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This work investigated the interaction of indole with SARS-CoV-2. Indole is widely
used as a medical material owing to its astounding biological activities. Indole and
its derivatives belong to a significant category of heterocyclic compounds that have
been used as a crucial component for several syntheses of medicine. A straightforward
one-pot three-component synthesis of indole, coupled with Mannich base derivatives
1a–1j, was synthesized without a catalyst. The products were confirmed by IR, 1H-
NMR, 13C-NMR, mass spectra, and elemental analysis. The indole derivatives were
tested for cytotoxic activity, using three cancer cell lines and normal cell lines of
Human embryonic kidney cell (HEK293), liver cell (LO2), and lung cell (MRC5) by
MTT assay using doxorubicin as the standard drug. The result of cytotoxicity indole
compound 1c (HepG2, LC50−0.9 µm, MCF−7, LC50−0.55 µm, HeLa, LC50−0.50 µm)
was found to have high activity compared with other compounds used for the same
purpose. The synthesized derivatives have revealed their safety by exhibiting significantly
less cytotoxicity against the normal cell line (HEK-293), (LO2), and (MRC5) with
IC50 > 100 µg/ml. Besides, we report an in silico study with spike glycoprotein (SARS-
CoV-2-S). The selective molecules of compound 1c exhibited the highest docking score
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−2.808 (kcal/mol) compared to other compounds. This research work was successful
in synthesizing a few compounds with potential as anticancer agents. Furthermore,
we have tried to emphasize the anticipated role of indole scaffolds in designing and
discovering the much-awaited anti-SARS CoV-2 therapy by exploring the research
articles depicting indole moieties as targeting SARS CoV-2 coronavirus.

Keywords: indole, Mannich base, cytotoxic activity, COVID-19, spike protein

INTRODUCTION

Coronavirus has proved to be the most deadly of the 21st-century
epidemics by being responsible for emergent communicable
disorders. It first manifested its presence through the onset of
dangerous pneumonia, started by the (SARS-CoV) infestation
in 2003 (Rahman et al., 2020). In December 2019, many lung
fever patients infected by a novel coronavirus were announced in
Wuhan, China (Chan et al., 2020; Li et al., 2020; Zhu et al., 2020).
The SARS-CoV-2 has been the cause of greater than 1.27 million
deaths as of November 11, 2020 (Lu et al., 2020; Wu et al., 2020;
Zhou et al., 2020). The acronym for coronavirus, namely, SARS-
CoV-2, was assigned by the World Health Organization (WHO)
on February 11, 2020 (Gorbalenya et al., 2020). SARS-CoV-2 has
become a global health crisis involving around 212 countries
(World Health Organization, 2020). Several drug mixtures are
still being used.

However, the remedial outcome has been meager with
secondary response (Cao et al., 2020). Adenosine triphosphate
(ATP) analog was used as an antiviral drug to counter the
effects of COVID-19, but more statistics are required to
demonstrate its efficiency (Cohen, 2020; Holshue et al., 2020;
Wang et al., 2020). On August 11, 2020, Russia became
the first nation to approve a vaccine (sputnik V) to protect
against infection by COVID-19 (Talha, 2020). The inherent
RNA of coronaviruses and its structure information is described
and discussed by other researchers (Hussain et al., 2005;
Chen et al., 2020). In the biorhythms of coronaviruses,
some functional and non-functional proteins are involved
(Ramajayam et al., 2011; Ren et al., 2013). The emergence
of drug-resistance for antiviral activity and defective antiviral
drugs stimulates a great demand to develop a less toxic
and more potent antiviral agent. In this regard, researchers
have recently focused on naturally available indoles and
their derivatives.

The inclusion of indole is the most significant structural
modification in drug development, and it is labeled as one
of the “privileged scaffolds” (Evans et al., 1988; deSa Alves
et al., 2009; Welsch et al., 2010). The enlargement of a new
technique for the pattern of C-N and C-C bonds that evade
the pore functional group is tremendously significant in current
organic chemistry (Ricci, 2008). Amino methylation is a crucial
method for direct carbon–carbon and carbon-nitrogen bond-
forming reactions (Hwang and Uang, 2002). Usually, amino
methylation is done by the Mannich reaction using aldehyde as
a methylene group source (Mannich and Krosche, 1912). Indole
is perhaps the most ubiquitous motif in nature (Humphrey and
Kuethe, 2006). Many natural and synthetic indole derivatives

