
RESEARCH ARTICLE

Organosilane and Polyethylene Glycol
Functionalized Magnetic Mesoporous Silica
Nanoparticles as Carriers for CpG
Immunotherapy In Vitro and In Vivo
Hengrui Zheng1, SongsongWen3, Yang Zhang4, Zhenliang Sun2*

1 Center for Medical Research, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China,
2 Fengxian Hospital affiliated to Southern Medical University, 6600 NanFeng Road, Shanghai, 201499,
China, 3 Qilu Pharmaceutical Co. Ltd, Jinan, 250101, China, 4 Tong Ren Hospital Shanghai Jiao Tong
University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China

* hope1126@hotmail.com

Abstract
Cytosine–guanine (CpG) containing oligodeoxynucleotides (ODN) have significant clinical

potential as immunotherapeutics. However, limitations exist due to their transient biological

stability in vivo, lack of specificity for target cells, and poor cellular uptake. To address these

issues, we prepared amine magnetic mesoporous silica nanoparticles (M-MSN-A) then fur-

ther modified with polyethylene glycol (PEG) for use as CpG delivery vectors. The PEGmod-

ified M-MSN-A (M-MSN-P) had notable CpGODN loading capacity, negligible cytotoxicity,

and were easily internalized into cells where they released the loaded CpG into the cyto-

plasm. As a result, such complexes were effective in activating macrophages and inhibiting

tumor cells when combined with chemotherapeutics in vitro. Furthermore, these complexes

had excellent immuno-stimulating activity in vivo, compared to the free CpG therapeutics.

We report here a highly effective MSNs-based delivery system with great potential as a ther-

apeutic CpG formulation in cancer immunotherapy.

Introduction
Cytosine–guanine (CpG) containing oligodeoxynucleotides (ODN) are attractive as potentially
effective immunotherapeutic agents. In human and animals, CpG ODN sequences can be rec-
ognized as ‘danger’ signals by the immune system, resulting in stimulation of both the innate
and adaptive immune responses [1–3]. The bioactivity of the CpG ODN sequences has been
attributed to unmethylated CpG nucleotides flanked by specific bases [4, 5]. Currently, clinical
trials are underway to evaluate CPG ODN sequences as therapeutic agents and vaccine adju-
vants; their efficacy in the treatment of malignant cancer as well as infectious and allergic dis-
eases is also being tested [6–8].
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Despite these clinical trials, the use of free CpG ODN still presents several difficulties due to
limitations in biological stability in vivo, unfavorable biodistribution characteristics, lack of
specificity for target cells and poor cellular uptake [9, 10]. To overcome these issues, research-
ers are developing new formulations and delivery systems, including lipid-based delivery sys-
tems that represent one of the most advanced drug delivery technologies [11, 12]. However, the
in vivo use of lipid-based delivery systems is limited, in part, due to a large, heterogeneous size
distribution. Additionally, lipid-based delivery system are characterized by non-specific inter-
actions with cells, proteins and other macromolecules in the circulation [13, 14], and a range of
adverse side effects all of which can result in lethality [15, 16].

Mesoporous silica nanoparticles (MSNs) have emerged as one of the most appealing candi-
dates for delivering a variety of drugs such as proteins, anti-cancer chemicals and plasmid
DNA vectors [17–19]. These silica-based nanoparticles exhibit several characteristics that
could be beneficial for the delivery of therapeutic agents, including a large surface area, an
ordered pore structure and a modifiable surface [19–21]. Previous studies have also demon-
strated that MSNs possess excellent biocompatibility and can be degraded and metabolized in a
relatively short period of time in vivo [22, 23]. To the best of our knowledge, there are few data
regarding the delivery of CpG ODN with MSNs or their exploitation as immunotherapeutic
agents, particularly in vivo. Recently, Zhu and his co-workers have tried to deliver CpG drugs
by using some mesoporous silica large particles (with the diameter of around 500 nm), such as
SBA-15, hollow silica particles and obtained some achievement [24, 25]. These investigations
thus provide us with clues to engineer effective MSNs-based CpG delivery system for cancer
immunotherapy.

