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ABSTRACT: Squalene bearing 18-crown-6 was synthesized and
formed unilamellar vesicles with a membrane thickness of about 6
nm and a diameter of about 0.32 μm. In the wake of the
recognition of alkali metal cations, squalene unilamellar vesicles
become larger as multilamellar vesicles or smaller while
maintaining unilamellar vesicles depending on cations.

■ INTRODUCTION
Vesicles are essential for basic science research in life
phenomena and are used as suitable models for understanding
biological cellular systems and their interfacial functions.1−6

Especially, vesicles are characterized by their internal water
domain, which allows them to encapsulate bioactive substances
such as drugs, but if their size can be further controlled by
external stimuli or signals, the encapsulated substances can be
released at will.
Micelles and vesicles utilizing crown ethers as hydrophilic

groups have been extensively studied.7−10 This is because
crown ethers selectively associate with alkali metal cations,
which play an important role in vivo. However, no examples of
vesicles that systematically change in size in response to alkali
metal cations have been reported. We have already found that
the tetra-ethylene glycol-functionalized squalene forms vesicles
with a diameter of 0.42 μm, which decreases to 0.10 μm with
the addition of alkaline earth metal cations.11

In this study, we introduced 18-crown-6 ether as a polar
moiety into hydrophobic squalene for the first time and found
that it formed unilamellar vesicles of about 0.32 μm in
diameter in water. Furthermore, we found that the size of
vesicles systematically changed when alkali metal cations were
used as external stimuli. Cryogenic transmission electron
microscopy (Cryo-TEM) observations revealed the internal
structure of all vesicles.

■ RESULTS AND DISCUSSION
2-(Oxymethyl-18-crown-6)-3-hydroxy-squalene (CESQ) was
first synthesized from 2,3-epoxysqualene12 in a 40% yield

(Scheme 1). The preparation method is detailed in the
Supporting Information (SI).

The stoichiometries and the association constants (Ka) of
CESQ for Li+, Na+, K+, Rb+, and Cs+ were estimated by 1H
NMR spectroscopic titrations13 in CD3CN, and the results are
summarized in Table 1. The results were very similar to the
previously reported values for the conventional 18-crown-6
(Figure S3, SI). Unfortunately, the association constant in
water could not be determined because CESQ easily forms

Received: February 4, 2023
Accepted: March 10, 2023
Published: March 17, 2023

Scheme 1. Preparation of 2-(Oxymethyl-18-crown-6)-3-
hydroxy-squalene (CESQ) from 2,3-Epoxysqualene
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aggregates. The association constants of 18-crown-6 with alkali
metal cations in water have already been determined by Izatt et
al.14 and Liesegang et al.15 (Table S1, SI). That is, 18-crown-6
shows great selectivity for K+ and Rb+, even in water, forming
“nest-in-type” complexes. CESQ, squalene bearing 18-crown-6,
is also expected to exhibit similar binding behavior toward
alkali metal cations in water.
The critical vesicle concentration (CVC) value of CESQ was

determined by careful examination of the vibronic band
intensities of the pyrene monomer fluorescence.16 We found
that the intensity ratio of band III to band I (III/I ratio) of
pyrene (5 × 10−7 M, excitation at 335 nm) in water increases
with increasing CESQ concentration at around 1.0 × 10−6 M
and reaches a saturation value (ca. 0.87) above 1.0 × 10−4 M
(Figure 1). A plot of the III/I ratio for CESQ gave the

continuous saturation curvature (sigmoid function), leading us
to suggest that CESQ is organized in a hydrophobic domain in
water. Thus, the CVC value was estimated as being 1.7 × 10−5

M.
We next examined the effect of metal cations on the CVC of

the CESQ vesicle in an aqueous system. The III/I ratio plots
for CESQ in the presence of alkali metal cations are shown in
Figure 2. However, the estimated CVC values were almost
unaffected by the addition of metal cations. Only with the
addition of K+ and Rb+, there was a slight but increasing trend
in the CVC values (Table S2, SI). This trend is compatible
with the slight increase in the critical aggregation concen-
trations when K+ is added to 18-crown-6 bearing C8 or C10
alkyl groups in water.17,18

The aggregation size of the CESQ vesicle was estimated by
scanning electron microscopy (SEM) and found to be around
0.3 μm (Figure 3a). The Cryo-TEM image revealed that
CESQ assembles as unilamellar vesicles with a membrane
thickness of about 6 nm and a diameter of about 0.32 μm
(Figure 3b).
As shown in Figures 4 and 5, when alkali metal cations (Li+,