have been in great demand in medical and pharmaceutical
applications since they can bind with high affinity to many
receptors (Sundberg, 1970, 1996; Lounasmaa and Tolvanen, 2000;
Horton et al., 2003; Gu and Hamann, 2005; Somei and Yamada,
2005; Shiri, 2012). Previously reported natural products of indole
derivatives are shown in Figure 1 (Chen et al., 2019), and the
biological activities of indole derivatives are offered in Figure 2
(Kumari and Singh, 2019). Indole regulates numerous aspects
of microorganism physiology, including reproductive structure
formation, body stability, resistance to medication, biofilm
formation, and virulence (Chadha and Silakari, 2017). Based on
the above properties, we prepared new indole derivatives 1a–
1j via the Mannich reaction. As the indole compounds have
been rigorously involved in ailments including viral infections
and cancer, there exists a profound scope of exploring these
multiple nuclei to curb coronaviruses (Zhang et al., 2015). Here
we demonstrated that the indole moiety potently blocked the
infectivity of SARS CoV-2 by targeting glycoproteins. They
also potently block the enzymatic activity of SARS CoV-2 and
replication of coronavirus (Hattori et al., 2021). Therefore,
through this, indole derivatives developed against SARS-CoV-
2 epidemics using in vitro and in silico approaches may be of
immense value at this hour of global emergency and in the future.

EXPERIMENTAL

General
All the chemicals were purchased from Merck. The melting
point was determined using an open capillary tube, and it
is uncorrected. The IR spectra were recorded in KBr on a
Shimadzu 8201pc (4000–400 cm−1). 1H and 13C-NMR spectra
were recorded on Bruker Avance II NMR spectrometer 300 MHz
with DMSO-d6 as solvent using tetramethylsilane (TMS) as an
internal standard. Mass spectra were recorded using Clarus SQ8
(Perkin Elmer), and the elemental analysis (C, H, and N) was
performed on a Varian EL III instrument.

General Procedure for the Synthesis of Compounds
1a–1j
We compounded Furan-2-ylmethylenehydrzine (0.01 mol),
indole (0.01 mol), and substituted aldehydes (0.01 mol)
in ethanol solution to give a yellow solution with light
brown color precipitate. The residue was recrystallized with
ethanol. The obtained compound was purified by thin-layer
chromatography (TLC). Hexane was used as eluting and solvent
in TLC. All the synthesized compounds were separated by
column chromatography.
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FIGURE 1 | Natural products of indole derivatives.

FIGURE 2 | Biological activities of indole derivatives.

(E)-1-((2furan-2ylmethylene)hydrazinyl)phenyl)methyl)
1H-indole (1a)
Light yellowish brown solid: mp 250◦C; IR (KBr) (cm−1)
3440 (NH str), 3080 (CH-str Ar-ring), 1623 (C = N),
1092 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm) J (Hz):
8.41 (s, 1H, CH = N), 7.99–7.79 (d, 2H, indole), 7.82–
6.70 (m, 3H, furan), 7.40–6.95 (m, 9H, Ar), 7.08 (s, 1H,
NH), 7.08 (s, 1H, CH); 13C NMR (DMSO-d6) δ(ppm):
150.46, 145.73, 118.96, 113.43 (4C, Furyl ring), 143.52, 128.57,
127.78, 126.95, 126.90, 125.25 (6C, Ph ring), 136.25, 126.62,
125.23, 121.69, 120.09, 118.23, 111.57, 110.76 (8C, indole
ring), 135.23 (1C, C = N), 40.59 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 315.14 (M++, 20); Elemental analysis:
Anal.C20H17N3O: C, 76.20; H, 5.45; N, 13.35; Found C, 76.25;
H, 5.55; N, 13.28.

