single
minded-1 (SIM1) neurons that co-express melanocortin 4 receptors (SIM1MC4R); Light purple box indicates nuclei containing DA neurons that co-express 5-HTR2C
(DA5-HTR2C); Light blue box indicates nuclei containing 5-HT neurons and orange box indicates nuclei containing a subset of neurons expressing 5-HTR2C. ARC,
arcuate nucleus; NTS, nucleus tractus solitarius; PVN, paraventricular nucleus of the hypothalamus; CeA, central amygdala; LPBN, lateral parabrachial nucleus; DRN,
dorsal raphe nucleus; VTA, ventral tegmental area; DMV, dorsal motor nucleus of the vagus; IML, intermediolateral nucleus.
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5-HTR2C in the LPBN on Sodium Intake
Sodium ions are important minerals for maintaining
extracellular fluid and blood volume (50). Studies have found
clues for 5-HTR2C in the LPBN to regulate sodium appetite (51).
Ingestion of high-concentration sodium-containing food
increased c-Fos expression in neurons that co-express 5-
HTR2C in the LPBN (52–54). Furthermore, specific activation
of LPBN 5-HTR2C neurons rapidly suppressed sodium intake in
mice. By contrast, inhibition of the 5-HTR2C neurons of LPBN
increased the intake of sodium-containing foods (55).
Furthermore, electrophysiological studies suggested an
abundant connectivity between LPBN 5-HTR2C neurons and
CeA (Figure 2) (54). In vivo optogenetics stimulation further
indicated that LPBN 5-HTR2C neurons could suppress sodium
appetite via projections to CeA (54). Moreover, raphe nuclei
probably modulate the neurons in the LPBN through
serotoninergic projections. The injection of retrobeads into the
LPBN of wildtype mice showed co-localization of 5-HT and retro
bead-labeled cells in the DRN and the median raphe nucleus
(MnR) (54). In conclusion, LPBN 5-HTR2C neurons may
receive 5-HT signals from median raphe nucleus (MRN)/DRN
and project to the CeA to regulate sodium intake (Figure 2).
ENERGY EXPENDITURE

The 5-HT signaling pathway is closely related to individual
energy storage and expenditure. Inhibiting the 5-HT signaling
pathway can increase individual thermogenesis in mice (56).
Studies found that the knock-out of 5-HTR2C affected the
activity level and energy expenditure in mice. The mutant mice
exhibited hyperactivity, and increased total energy expenditure,
while reducing energy expenditure during exercise. At nine
months old, elevated mRNA levels of uncoupling protein 2
(UCP2) were detected in the liver, skeletal muscle, and white
adipose tissue of the mutant mice (57). The mice targeted
restoration of POMC only within 5-HTR2C expressing cells
showed sex differences in physical activity, energy expenditure,
and the development of obesity (58). In addition, mutation of the
5-HTR2C gene can increase the mRNA level of UCP1 in brown
adipose tissues and reduce fat accumulation in mice (59–61). In
summary, 5-HTR2C can affect the energy expenditure of tissues
or individuals in diverse ways.
GLUCOSE HOMEOSTASIS