In this study, we designed a drug delivery system based on amine magnetic mesoporous sil-
ica nanoparticles (M-MSNs) that were further modified with polyethylene glycol (PEG). This
kind of nanopartilces not only possesses sub-100 nm sizes which meet the requirements of in
vivo applications, but also consists of the magnetic nanoparticle core. In this sense, the mag-
netic core provides magnetically targeted guidance by applying an external magnetic field. Tar-
get delivery allows drugs to be locally directed and concentrated near the action sites under
magnetic guidance, and the particles can be removed when the therapy is completed [26, 27].
Herein, this magnetic CpG system may be a more promising candidate for facilitating drug
cellular uptake in vitro and target delivery in vivo. Here, we emphatically discuss its CpG
adsorption/desorption behaviors, transfection mechanism as well as the immunostimulatory
activities.

Materials and Methods

Materials
All reagent-grade chemicals were used as received. Millipore water (18.2 MO�cm) was used in
the preparation of all aqueous solutions. Tetraethyl orthosilicate (TEOS, AR) and ammonium
nitrate (NH4NO3, AR) were purchased from Aladdin. 1, 3, 5-trimethyl-benzene (TMB, 99%)
was purchased from ACROS. Ethylene glycol (EG, used as dispersing agent), methoxy poly
(ethylene glycol) succinimidyl glutarate (mPEG-SG, MW 2000, 99%, used as PEG modification
agent) was purchased from Biomatrik Inc (Jiaxing, China). Fluorescein isothiocyanate isomer I
(FITC, 95%) was obtained from Sangon Biotech (Shanghai) Co., Ltd. Cetyltrimethylammo-
nium bromide (CTAB, AR), 3-aminopropyltriethoxysilane (APTES, AR), NH4OH (25 wt%,
AR), ethylene glycol (AR) and absolute ethanol (AR) were purchased from Sinopharm Chemi-
cal Reagent Co., Ltd., China. RPMI 1640 medium, phosphate buffered saline (PBS), and fetal
bovine serum (FBS) was obtained from Gibco (USA). Oligodeoxynucleotides containing the
unmethylated bacterial CpG motif with a phosphorothioate backbone (ODN 1826), ODN
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1826 conjugated with cyanine dye (Cy3) and control oligodeoxynucleotides with an inverted
CpG motif (ODN 1720) were purchased from Sangon (Shanghai, China). The sequences were
as follows: ODN 1826, 5’-TCC ATG ACG TTC CTG ACG TT-3’; ODN 1720, 5’ -TCC ATG
AGC TTC CTGATG CT-3’; ODN 1826 (denoted as CpG), ODN 1720 (denoted as Non-CpG).
The oligodeoxynucleotides were dissolved in endotoxin-free sterile distilled deionized H2O
(ddH2O) according to the manufacturer’s recommendations and were used at the indicated
concentrations. Dimethyl sulfoxide (DMSO), 3-(4, 5-dimethylthiahiazol-2-y1)-2, 5-di-phe-
nyltetrazolium bromide (MTT) were obtained from Sigma-Aldrich (Germany). The gene
transfection kit (Lipofectamine-2000, used as positive control) was purchased from Invitrogen
(USA); The 4’-6-diamidino-2-phenylin- dole (DAPI) and LysoTracker Red were purchased
from Beyotime Institute of Biotechnology. Doxorubicin hydrochloride (denoted as DOX) was
obtained from Sigma (USA). Transwell plates with a pore size of 0.4 μm and 12 mm in diame-
ter were purchased from Corning (USA). A TNF-α ELISA kit (MTA00B) and Mouse IL-
12p70 ELISA kit were purchased from Shanghai ExCell Biology, Inc. 29G-needle syringes was
obtained from BD (USA).

Ethics statement
All the procedures were in strict accordance with the PR China legislation on the use and care
of laboratory animals and with the guidelines established by the Institute for Experimental Ani-
mals of Shanghai Jiao Tong University, and were approved by the research ethics committee of
Shanghai Jiao Tong University for animal experiments.

Cell cultures and animals
Hela cells and the RAW264.7 murine macrophage-like cell line were grown in RPMI 1640
medium supplemented with 10% heat-inactivated FBS, 100 units/ml penicillin, 1000 μg/ml
streptomycin. Five-week-old male BALB/c mice (20±2 g) were purchased from B&K Universal
Group Limited, Shanghai, China. Animals were maintained under conventional housing con-
ditions in isolated cages with a 12 h light/dark cycle at constant temperatures (24–26°C) and
free access to food and water.