1-((2furan-2ylmethylene)hydrazinyl)3-nitrophenyl)
methyl)1H-indole (1b)
Light brown solid: mp 258◦C; IR (KBr) (cm−1) 3435
(NH str), 3058 (CH-str Ar-ring), 1590 (NO2

−), 1623

(C = N), 1094 (N-CH-N). 1H NMR (DMSO-d6), δ

(ppm) J (Hz): 8.33–6.75 (m, 9H, Ar), 8.10 (s, 1H,
CH = N), 7.95–7.82 (d, 2H, indole), 7.69–6.74 (m, 3H,
furan), 7.09 (s, 1H, NH), 6.73 (s, 1H, CH); 13C NMR
(DMSO-d6) δ (ppm): 150.62, 145.64, 118.96, 113.50
(4C, Furyl ring), 147.75, 135.85, 127.84, 126.69, 114.20,
114.12 (6C, Ph ring), 136.53, 126.62, 125.25, 121.62,
120.16, 118.25, 111.48, 110.70 (8C, indole ring), 135.27
(1C, C = N), 40.54 (1C, N-CH-N); EI-MS (Relative
intensity %): m/z 360.12 (M+, 20); Elemental analysis:
Anal.C20H16N4O3: C, 66.67; H, 4.49; N, 15.56; Found C,
66.62; H, 4.55; N, 15.48.

1-((2furan-2ylmethylene)hydrazinyl)1H-indole-1-
yl)methyl)phenol (1c)
Brown solid: mp 272◦C; IR (KBr) (cm−1) 3585 (OH), 3449
(NH str), 3086 (CH-str Ar-ring), 1629 (C = N), 1091 (N-
CH-N). 1H NMR (DMSO-d6), δ (ppm) J (Hz): 10.24 (s, 1H,
OH), 8.52 (s, 1H, CH = N), 7.95–7.52 (d, 2H, indole), 7.68–
6.97 (m, 3H, furan), 7.42–6.72 (m, 9H, Ar), 7.06 (s, 1H,
NH), 6.74 (s, 1H, CH); 13C NMR (DMSOd6) δ (ppm): 176.36
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(1C, Ph-OH), 150.25, 145.24, 118.42, 113.47 (4C, Furyl ring),
142.18, 129.48, 129.50, 114.25, 114.22 (5C, Ph ring), 136.04,
127.89, 125.24, 121.67, 120.15, 118.29, 111.52, 110.76 (8C,
indole ring), 135.29 (1C, C = N), 40.51 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 331.13 (M+, 20); Elemental analysis:
Anal.C20H17N3O2: C, 72.50; H, 5.18; N, 12.69; Found C, 72.45;
H, 5.24; N, 12.65.

1-((4-chlorophenyl)2-furan-2ylmethylene)hydrazinyl)
methyl)-1H-indole (1d)
Light brown solid: mp 260◦C; IR (KBr) (cm−1) 3442 (NH
str), 3082 (CH-str Ar-ring), 1626 (C = N), 1094 (N-CH-
N), 818 (C-Cl). 1H NMR (DMSO-d6), δ (ppm) J (Hz):
8.11 (s, 1H, CH = N), 7.98–7.81 (d, 2H, indole), 7.84–
6.74 (m, 3H, furan), 7.32–6.70 (m, 9H, Ar), 7.06 (s, 1H,

TABLE 1 | Physicochemical data of synthesized compounds (1a-1j).

Compounds R Product Solvent Yield (%)

1a EtOH 89

1b EtOH 86

1c EtOH 82

1d EtOH 95

1e EtOH 88

1f EtOH 85

1g EtOH 80

1h EtOH 78

1i EtOH 67

1j HCHO EtOH 75
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NH), 6.74 (s, 1H, CH); 13C NMR (DMSO-d6) δ (ppm):
150.31, 145.35, 118.85, 113.40 (4C, Furyl ring), 136.10, 131.67,
130.50, 129.8, 129.59, 129.57 (6C, Ph ring), 136.25, 127.78,
125.26, 121.59, 120.10, 118.20, 111.59, 110.73 (8C, indole
ring), 135.21 (1C, C = N), 40.50 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 349.10 (M+, 20); Elemental analysis:
Anal.C20H16ClN3O: C, 68.68; H, 4.62; N, 12.03; Found C, 68.65;
H, 4.63; N, 12.05.