In addition to regulating food intake, serotonin is essential in
regulating glucose homeostasis . 5-HT produced by
enterochromaffin cells in the gut can act as an paracrine signal
modulating islet b cell activity and proliferation (62, 63). It has
been shown that 5-HTR2B agonists could promote insulin
secretion (64). Meanwhile, studies have revealed the role of 5-
HTR2C in the POMC neurons in mediating blood glucose,
suggesting a central role of 5-HTR2C in glucose metabolism.
Indeed, 2C-null mice manifested insulin resistance (15, 25), and
POMC-2C-RE mice was sufficient to rescue the impairment
Frontiers in Endocrinology | www.frontiersin.org 5
(Table 1) (6). On the other hand, 5-HTR2C agonist lorcaserin
could significantly improve glucose and insulin tolerance in wild-
type mice, and these effects were abolished in POMC gene
deficient mice (POMC-NEO) and restored in POMC-2C-RE
mice (65). Studies showed that the glycemic effect of 5-HTR2C
in POMC neurons was mediated by cholinergic (ChAT) MC4Rs
in dorsal motor nucleus of the vagus (DMV) and the
intermediolateral nucleus (IML) (32, 65, 66), which was
different from the forebrain SIM1 MC4Rs implicated in
feeding behavior, indicating the subsets of POMC 5-HTR2C
neurons in controlling feeding behavior and glucose homeostasis
might be different (Figure 2). It was shown that 5-HTR2C
agonist m-CPP and lorcaserin can improve glycemic control
independently of body weight (6, 15, 65, 67). The improved
glucose tolerance in mice by lorcaserin was found to be mediated
by reducing the hepatic glucose production and improving
glucose disposal, without change of insulin secretion (65)
(Table 1 and Figure 2). Interestingly, a recent study showed
that a subset of POMC neurons may have the ability to promote
hepatic glucose production, which was speculated to be relevant
with the heterogeneity of POMC neurons (68). Given the
complex functions of POMC neurons in the brain, the
relationship between this subset of POMC neurons and POMC
5-HTR2C neurons remains to be further elucidated. In analyzing
the heterogeneity of different parts of the same tissue, the spatial
transcriptomics studies may be helpful. Studies had preliminarily
used the spatial transcriptome to reveal the heterogeneity of
tumor tissue (69). Integrating the transcriptome profiles and
projection patterns of individual neurons may help to clarify how
POMC 5-HTR2C neurons process various stimuli at the single-
neuron level.
INTERACTION OF 5-HTR2C WITH
BODYWEIGHT REGULATORY SIGNALS

Leptin
Leptin, a key regulator for the metabolism, is secreted from
adipocytes (70). It prevents bodyweight gain by suppressing
feeding and increasing energy expenditure (71). Mutations of the
gene encoding leptin in mice (ob/ob) lead to severe obesity and
increased appetite (72). The leptin receptor (LepR) mediates the
effects of leptin on bodyweight, and it is involved in themajority of
leptin’s actions in the brain (73). Double fluorescent in situ
hybridization experiments showed that in the hypothalamic, the
neurons which express LepR also co-express 5-HTR2C, including
the ARC and the ventromedial hypothalamus (VMH) (74, 75).
However, selective knock-out of LepR in 5-HTR2C-expressed
neurons exhibited neither hyperglycemia nor alteration in serum
insulin or leptin concentrations (76). Further, single-cell
transcriptomic data showed that the LepR-expressing POMC
cells formed a molecularly distinct cluster relative to POMC
neurons expressing the 5-HTR2C (77, 78), indicating that leptin
probably affected systemic energy balance through different POMC
neuronal subsets. In particular, Daniel D et al. clarified that brain 5-
HT neurons did not express LepR and therefore not directly
July 2021 | Volume 12 | Article 694204
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responded to leptin (79). In conclusion,whether the leptin signaling
pathway interacts with 5-HT remains controversial, which needs
further research.

Ghrelin
Ghrelin is a stomach-derived body weight regulatory signal
stimulating feeding via the growth hormone secretagogue
receptors (GHSRs). The ghrelin signaling pathway interacts with
5-HT. The appetite-stimulating activity of ghrelin is shown to be
mediated by the inhibition of serotonin release (80).GHSRs inARC
is expressed in 94% of nerve peptide Y (NPY) neurons and 8% of
POMC neurons (81), and is co-localized with 5-HTR2C neurons.
Studieshave shown that the 5-HTR2C isdimerizedwith theGHSRs
to inhibit its orexigenic activity (82). The activation of 5-HTR2B
and 5-HTR2C reduced the gastric and hypothalamic secretion of
ghrelin (83). 5-HTR2C agonist like lorcaserin inhibits the increase
of plasma ghrelin level induced by fasting. Besides, 5‐HTR2C
antagonism reduces dimerization and increases GHSR‐induced
food intake, indicating that 5-HTR2C can change the regulation
of ghrelin on feeding (84, 85). Overall, 5‐HTR2C and its interaction
with GHSR are probably a valuable target for designing new
compounds to prevent obesity.