Preparation and characterization of amine and further PEG
functionalized M-MSNs
Amine functionalized magnetic mesoporous silica manoparticles (M-MSNs) were synthesized
as previously reported, with some modifications [28]. Briefly, oleic acid stabilized magnetic
Fe3O4 nanoparticles (MNPs) were prepared via a coprecipitation method and then dispersed
in chloroform at a concentration of 6.0 mg Fe/ml [29]. Then, 0.74 ml of the suspension was
added to 5 ml of an aqueous solution containing 0.15 g CTAB with continuous ultrasonication
at 50°C for 30 min. Further, the mixture was heated to 70°C and aged for 15 min under stirring
to evaporate the residual chloroform. After evaporation of the chloroform, a transparent black
dispersion was obtained and added into a solution composed of 35 ml water, 10 ml EG, and 0.7
ml NH4OH (25 wt%). Afterward, 0.44 ml TMB as a pore-swelling agent was added to the dis-
persion at 70°C and homogenized by continuous stirring for 2 h. The sequential addition of
0.45 ml TEOS and 0.05 ml APTES in a drop wise manner completed the reaction solution. All
the reagents were then stirred at 70°C with refluxing for 3 h. The resulting products were col-
lected by centrifugation (1000 rpm, 30 min) and washed with ethanol and water three times.
Finally, the templates were removed by a highly efficient ion-exchange method. In order to
remove the template completely, the nanoparticles were dispersed in a 60 ml ethanol solution
containing 60 mg NH4NO3 and ultrasonicated in a water bath for 2 h. The procedure was
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repeated three times. Based on the results of previous literatures [30, 31], these operations can
ensure the complete removal of the template. The resulting amine functionalized nanoparticles
are denoted as M-MSN-A.

Modification of the M-MSN-A was achieved by mixing it with mPEG-SG and ethanol in a
ratio of 1 mg M-MSN-A: 1 mg mPEG-SG: 1 ml ethanol. The mixture was shaken for 3 h at
room temperature to form covalent bonds between the amine groups on the outer surface of
M-MSN-A and the succinimidyl groups of mPEG-SG [32]. The products were collected by
centrifugation and then washed with ethanol three times to remove any unreacted mPEG-SG,
The obtained PEG modified nanoparticles are denoted as M-MSN-P.

To generate FITC-labeled samples, 30 mg nanoparticles (M-MSN-P) were reacted with 0.5
mg FITC in a 5 ml ethanol solution under dark conditions overnight. Samples were then cen-
trifuged and washed with ethanol three times to remove any unreacted FITC. The FITC-
labeled nanoparticles are denoted as F-M-MSN-P.

Transmission electron microscopy (TEM) images were captured on a JEM 2010 (JEOL,
Japan) instrument with 200 kV accelerated voltage. Nitrogen sorption isotherm was measured
with a Micromeritics ASAP2010 analyzer (USA) at 77 K. Before measurements, the sample
was dried in a vacuum oven at 373 K for 6 h, and outgassed in the instrument at 373 K to a
residual pressure below 6.65×10−6 bar. The pore size distribution was derived from the desorp-
tion branch of the isotherm using the NLDFT method and the Quantachrome Autosorb I soft-
ware (Quantachrome Instruments, USA) [33]. The thermal behavior was characterized using a
thermogravimetric analyzer (DTG-60/60H, Shimadzu Ltd., Japan) with a heating rate of 10°C/
min under air atmosphere. The hydrodynamic diameter distribution and the Zeta potential of
different samples were performed using the Dynamic Lighter Scattering (DLS) method on a
Zetasizer Nano instrument (Malvern, UK) at 298 K.