1-((2furan-2ylmethylene)hydrazinyl)4-methoxyphenyl)
methyl)1H-indole (1e)
Light yellowish brown solid: mp 275◦C; IR (KBr) (cm−1)
3444 (NH str), 3056 (CH-str Ar-ring), 2854 (OCH3), 1618
(C = N), 1089 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm)
J (Hz): 8.22 (s, 1H, CH = N), 7.96–7.86 (d, 2H, indole),
7.62–6.80 (m, 3H, furan), 7.47–6.69 (m, 9H, Ar), 7.09 (s,
1H, NH), 6.75 (s, 1H, CH). 3.86 (s, 3H, OCH3); 13C
NMR (DMSO-d6) δ (ppm): 158.62 (1C, Ph, OCH3), 150.24,
145.62, 118.94, 113.48 (4C, Furyl ring), 136.51, 126.61, 125.27,
121.60, 120.18, 118.28, 111.50, 110.72 (8C, indole ring), 135.83,
127.82, 126.67, 114.18, 114.09 (5C, Ph ring), 135.29 (1C,
C = N), 55.74 (1C, OCH3), 40.54 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 345.15 (M+, 20); Elemental analysis:
Anal.C21H19N3O2: C, 73.04; H, 5.55; N, 12.16; Found C, 70.59;
H, 5.60; N, 12.30.

2-((2-furan-2-ylmethylene)hydrazinyl)(1H-indol-1-
yl)methyl)phenol (1f)
Light brown solid; mp 265◦C; IR (KBr) (cm−1) 3447
(NH str), 3089 (CH-str Ar-ring), 2915 (C-OCH3), 1628
(C = N), 1090 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm)
J (Hz): 9.82 (s, 1H, OH), 8.25 (s, 1H, CH = N), 8.22–
6.83 (m, 9H, Ar), 7.97–7.81 (d, 2H, indole), 7.71–6.49
(m, 3H, furan), 7.19 (s, 1H, NH), 6.71 (s, 1H, CH); 13C
NMR (DMSO-d6) δ (ppm): 148.90, 144.45, 119.08, 113.06
(4C, Furyl ring), 139.89 (1C, Ph, OH), 136.56, 126.79,
128.41, 121.07, 120.79, 119.82, 109.76, 100.24 (8C, indole
ring), 131.01, 126.02, 120.42, 118.92, 116.05 (5C, Ph)
134.19 (1C, C = N), 40.49 (1C, N-CH-N); EI-MS (Relative
intensity %): m/z 331.37 (M+, 20); Elemental analysis:
Anal.C20H17N3O2: C, 72.50; H, 5.72; N, 12.69; Found C,
72.40; H, 5.51; N, 12.48.

4-((2-furan-2-ylmethylene)hydrazinyl)1H-indol-1-
yl)methyl)-2-Methoxyphenol (1g)
Brown solid: mp 289◦C; IR (KBr) (cm−1) 3442 (NH str),
3082 (CH-str Ar-ring), 2910 (C-OCH3), 1626 (C = N),
1094 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm) J (Hz):
10.48 (s, 1H, OH), 8.93 (d, 1H, J = 6.1 Hz, Furyl ring),
8.16 (s, 1H, methylene), 7.92–7.80 (d, 2H, J = 7.6 Hz,
indole), 7.87 (d, 1H, J = 6.7 Hz, Furyl ring), 7.20, 7.18,
6.84, 6.75 (m, 4H, indole ring), 7.09 (s, 1H, NH), 6.64
(t, 1H, Furyl ring), 6.65–6.74 (m, 2H, Ar-CH), 6.71 (s,
1H, CH), 3.85 (s, 3H, OCH3) 3.50 (s, 1H, CH); 13C
NMR (DMSO-d6) δ (ppm): 150.21, 145.38, 118.82, 113.41
(4C, Furyl ring), 147.52, 146.82, 142.30, 126.37, 120.18,
115.39, 56.09 (7C, Ph ring), 136.15, 127.79, 125.23, 121.49,

120.00, 118.28, 111.52, 110.71 (8C, indole ring), 135.22
(1C, C = N), 40.51 (1C, N-CH-N); EI-MS (Relative
intensity %): m/z 349.10 (M+, 20); Elemental analysis:
Anal.C21H19N3O3: C, 69.75; H, 5.31; N, 11.66; Found C,
69.69; H, 5.20; N, 11.53.