Insulin
Insulin efficiently crosses the blood-brain barrier via receptor-
mediated transport (86). Besides, the insulin receptor is widely
expressed in the CNS, including the cerebral cortex, hippocampus,
and hypothalamus (87). Mice with targeted mutation in the 5-
HTR2C gene resulted in insulin resistance and type 2 diabetes
(T2D), with antecedent hyperphagia and obesity (26, 88),
suggesting an interaction of insulin with 5-HTR2C on energy
metabolism. Infusion of insulin in the hypothalamic could briefly
enhance 5-HT release in rostromedial hypothalamus (89), and
systemic administration of 5-HTR2C agonist mCPP by osmotic
minipumps could reduce fasting plasma insulin level through
POMC neurons in diet-induced obesity (DIO) mice without
altering blood glucose (90). However, single-cell transcriptomic
data showed the subset of POMC neurons that expressing 5-
HTR2C and insulin receptor were not the same (77), which should
be further investigated.

Estrogens
The gene encoding 5-HTR2C has been mapped to human
chromosome X, suggesting a sex-dependent role for 5-HTR2C
signaling (91).When 5-HTR2C agonists and antagonists were used
in elderly mice exposed to stress, different feeding phenotypes were
found in femalesandmales (92).When food is reduceddue to stress,
the femalemice recoveredmore quickly than themalemice (92). In
aged male mice, exposure to novelty stress promoted 5-HTR2C
protein synthesis in PVN stress-specific neurons and activated
neurons that expressed 5-HTR2C (93). In contrast, there was no
change in 5-HTR2C and c-Fos co-positive cell counts in the PVNof
aged female mice exposed to stress (93). It was unclear if these sex
differences were due to gonadal hormones or the organizational
effect, but estradiol was reported to enhance 5-HTR2C protein
synthesis in the DRN region (94), caudal brainstem, and
hypothalamus (93, 95).
Frontiers in Endocrinology | www.frontiersin.org 6
Cholecystokinin
As a bodyweight regulatory signal, cholecystokinin(CCK), secreted
by the gastrointestinal tract and neurons in brain, stimulates satiety
and suppresses feeding behavior (96, 97). Some studies have found
thatCCK can act synergistically with 5-HT to inhibit food intake by
simultaneously activating CCK-1 and 5-HTR3A (98, 99), and 5-
HTR1A are also involved in CCK induced anorexic behavior (100,
101). However, there is little research on the association between 5-
HTR2C and CCK signaling in CNS (102), which is probably a
direction for future research.

NPY/AgRP
Studies have confirmed co-expression of NPY and 5-HTR2C in
the lateral hypothalamus, the basolateral nucleus and ARC (103–
105). Intraperitoneal injection with 5-HTR2C agonist lorcaserin
could significantly reduce the expression of NPY mRNA in the
ARC, while 5-HTR2C antagonist risperidone caused the opposite
effect (103). In addition, injection of 5-HTR2A/2C agonist 1-
(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) into the
PVN, but not the perifornical hypothalamus and VMH, could
suppress NPY-induced feeding behavior (106, 107). In summary,
the effect of 5-HTR2C on feeding seems to be highly associated
with NPY/AgRP signaling, and more research on how 5-HTR2C
affects NPY/AgRP neurons is required for further investigation.
CLINICAL APPLICATION