CpG adsorption
A series of CpG solutions with concentrations ranging from 62.5 to 650 μg/ml was prepared by
dissolving different amounts of CpG in distilled water. Then 0.2 mg of M-MSNs or M-MSN-P
was mixed with 200 μl of each CpG ODN solution in 2 ml centrifuge tubes. The resulting mix-
tures were shaken continuously in a shaking bath with a speed of 200 shakes min-1 at 25°C for
3 h. The amount of CpG in the supernatant was measured by using a NANODROP 1000 spec-
trophotometer (Thermo Scientific, USA). The difference in the CpG ODN amount in solution
before and after adsorption was determined as the amount of CpG adsorbed on the particles.
For the release behaviors, the saturated M-MSN-A/P (0.2 mg) loading CpG were dispersed in
400 μl ddH2O or PBS in 2 ml centrifuge tube. Then, the tube was placed in an air shaker bath
at 100 rpm/min (at 37°C) for in vitro release. At scheduled time, samples were centrifugally
separated for 1 min and 50 μl of the supernatant was replaced with the same volume of fresh
ddH2O or PBS (pre-warmed to 37°C). The amount of CpG presented in the supernatant was
determined by using NANODROP 1000 spectrophotometer as mention above.

Cell uptake assay
CpG uptake was carried out in 24-well cell culture plates. RAW264.7 cells were seeded in plates
at 5×104 cells/well and allowed to attach overnight. The M-MSN-P particles loading CpG (con-
jugated with Cy-3) were diluted in distilled deionized H2O (ddH2O) and dispersed in RPMI
1640 medium supplemented with 10% FBS. Subsequently, 200 μl of the resulting mixture was
added to each well. The CpG dosage of all the experimental groups including the group of bare
CpG molecules (denoted as free CpG group), CpG loaded in Lipofectamine agents (denoted as
Lipofectamine group), CpG loaded in M-MSN-P (denoted as M-MSN-P group), was fixed to
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15 μg/ml. While, unmodified M-MSNs can’t be able to absorb the CpG, so M-MSNs group is
conducted by the same amount of M-MSNs particles as M-MSN-P (e.g. 0.17 mg particles per
ml culture medium). M-MSNs particles also experienced the same adsorption experiments
(actually, there is no CpG loaded). When particles/cells incubated at 37°C, a neodymium-iron-
boron (ND-Fe-B) permanent magnet was placed under the plates for 1 h to promote the cellu-
lar uptake of the delivery vehicles (The picture of specific magnet for 24-well cell culture plate
is shown in Figure A in S1 Text). Then the magnet was removed and the particles/cells were
incubated for another 2 h. Cells were then washed 2 times with PBS and fixed with 4% parafor-
maldehyde in PBS at 25°C for 30 min followed by a third washing with PBS prior to draining
the liquid. The cells were viewed under a Nikon TE2000-U inverse fluorescent microscope
after staining their nuclei with 200 μl of a DAPI solution.

Confocal laser scanning microscopy (CLSM, Leica SP5 II, Germany) was used to assess the
intracellular trafficking of the loaded nanoparticles. RAW264.7 cells were plated into glass-bot-
tom dishes at a density of 3×104 cells per dish. After incubation at 37°C for 24 h, the growth
medium was replaced with fresh medium containing F-M-MSN-P vehicle. After 3 h of the
same magnetic/non-magnetic incubation, cells were treated with LysoTracker Red for 30 min
and DAPI for 5 min and then captured by CLSM.

Cytotoxic and TNF-α secretion assays using RAW264.7 cells
The MTT assay was employed to determine the cytotoxicity of functionalized M-MSNs in the
macrophage cell line. RAW264.7 cells (200 μl) were seeded in 24 well plates at 2 × 105 cells/ml
in RPMI 1640 medium. After 24 h incubation, the medium was abandoned and the cells were
washed with 0.2 ml PBS for three times, CpG loaded M-MSNs or M-MSN-P in fresh medium
were added to the cells and keep on incubating for 8 h. The supernatant was collected the mea-
suring the TNF-α secretion (using a TNF-α ELISA kit, MTA00B) and then replaced with
200 μl 0.5 mg/ml MTT in RPMI 1640 medium without FBS. After 4 h of incubation at 37°C,
the medium was discarded and the precipitation in the cells was dissolved by DMSO (150 μl/
well) then, the dissolvable solution was shaken for 10 min. Plates were ultimately read on a
microplate reader at 570 nm. The data reported were the mean of three examinations [34].