4-((2-furan-2-ylmethylene)hydrazinyl)(1H-indol-1-
yl)methyl)-N,N-dimethylaniline (1h)
Light brownish yellow solid; mp 270◦C; IR (KBr) (cm−1)
3440 (NH str), 3085 (CH-str Ar-ring), 2946 (NH2),
1620 (C = N), 1096 (N-CH-N). 1H NMR (DMSO-d6),
δ (ppm) J (Hz): 8.29 (s, 1H, CH = N), 7.93–7.83 (d,
J = 7.0, 2H, indole), 7.72–6.54 (m, 3H, furan), 7.46–
6.68 (m, 9H, Ar), 7.13 (s, 1H, NH), 6.76 (s, 1H, CH),
3.80–3.12 (s, 3H, N-CH3); 13C NMR (DMSO-d6) δ

(ppm): 149.17, 128.13, 127.87, 127.80, 112.75, 112.72
(6C, Ph) 149.10, 144.43, 118.93, 112.67 (4C, Furyl
ring), 136.57, 128.92, 128.51, 121.75, 120.77, 119.78,
109.57, 100.84, (8C, indole ring), 134.61 (1C, C = N),
41.29 (2C, N-CH3) 40.58 (1C, CH); EI-MS (Relative
intensity %): m/z 331.37 (M+, 20); Elemental analysis:
Anal.C22H22N4O: C, 73.42; H, 6.20; N, 15.63; Found C,
73.22; H, 6.09; N, 15.43.

2-(furan-2-ylmethylene)hydrazinyl)-3,7-dimethylocta-
2,6-dien-1-yl)-1H-indole (1i)
Light brown solid; mp 280◦C; IR (KBr) (cm−1) 3446 (NH str),
3080 (CH-str Ar-ring), 1620 (C = N), 1094 (N-CH-N). 1H NMR
(DMSO-d6), δ (ppm) J (Hz): 8.30 (d, 1H, J = 6.2 Hz, furyl
ring), 7.58–7.53 (d, 2H, J = 7.0, indole ring), 7.40, 7.31, 7.06,
6.58 (m, 4H, indole ring), 7.12 (s, 1H, NH), 6.90, 6.48 (m, 2H,
Furyl ring), 6.68 (s, 1H, CH), 5.47, 5.30 (d, 2H, J = 7.7 Hz,
citral), 2.00 (d, 2H, J = 6.3, citral), 2.04 (d, 2H, J = 6.0,
citral), 1.82–1.71 (s, 9H, citral);13C NMR (DMSO-d6) δ (ppm):
149.98, 144.38, 118.97, 112.68 (4C, Furyl ring), 136.52, 128.91,
127.83, 121.68, 120.75, 119.81, 109.65, 100.95 (8C, indole ring),
135.52, 132.02, 123.52, 118.76, 39.45, 26.41, 24.61, 18.63, 16.10
(9C, citral) 134.62 (1C, C = N), 40.60 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 361.22 (M+, 20); Elemental analysis:
Anal.C23H27N3O: C, 76.43; H, 7.54; N, 11.63; Found C, 76.66;
H, 7.43; N, 11.42.

1-((2-furan-2-ylmethylene)hydrazinyl)methyl)-1H-indol
(1j)
Brown solid; mp 285◦C; IR (KBr) (cm−1) 3442 (NH str),
3082 (CH-str Ar-ring), 1626 (C = N), 1092 (N-CH-N). 1H
NMR (DMSO-d6), δ (ppm) J (Hz): 8.24 (s, 1H, CH = N),
7.78–6.59 (d, J = 6.2 Hz, 3H, Furan), 7.62–7.59 (m, 2H,
indole), 7.47–6.45 (m, 9H, Ar), 7.16 (s, 1H, NH), 5.54
(d, J = 6.2Hz, 2H, CH2); 13C NMR (DMSO-d6) δ (ppm):
149.17, 145.02, 118.91, 112.62 (4C, Furyl ring), 136.49, 128.98,
127.89, 121.76, 120.72, 119.86, 109.67, 100.91 (8C, indole
ring), 134.62 (1C, C = N), 40.59 (1C, CH2); EI-MS (Relative
intensity %): m/z239.27 (M+, 20); Elemental analysis: Anal.
C14H13N3O: C, 70.29; H, 5.49; N, 17.57; Found C, 70.35;
H, 5.78; N, 17.88.
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FIGURE 3 | 1H-NMR spectrum of compound-1c.

FIGURE 4 | 13C-NMR spectrum of compound-1c.

Scheme 1 | Synthesis of indole derivatives.

Biological Screening
Cytotoxic Activity
The cytotoxicity experiment was performed according to the
United States NCI protocol, previously reported method.
A detailed experimental procedure was given in Supplementary
Material (Premnath et al., 2015).