Obesity
Obesity prevalence calls for new methods of appetite suppression
and weight loss. Satiety and appetite control pathways have been
widely studied in animals and humans, but the exact underlying
molecular mechanism is still unclear (108, 109). Nowadays, some
drugs used to treat obesity have side effects. At present, 5-HTR2C
is one of the most promising targets for new weight-loss drugs.
Many modulators targeting 5-HT signaling, including
sibutramine (serotonin and adrenaline reuptake inhibitors)
(Table 2), mCPP, and fenfluramine (also named as fluoxetine,
selective serotonin reuptake inhibitors) (Table 2) have been used
as appetite suppressants (27, 110, 111). Sibutramine and
fluoxetine can increase extracellular serotonin levels in vivo,
non-selectively stimulate all postsynaptic subtypes, and then
stimulate 5-HTR2C to suppress food intake (112, 113). Heisler
(114) reported that mCPP did not inhibit food intake in 5-
HTR2C knock-out mice and weakened the swallowing effect of
fenfluramine (serotonin releasing agent and reuptake inhibitor),
demonstrating the key role of 5-HTR2C in satiety induction by
d-fenfluramine. Fenfluramine, an effective treatment for obesity,
sold as Pondimin ®/Redux ®, reduces appetite. Fenfluramine
binds weakly to the serotonin 5-HTR2C, d-Fen binds to and
activates the serotonin 5-HTR2B and 5-HTR2C with high
affinity and the serotonin 5-HTR2A with moderate affinity
(115–117). However, fenfluramine is associated with side
effects of valvular heart disease and pulmonary hypertension,
prompting it to withdraw from clinical use (118, 119).

Lorcaserin is an effective and selective 5-HTR2C agonist that
reduces food intake and body weight in rodents in a dose-
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dependent manner (120). Lorcaserin was approved by Food and
Drug Administration for weight management in adults with
body mass index (BMI) ≥ 30 kg/m2 or BMI ≥ 27 kg/m2 with at
least one weight-related complication. Since 2013, lorcaserin has
been sold in the United States under the name of Belviq ®. The
safety and efficacy of lorcaserin have been determined by three
phases III clinical trials, one cardiovascular (CV) outcome trial,
and four randomized controlled trials (121–123). Animal
experiments showed that after 28 days of treatment in diet-
induced obesity rats, there was no aortic and mitral regurgitation
in any treatment group (124). A 6-month randomized, placebo-
controlled, double-blind clinical trial also found that lorcaserin
could reduce weight and improve cardiac metabolic risk factors
in obese adults, thus modifying circulating body weight
regulatory signals associated with energy balance and
decreasing the risk of cardiovascular disease (125). Recent
follow-up data have shown that the drug probably increases
cancer risk, and further research is needed. The role of 5-HTR2C
in POMC neurons and the new role in neural circuits suggest
that the new anti-obesity drugs act directly on the CNS, thereby
reducing the negative effects caused by acting on the periphery,
which will be discussed in the future.

Diabetes
As a chronic disease, the prevalence of T2D continues to rise
worldwide, highlighting the clinical need for a variety of
treatment options. The current first-line drugs for T2D target
peripheral tissue to improve blood glucose and insulin function
(126, 127). 5-HTR2C has been found to regulate glucose
homeostasis during weight loss, which is expected to become a
candidate target (128, 129) for the treatment of diabetes. Yuan
et al. discovered that the-759C/T polymorphism of the 5-HTR2C
gene was associated with obesity and T2D (130). The lower
frequency of-759T allele in the 5-HTR2C gene was associated
with T2D but not associated with obesity in men and women
(131), resulting from alleles type from promoter activity and
transcriptional level, thus preventing the development of T2D.

A retrospective analysis of the Phase III BLOOM-DM study
showed that lorcaserin combined with diet and exercise
decreased blood glucose within 2 weeks (132–134). In the
study of the effect of lorcaserin on weight loss in patients with
T2D, lorcaserin could also decrease the Hemoglobin A1c of
diabetic patients, providing direct evidence support for the
Frontiers in Endocrinology | www.frontiersin.org 7
treatment of diabetes. Besides, reducing fasting plasma glucose
and Hemoglobin A1c was greater in people with no significant
weight loss, suggesting that it could benefit blood sugar
independent of weight loss. Besides, more clinical studies are
needed to demonstrate this regulation in the future.