Anti-proliferative activity of CpG loaded particles on tumor cells co-
cultured with RAW264.7 cells
Transwell plates were utilized to determine the anti-tumor effect of CpG. In brief, RAW264.7
(4×104 cells/well) and Hela cells (4×103 cells/well) were placed in the upper and lower cham-
bers, respectively. Free CpG and CpG loaded particles were added to the upper side at a final
concentration of 10 μg CpG/ml. DOX was also added to the upper side at a final concentration
of 1 μg DOX/ml for the CpG+DOX treatment groups. After 48 h incubation at 37°C, the prolif-
erative capacity of Hela cells in the lower chambers was measured using the MTT assay as
described above.

IL-12 production in mice
Free CpG or CpG loaded M-MSN-P suspended in a 0.9% NaCl aqueous solution (25 and
50 μg/mouse for two groups, respectively) was injected into mice through the tail vein using a
29G-needle syringe. Six hours later, the mice were anesthetized and their blood was collected
from the vena cava. Then the serum was obtained after centrifugation at 3000 g for 20 min at
4°C. The concentration of IL-2 In the resulting serum was measured using a Mouse IL-12p70
ELISA kit (Shanghai ExCell Biology, Inc).
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Statistical analysis
Each group of raw data was analyzed statistically using one way analysis of variance (ANOVA)
by virtue of GraphPad Instat software (version 3.0, GraphPad Software, Inc., USA). Subse-
quently, statistical differences in each group were tested using student t-test (with P< 0.05
considered as statistically significant).

Results and Discussions

Synthesis of modified M-MSNs
Surface modification of mesoporous silica is an essential requirement for transferring DNA/
RNA. We synthesized M-MSNs with positive charges on the silica surface, which in turn per-
mitted electrostatic interactions with negatively charged CpG ODN by using APTES (the
resulting nanoparticles are denoted as M-MSN-A). To deal with the complex in vivo environ-
ments and reduce unspecific interactions with proteins, M-MSN-A were further PEGylated
(M-MSN-P) [35]. The procedure employed for the functionalization and loading of CpG is
illustrated in Fig 1. The characterizations of modified M-MSNs are displayed in Fig 2.

A representative TEM image demonstrates a typical pore size distribution of the
M-MSN-A, having a uniform and discrete spherical shape with a mean diameter of 50±15 nm,
as shown in Fig 2(a). Cylindrical mesopores (~4.3 nm in diameter) were observed in a radical
arrangement within the shell layer. Most nanoparticles contained a single magnetic Fe3O4

nanoparticle (MNP, ca. 12 nm in size) core in the center of the mesoporous silica shell with an
average thickness of 20 nm. The M-MSN-P exhibited similar morphologies to the M-MSN-A
(data not shown). The TG curve in Fig 2(b) indicates a PEG grafting amount of 17.5%. PEGyla-
tion led to a lower Zeta potential (~20 mV) compared with that of M-MSN-A (~35 mV) as
shown in Fig 2c (measured in 20 mM phosphate buffer, pH 7.0, the underlying data are shown
in Table A in S1 Text). PEGylation resulted in a slightly larger particle size compared with the
M-MSN-A as determined by DLS and shown in Fig 2(d) (Table B in S1 Text).

CpG adsorption
After the functionalized M-MSNs were obtained, their affinity to CpG ODN was measured.
The M-MSNs (without any modification) were used as a control group. As shown in Fig 3, the
saturated adsorption capacity of M-MSN-P is 180 μg/mg particles (please see Table C in S1
Text for underlying data); this value is almost 7 times higher than the functionalized MSNs
with large mesopores (13~24 nm) reported previously by Qiao and co-workers [36]. Likely, the
size matching between the pore size of M-MSN-P (~4 nm) and CpG (~2 nm) contributed to
this significant difference [37–39]. Further, since the interaction of CpG with functionalized
silica particles is electrostatic, the surface area of the particles may be another important factor
to influence the loading capacity.