Molecular Docking
Molecular docking was performed to confirm the molecular
interaction with Covid-19 spike core protein to ensure the
secondary biological mechanism based on the molecular
pose on the binding moiety. The molecular structure of
the selected ligand was drawn using Chem. Draw. Before
it being considered for molecular interaction, it was 2D
optimized by the energy minimization process. The 3D molecular
protein crystal structure of spike glycoprotein of SARS-CoV-
2 PDB ID 6WPT protein was downloaded. The protein
structure was prepared using Schrodinger 12.4 software to
remove water molecules and optimize the structure to become
suitable to execute flexible docking. In protein preparation,
hydrogen atoms were added to increase the hydrophilicity,
and already existed co-crystal molecules, and missed loops
were optimized (Boyd and Paull, 1995). The ligand preparation
module optimized the ligand 3D structure of selected molecules
to remove unwanted atomic orientation by molecular and
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TABLE 2 | Cytotoxic activity of synthesized compounds (1a–1j).

Cpds HepG2 MCF-7 HeLa

GI50 (µm) TGI (µm) LC50 (µm) GI50 (µm) TGI (µm) LC50 (µm) GI50 (µm) TGI (µm) LC50 (µm)

1a 43.2 78.3 >100 – – >100 – – 100

1b 42.2 23.1 56.8 46.1 85.1 >100 51.0 89.2 >100

1c 36.3 65.3 0.9 – – 0.55 41.3 87.2 0.50

1d 01.0 0.25 54.0 0.89 09.3 65.0 08.9 06.8 0.50

1e 15.9 38.2 44.8 24.4 59.3 66.3 34.2 72.1 >100

1f 29.1 46.8 57.5 18.6 41.8 42.3 21.6 54.7 77.4

1g 48.0 61.3 59.3 34.0 67.4 30.5 37.9 51.9 58.9

1h 21.3 41.0 72.1 12.9 45.3 10.3 52.9 81.3 >100

1i 19.3 28.3 >100 45.6 56.0 59.3 49.0 49.3 55.0

1j 40.3 45.3 66.8 56.0 49.3 78.6 2.3 58.3 48.3

Doxorubicin (standard) 0.01 0.13 0.58 0.02 0.21 0.74 0.05 0.41 0.88

TABLE 3 | In vitro cytotoxicity of indole derivatives (1a–1j) on normal cellsa.

Compounds MRC5 HEK-293 LO2

IC50 (µm) IC50 (µm) IC50 (µm)

1a 76.36 70.06 67.48

1b 67.21 62.12 72.17

1c 86.66 81.14 87.10

1d 56.25 79.14 66.24

1e 72.76 57.09 56.01

1f 51.24 66.17 68.24

1g 62.61 58.24 70.54

1h 66.32 67.01 58.22

1i 79.41 77.44 66.70

1j 75.14 52.71 70.12

aEach compound was tested in triplicate. All error bars represent mean ± SD from
three independent experiments.

quantum mechanics. Molecular docking, with flexible SP
followed by XP, was executed. The grid-based technique,
evaluation, and minimization of grid approximation procedure
were followed by Premnath et al. (2016) and Muthiah et al.
(2020). The confirmation of the best interactive molecule
with 6WPT protein was concluded based on the G score
and number of hydrogen bonds and bonding efficiency
and binding energy.

RESULTS AND DISCUSSION

Chemistry
The one-pot Mannich reactions of substituted benzaldehyde,
indole, and Furan-2-lymethylenehydrzine were done by reflux for
2 h using ethanol, a solvent, without any catalyst. The obtained
solid 1-((2furan-2ylmethylene)hydrazinyl)phenyl)methyl)1H-
indole (1a) was washed with cooled water and recrystallized using
ethanol. It was purified by TLC. Hexane was used as an eluting
solvent in TLC. All the synthesized compounds were separated
by column chromatography. A similar procedure was carried out
to synthesize the other nine compounds (1b–1j) Physicochemical

data of synthesized compounds (1a–1j) are given in Table 1.
The Figure 3 indicates 1H-NMR spectra of compound 1c, and
Figure 4 displays 13C-NMR spectra of compound 1c. Scheme 1
represents the synthesis of compounds 1a–1j.