Cardiovascular System
Obesity and metabolic syndrome can increase the risk of
cardiovascular disease. Weight-loss drugs can affect
cardiovascular health by losing weight and directly acting on
the cardiovascular system (135, 136). It was found that
subcutaneous injection of 5-HTR2C agonist mCPP (3 mg/kg)
had no significant effect on heart rate and meant arterial blood
pressure (137). Lorcaserin, a selective 5-HTR2C agonist, did not
seem to have a negative effect on the cardiovascular system at
very high concentrations (125). Alpana P Shukla et al. (7)
summarized the pharmacodynamic and pharmacokinetic
characteristics of lorcaserin and discussed efficacy and safety
data from major clinical trials. The bodyweight could be reduced
by a certain dose of treatment. Therefore, the cardiac metabolic
parameters could be significantly improved. In the CAMELLIA-
TIMI 61 trial, the incidence of adverse cardiovascular events and
conversion to T2D in obese and overweight subjects with
cardiovascular disease or multiple cardiovascular risk factors
was assessed. It was concluded that the safety of the drug
could be guaranteed.

In conclusion, as the first selective 5-HTR2C agonist
approved for human weight control, the 5-HTR2C agonist
lorcaserin has been widely used in clinical and scientific
research after being launched in 2012. Although CAMELLIA-
TIMI 61 research found no significant difference in cancer
incidence during the first few months of treatment, the
imbalance increased with the duration of lorcaserin, suggesting
that the drug increased the risk of cancer. The cardiovascular
effects of other anti-obesity drugs like liraglutide, bupropion/
naltrexone, and phentermine/topiramate remain uncertain
(138). Due to the side effects of drugs, there is no better drug
to treat obesity. Although 5-HTR2C is the target of several anti-
obesity drugs, its side effects limit their clinical application.
However, the specific neural circuits of 5-HTR2C expressing
neurons and the detailed molecular pathways of 5-HTR2C
signaling on metabolic regulation will help to develop better
treatment strategies for metabolic disorders. To solve the side
TABLE 2 | 5-HTR2C related drugs in this review.

Name Mechanism of Action Side Effect Application

Lorcaserin selective 5-HTR2C agonist headache, fatigue, nausea, dry mouth, and
constipation

weight-loss drug

D-Fen serotonin releasing agent and reuptake
inhibitor

cardiac complications weight-loss drug

Sibutramine serotonin and adrenaline reuptake
inhibitor

stroke, myocardial infarction weight-loss drug

Fluoxetine selective serotonin reuptake inhibitor anorexia an approved drug to treat depression and obsessive-
compulsive disorder

m-CPP agonist of 5-HTR2C and 5-HTR1B anxiety, negative mood measured decrease food intake and enhance microstructural measures
of satiety
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effects caused by other drugs on the peripheral spectrum, future
drugs that target the CNS will give us more inspiration.
DISCUSSION

In summary, the action of CNS 5-HTR2C neuron contributes to
the regulation of energy homeostasis and have greatly advanced
the understanding of the physiology and behavioral functions of
5-HTR2C in the brain. However, there are many questions. As a
GPCR, understanding the 5-HTR2C gene-editing processes is
helpful to study the weight-loss drug. However, the detailed
molecular mechanisms remain unclear. Furthermore, there is
growing interest in brain control of metabolism. Here, we
summarized the 5-HTR2C related metabolic circuit of feeding
behavior and glucose homeostasis in the brain, and we found
that the mechanism of 5-HTR2C in the central cortex still needs
to be further clarified. To explore the systemic effects of 5-
HTR2C, we also discussed the relationship between metabolic
hormones and 5-HTR2C. From the perspective of clinical
application, the functions of weight-loss drugs now are mostly
concentrated on systemic administration, resulting in negative
effects. In the future, 5-HTR2C in the brain may become a
potential for the treatment of obesity and type 2 diabetes.
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