Cytotoxicity study
Outstanding biocompatibility properties are an important characteristic for the development
of ideal carriers for CpG immunotherapeutics. Therefore, we evaluated the cytotoxicity of the
M-MSNs and its functionalized forms as shown in Fig 4 (Table D in S1 Text). Overall toxicity
increased with increasing concentrations of nanoparticles (Fig 4(a)), the phenomenon was
confirmed in cell images (Fig 4(b)). Specifically, at concentrations greater than 500 μg/ml, all
nanoparticles were toxic to some extent; however, at concentrations less than 100 μg/ml, the
samples displayed low cytotoxicity. In addition, the M-MSN-P is less toxic than M-MSNs, an
effect that may be due to the PEG steric hindrance weakening cell/particle interactions [40].
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Cellular uptake
RAW264.7 macrophage cells were used to study the internalization capacity of CpG loaded in
functionalized M-MSNs as illustrated in Fig 5. To adequately follow the internalization process,
CpG was labeled with cyanine dye (Cy3). There was no observed Cy3 signal from native
M-MSNs and only a weak signal from the free CpG group. Cells treated with Lipofectamine/
CpG complexes demonstrated a more profound Cy3 signal as well as the formation of large
aggregates when compared to the free CpG group. This is in agreement with the previous
reports on lipid-based delivery systems, as mentioned above [13, 14]. In contrast, the modified
M-MSNs (M-MSN-P)/CpG demonstrated the highest intensity of Cy3 signaling that was dis-
tributed equally throughout the cells compared to both the free CpG and Lipofectamine/CpG
complex groups. Further to confirm the above results, we supplemented another experiment
displayed in S1 Text. Flow cytometry analysis (BD FACSAria II, US) in Figure B in S1 Text
revealed that M-MSN-P loading CpG resulted in a clear shift in the MFI (mean fluorescent
intensity), compared with M-MSNs and free CpG (without any vectors) groups. These results
provided the envidence that M-MSN-P performed better than the unmodified particles
(M-MSNs) groups and free CpG groups.

Fig 1. Schematic illustration of the steps for the amino-modification (M-MSN-A) and PEG (MW 2000) grafting (M-MSN-P) as well as CpG loading
into the particles.

doi:10.1371/journal.pone.0140265.g001
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Mechanism of CpG transfection
RAW264.7 macrophage cells possess an inherently active phagocytic capcity; therefore, the free
CpG group still presented a weak signal (Fig 5). The intracellular uptake of CpG loaded in
M-MSN-P is likely due to two factors: 1) CpG extracellular release from vectors in culture
medium, and 2) CpG intracellular release from the vectors within cells. In order to verify this
inference, we investigated the extracellular release (Fig 6) and intracellular endocytosis behav-
iors (Fig 7) of M-MSN-P.

As shown in Fig 6(a), both of the complexes release CpG to some extent within the PBS
buffer environment and water (Table E in S1 Text). Recent reports suggest that CpG release
from functionalized M-MSNs is due to degradation of the nanoparticles’s silica shell [41]. To
confirm this, we determined the morphology of the samples released in PBS buffer and water
using TEM. Fig 6(b) indicates that the silica shell of M-MSN-P underwent dramatic degrada-
tion in PBS buffer within 8 h (for more information, please see the TEMmicrographes of
M-MSN-P after 1, 8 and 24 h immersion in PBS, as shown in Figure C in S1 Text). M-MSN-A
displayed similar degradation morphology after 8 h incubation in PBS. Neither M-MSN-A nor
M-MSN-P exhibited morphological changes after 8 h in H2O (data not shown) when compare
to the original particles (Fig 2(a)).

Fig 2. Amine functionalized nanoparticles are denoted as M-MSN-A. Following further PEGylation, they are denoted as M-MSN-P. (a) TEMmicrograph
for M-MSN-A. The bar represents 50 nm. The inset shows the pore size distribution plot for M-MSN-A. (b) TG and DTG curves, (c) Zeta potential and (d)
particle size distributions of M-MSN-A and M-MSN-P.

doi:10.1371/journal.pone.0140265.g002
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Fig 3. CpG adsorption against M-MSN-P andM-MSNs.

doi:10.1371/journal.pone.0140265.g003

Fig 4. Cytotoxicity of M-MSNs and its functionalized counterpart. (a) The curves show the MTT cell
viability results (reported as a % of the medium-treated (control) cells) after 8 h treatment with different
particles doses. (b) Cell images: cytotoxicity comparison between the two particles at a concentration of
500 μg/ml. Bar = 100 μm.