All the newly synthesized indole derivatives were
characterized by FT-IR, which showed various functional
groups. The 1H-NMR spectra of compounds (1a–1j) indicate
frequency observed at 7.16–7.07 and 6.79–5.54, corresponding to
the NH-CH and CH-Ph protons. The 13C -NMR spectra exhibit
the peak at 144.42–118.76 and 40.60–40.53, corresponding to the
NH-CH and CH-Ph carbon, respectively.

Cytotoxic Activity
The newly prepared compounds 1a–1j are examined for their
cytotoxic activity according to the United States NCI protocol,
which was a previously reported method (Chadha and Silakari,
2017). The 50% growth inhibition (GI50), tumor growth
inhibition (TGI), and lethal concentration (LC50) values were
determined. The compounds 1c were a significant activity against
(HepG2, LC50-0.9 µm, MCF-7, LC50-0.55 µm, HeLa, LC50-
0.50 µm). Doxorubicin was used as a standard drug. None of
the tested derivatives had shown significant activity toward the
cancer cell lines. The compounds were also evaluated for their
possible cytotoxicity in human embryonic kidney cells (HEK-
293), lung cells (MRC-5), and liver cells (LO2) by employing
MTT assay. The assay results suggested that these compounds did
not significantly affect normal kidney cells’ growth (As most of
the compound’s IC50 values are >100). Hence, these compounds
revealed their safety for the normal cells, and the compound
1c can be taken as lead compounds for further development of
more potent agents for HepG2 (Liver), MCF-7 (Breast), HeLa
(Cervical) cancer cell lines. The results of cytotoxic screening
of compounds (1a–1j) are shown in Table 2, and in vitro
cytotoxicity of indole derivatives (1a–1j) on normal cells are
shown in Table 3.

None of the tested derivatives had shown significant activity
toward the cancer cell lines. The compounds were also evaluated
for the possible cytotoxicity in human embryonic kidney
cells (HEK-293), lung cells (MRC5), and liver cells (LO2) by
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Figure 5 | Compound-1c has a high affinity with 6WPT subunit. (B–D) Surface protein structure with hydrogen bonding interaction between (C) 6WPT interactive
molecular pocket and ligand binding with series of ligands using a 3D molecular structure while panel (A) shows 2D binding pockets interactive sites.

TABLE 4 | Docking results of synthesized compounds.

Entry Name Glide g score Glide e model Glide energy XP H-Bond Bonded Amino acid Bond length A

3 (1c) −2.808 −37.395 −29.608 −1.33 VAL 722 2.18

7 (1g) −2.715 −38.457 −27.458 −0.7 THR 724 ALA 944 1.91 2.08

5 (1e) −2.174 −28.608 −24.17 −0.641 VAL 722 2.37

2 (1b) −1.912 −35.298 −30.366 −0.7 LYS 947 ALA 944 2.51 1.80

1 (1a) −1.636 −31.767 −26.491 −0.7 ALA 944 2.03

6 (1f) −1.537 −32.323 −25.423 −0.7 THR 724 1.98

4 (1d) −1.213 −35.839 −28.794 −0.37 SER 937 2.10

8 (1h) −1.18 −30.149 −29.338 −1.29 THR 724 1.94

9 (1i) −0.499 −31.625 −26.095 −1.56 THR 724 1.99

employing MTT assay. The assay results suggested that these
compounds did not significantly affect the growth of normal cells
(as most of the compounds IC50 > 100). Hence this compounds

revealed their safety for the normal cells and the compound
1c can be taken as lead compound for further development of
more potential agent for HepG2 (Liver), MCF-7 (Breast), HeLa
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(Cervical) cancer cell lines, and in vitro cytotoxicity of indole
derivatives (1a–1j) on normal cells are shown in Table 3.