doi:10.1371/journal.pone.0140265.g004
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In contrast to the morphological data, studies examing cellular uptake demonstrated that
the nanoparticle vectors enhanced the endocytosis of CpG (Fig 5). We further verified the
intracellular delivery role M-MSN-P using confocal microscopy (Fig 7). The particles were
labeled by fluorescein isothiocyanate (FITC, green) and then the as-prepared delivery vehicles
(M-MSN-P/CpG) were incubated with RAW264.7 cells for 3 h. Prior to live cell imaging, the
nuclei were stained with 4,6-diamino-2-phenyl indole (DAPI, blue) and the endolysosomes
(fusion of endosomes and lysosomes) were stained with LysoTracker Red. Therefore, the distri-
butions of M-MSN-P and endolysosomes can be identified as green and red fluorescence,
respectively. As shown in the merged image of Fig 7, the independent green dots represent
nanoparticles existing within the cytoplasm, while the numerous yellow dots represent an

Fig 5. Cell uptake of CpG loaded in M-MSN-P. The cell uptake efficiency was examined by labeling the CpG with Cy3. The free oligo CpG-Cy3 and
Lipofectamine-CpG-Cy3 were utilized as controls. M-MSNs are unable to carry CpG-Cy3 thus no Cy3 signal is observed. M-MSN-P with CpG-Cy3 shows a
positive signal. Bar = 50 μm. The doses of free CpG or CpG in loaded carriers were equivalent to 15μg/ml.

doi:10.1371/journal.pone.0140265.g005
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Fig 6. (a) Profiles of the cumulative release of CpG fromM-MSN-A and M-MSN-P. (b) TEMmicrographs of M-MSN-P-CpG after 8 h immersion in PBS,
bar = 100 nm.

doi:10.1371/journal.pone.0140265.g006

Fig 7. Confocal laser scanningmicroscopic images of RAW264.7 cells incubated with M-MSN-P-CpG
nanoparticles for 3 h. (1) The particle is labeled with fluorescein isothiocyanate (FITC, emission of green
fluorescence), (2) the endolysosomes in cells are stained with LysoTrackerRed (emission of red
fluorescence), (3) the nuclei are stained with 4,6-diamino-2-phenyl indole (DAPI, emission of blue
fluorescence), bar = 10 ìm, (4) the overlapped image of 1–3.

doi:10.1371/journal.pone.0140265.g007
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abundant number of particles still entrapped within the endolysosomes. This confirms the suc-
cessful internalization of M-MSN-Pvectors. To sum up, internalization of CpG by RAW264.7
cells depends on the extracellular release of CpG fromM-MSN-P (due to the degradation of
the silica shell) and the intracellular delivery by virtue of the internalized M-MSN-P.

TNF-α secretion in RAW264.7 cells and anti-proliferative activity in Hela
cells
To investigate whether CpG loaded M-MSN-P are effective in activating RAW264.7 cells,
TNF-α secretion was measured 8 h after the addition of CpG loaded particles. As shown in Fig
8 (Table F in S1 Text), levels of TNF-α release from cells increased with increasing concentra-
tions of CpG for all samples following administration of low-dose drugs (final concentration of
0.1 and 1μg/ml). TNF-α secretion reached equilibrium at high concentrations of free CpG
administration (>5 μg/ml) as well as administration of the other complexes examined. These
results suggest that functionalized M-MSNs delivery systems are only beneficial for administra-
tion of low-dose CpG. This may be due to the rapid rise in the local concentration around the
cells by virtue of the nanoparticle loading. Activation of the RAW264.7 cells by free CpG, as
demonstrated by increased TNF-α secretion, is likely due to activity of the toll-like receptor-9
(TLR-9) that is essential for immuno-stimulation in the endosomes [42]; it is not necessary for

Fig 8. TNF-αsecretion at 8 h after the addition of CpG loaded complexes to RAW264.7 cells. Results are expressed as mean±SD of three independent
measurements.

doi:10.1371/journal.pone.0140265.g008
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CpG to escape from the endosomes or endolysosomes in order to immuno-stimulate cells.
Thus, free CpG showed some immuno-stimulating effects due to the inherent phagocytic
capacity of RAW264.7 cells. These results were confirmed by activation of the RAW264.7 cells
by the M-MSN-P group with numerous CpG vehicles entrapped in endolysosomes (Fig 7).