Molecular Docking
PAT binds 6WPT with strong affinity via computer docking
studies
Bimolecular interaction studies were used to characterize the
interaction between selected drug-like molecule and protein
biomolecular binding sites. The protein interaction study
was executed to forecast the interactive visualization modes
and binding of small molecule and their respective protein
receptors. An investigation of the interactive molecular complex
of ligand series disclosed very informative and important
connections between the drug like molecular series and the
(6WPT) protein receptor. The two-dimensional and three-
dimensional protein molecular structural images were perfectly
visualized using Schrodinger integrative python software to
analyze the molecular interaction between the selective ligand
series and protein macromolecule (6WPT) (Figure 5). The
overall optimized G score for binding ligands is predicted
as −2.808 kcal/mol. This is taken to indicate an expected
favorable reaction. Ligand 3 (1c) were perfectly interacted
and formed close molecular interactions with amino acid
residues on the predicted selective binding sites of VAL367,
LEU368, PHE342, GLY339, GLY112, ARG55, LEU47, ASN343,
ASP115, TYR32 of receptor protein (6WPT) (XXX) during
different biochemical communications of hydrogen bonding, and
hydrophobic interaction (Pinto et al., 2020). The binding score of
(1c) to 6WPT was moderately burly with a predictable affinity
of −2.808 kcal/mol. The docking analysis characterization of
novel synthesized molecules are shown in Table 4. Further,

ligand series bonded with 6WPT through interactions with
hydrogen bonding interaction and Pi-Pi interaction, Pi-Pi
stacking interactive protein amino acids side chains of valine
(Val), threonine (Thr), serine (Ser), alanine (Ala), and lysine
(Lys) were analyzed and predicted important interactive bioactive
binding site molecules. The molecular interaction analysis
with selected small molecules of (1c) with 6WPT protein
was much stronger than other series of selected ligands
with a predictable affinity of −2.808 kcal/mol (Figure 5).
The pathway mechanisms of spike protein interactions with
highly active compound 1c are shown in Scheme 2. All
the 2D structures of synthesized compounds are given in
Supplementary Materials.

Structure Activity Relationship
A structure-activity relationship analysis (SAR) was performed
to find the link between the chemical structure of a dynamic
molecule and its cytotoxic activity. SAR analysis makes it
possible to identify the chemical group/atom that plays
a critical function in modulating the cytotoxic activity of
compounds within the specific system. Using the cytotoxic
activity results of the indole Mannich base derivatives,
preliminary SARs could be evaluated. The data of the
selected indole Mannich base derivatives (1a–1j) showed
that compound 1c is the most effective (HepG2, LC50-
0.9 µm, MCF-7, LC50-0.55 µm, HeLa, LC50-0.50 µm)
control doxorubicin.

Due to the presence of an indole ring fused to a hydroxyl
benzaldehyde, it was found that the compound acquires a high
cytotoxic activity against cancer cell lines. This was due to the
presence of electron releasing hydroxyl group on phenyl ring

Scheme 2 | Pathway mechanism of compound-1c interacting with spike protein.
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attached with an indole skeleton. The rest of the compounds
demonstrate feeble cytotoxic activity against all the tested
cancer cell lines.

Moreover, from the docking results, it can be assumed that the
docking score for indole derivatives (1a–1i) have an acceptable
range except 1j compound along with essential interaction which
can stabilize the compound in the active site of a protein.
Compound 1j has no active site because of an absence of electron
withdrawing /electron releasing group on it. From the results, the
compound 1c has exhibited the highest docking score of −2.808
(Kcal/mol) compared to other compounds.

CONCLUSION

We have reported a facile, high-yielding, one-pot procedure for
the synthesis of (1a–1j) via Mannich reaction using various kinds
of protected aldehydes which was successfully employed and
gave very high yields. Moreover, there were no requirements
for dry solvents or protective gas atmospheres. All the newly
synthesized compounds (1a–1j) were screened for in vivo
cytotoxicity activities against Hep-G2 (Liver), HeLa (Cervical),
and MCF-7 (Breast) cancer cell lines and normal cell lines in
Human embryonic kidney cell (HEK293), liver cell (LO2), and
lung cell (MRC5). Among the indole derivatives, compound 1c
(HepG2, LC50-0.9 µm), (MCF-7, LC50-0.55 µm), and (HeLa,
LC50-0.50 µm) was that the most active compound against the
Doxorubicin standard. All other compounds were less active
against the standard. The synthesized derivatives revealed a
high safety level by exhibiting very low cytotoxicity against the
normal cell line (HEK-293), (LO2), and (MRC5). Furthermore,
we report in silico molecular docking studies against SARA-
CoV-2 spike proteins and the biological characterization of the
results reveal that compound 1c (−2.808 Kcal/mol) has the
best multiple biological activities and can be used as a model
for future derivatives based on the 1c molecular structure.
It may identify the route to develop the best drug against
Covid-19.
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