Subsequently, we measured the anti-proliferative effects of CpG loaded particles and Doxoru-
bicin hydrochloride (denoted as DOX) on Hela cells. As shown in Fig 9 (Table G in S1 Text), both
the free CpG group and CpG loaded particles group demonstrate significant growth inhibition of
Hela cells (��P<0.01), compared with non-CpG controls. Similarly, all the CpG+DOX groups
exhibited distinct anti-proliferative activity when compared to the DOX only treatment group
(��P<0.01). These results suggest that DOX and CpG loaded systems exhibit additive effects, at a
minimum, in inhibiting the proliferation of tumor cells co-cultured with RAW264.7 cells.

Fig 9. Inhibition of Hela cells proliferation by CpG loaded particles and doxorubicin hydrochloride (DOX).RAW264.7 and Hela were placed in the
upper and lower chambers of Transwell plates, respectively. CpG loaded complexes and DOX were added to the upper side at a final concentration of 10 μg
CpG/ml and 1 μg DOX/ml. The proliferative activity of Hela cells was measured at 48 h with the MTT assay and was converted to a percentage of the
medium-treated (control) cells. Results are expressed as mean±SD of three independent measurements. CpG (and CpG loaded particle) group displayed
significant differences, compared to non-CpG controls. CpG (and CpG loaded particles) also present different cell viabilities compared to the DOX treatment
group (**P<0.01).

doi:10.1371/journal.pone.0140265.g009
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As mentioned above, we prepared functionalized M-MSNs (M-MSN-P) and achieved a
high CpG loading capacity (180 μg/mg). However, these CpG delivery systems only showed
enhanced immuno-stimulating effects when low-dose CpG (final concentration of 0.1 and
1 μg/ml) were utilized in vitro. Nevertheless, reports have shown that the sophisticated envi-
ronment in vivo results in the enrichment of nanoparticles in the reticulo-endothelial system
(RES) [43–45], suggesting the possibility of an increased local concentration of CpG by
M-MSN-P vector loading in vivo. Therefore, abundant macrophages in RES would generate an
intense immune effect. The nanoparticle delivery system described here may present outstand-
ing advantages compared with free CpG in vivo.

IL-12 secretion in vivo
We investigated the serum concentration of IL-12 in mice after intravenous injection of CpG
loaded vehicles in vivo. The data are displayed in Fig 10 (Table H in S1 Text). M-MSN-P/CpG

Fig 10. IL-12 concentration in the serum after intravenous injection of free CpG or the M-MSN-P/CpG complex. At 6 h after injection, serum samples
were collected and the concentration of IL-12 was measured by ELISA. Results are expressed as mean±SD of three mice (*P<0.05, ***P<0.001).

doi:10.1371/journal.pone.0140265.g010
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shows a significant increase in IL-12 levels compared to the free CpG group at the low dosage
of 25 μg/mouse (�P<0.05). Further, the effect was more obvious when drug dosage was
increased to 50 μg (���P<0.001). These results support the idea that PEGylation can increase
specific particle adsorption in vivo, thus resulting in an increased circulatory half-life of CpG
loaded within M-MSN-P, compared to free CpG [46–49]. Finally, CpG loaded particles were
captured in RES and stimulated a more intense immune effect.

Conclusion
In this study we prepared a type of CpG delivery system based on the magnetic mesoporous sil-
ica nanoparticles (M-MSNs), which were further modified by APTES and PEG (M-MSN-P).
The obtained M-MSN-P posses significantly high CpG loading capacity due to appropriate size
matching between its mesopores and CpG molecules. Such carriers also exhibit negligible cyto-
toxicity and enable to enhance the CpG internalization when incubated with the phagocytic
cells. Thereby CpG therapeutics agent delivered by this kind of nanoparticles was effective in
activating RAW264.7 and inhibiting tumor cells when combined with chemotherapeutics in
vitro. Furthermore, this M-MSNs based CpG delivery systems had excellent immuno-stimula-
tory activity in vivo. To sum up, we demonstrated in this study that a kind of APTES functiona-
lized and further PEGylated magnetic mesoporous silica nanoparticles have a true potential for
use as a delivery vector for CpG ODN immunotherapies.
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