Na+, or Cs+) with Ka less than 1.0 in water were added, the
average aggregation size of the CESQ vesicle increased to 0.82
μm for Li+, 0.5 μm for Na+, and 0.42 μm for Cs+. Interestingly,

adding alkali metal cations (K+ or Rb+) with Ka as being about
2.0 in water, the average aggregation size decreased to 0.05 μm
for K+ and 0.14 μm for Rb+. The size distributions of CESQ
vesicles in the presence of alkali metal cations were also
estimated by laser diffraction particle size analysis19,20 (Figure
S9, SI) and are shown as error bars in Figure 5. In addition, the
hydrodynamic diameters of CESQ vesicles estimated by
dynamic light scattering were almost the same as those
obtained from SEM and Cryo-TEM (Table S4, SI). The same
trend was verified when the ζ-potential of CESQ vesicles was
measured in the presence of alkali metal ions (Table S5, Figure
S12, SI). That is, for metal ions with large association
constants, the ζ-potential became positive,21 and the vesicle
particle size decreased due to repulsive electrostatic forces.
Lastly, cryo-TEM images revealed the internal structure of

the CESQ vesicle in the presence of alkali metal cations (Li+,
Na+, K+, Rb+, or Cs+). When the size of the CESQ vesicle
increased in the presence of alkali metal cations (Li+, Na+, or
Cs+), vesicle fusion resulted in the formation of large
multilamellar vesicles (Figure 6b,c,f). In Figure 6d,e, they
revealed that CESQ vesicles are unilamellar vesicles with a
membrane thickness of about 6 nm, and the diameter is about
0.03 μm for K+ and about 0.13 μm for Rb+. It is reported that
the vesicle size of the amphiphilic crown ether materials
increases in the presence of an alkali metal cation (K+).22−24

Table 1. Association Constants (Ka) for 1:1 Reactions of CESQ with Alkali Metal Cations in CD3CN at 25 °C
cationsa Li+ Na+ K+ Rb+ Cs+

Log Ka
b 3.16 ± 0.06 4.86 ± 0.08 6.10 ± 0.20 5.52 ± 0.16 4.94 ± 0.15

aCounter anion: SCN−. bValues are the average of three experimental determinations. The uncertainties are given as standard deviations.

Figure 1. Plot of the III/I ratio in pyrene fluorescence versus the
concentration of CESQ in water at 25 °C; [pyrene] = 5.0 × 10−7 M,
excitation at 335 nm.

Figure 2. Plots of the III/I ratio in pyrene fluorescence versus the
concentration of CESQ in water without metal cations and in the
presence of alkali metal sulfates ([M+] = 0.1 M) at 25 °C; [pyrene] =
5.0 × 10−7 M, excitation at 335 nm.

Figure 3. (a) SEM image and (b) Cryo-TEM image of CESQ
vesicles.
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Lehn and co-workers have reported that the formation of
multilamellar vesicles is driven by metal cation-selective
binding with a surface energy gain γ.25 However, so far, it is
not exactly clear why the unilamellar vesicles change to

multilamellar vesicles in the presence of metal cations. This is
because the size of the CESQ vesicle decreased as small
unilamellar vesicles with the addition of alkali metal cations
(K+ or Rb+) which strongly bind to 18-crown-6 by hole-size
selectivity in water (vide ante, Figure 5 and Table S1, SI). Van
Tamelen has reported that squalene, a kind of triterpenoid,
exists in a highly coiled, unusually compact conformation
instead of a fully extended state in hydrophilic solvent,12

leading us to suggest that the aggregation ability of squalene as
a hydrophobic moiety to form vesicles may be relatively
different from that of an ordinary triterpenoid or a long
aliphatic group in water. Consequently, we infer that the
decrease in the size of the CESQ vesicle reflects improvements
in solubility in water and the electrostatic repulsions between
individual CESQ-K+ or CESQ-Rb+ subunits within the
ensembles.

■ CONCLUSIONS
We found for the first time that the recognition of alkali metal
cations (Li+, Na+, K+, Rb+, or Cs+) causes CESQ vesicles to
become larger as multilamellar vesicles or smaller while
maintaining unilamellar vesicles. Further applications of the
amphiphilic squalene system are currently being pursued in our
laboratories.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c00744.

Materials and instruments, synthesis procedure and
characterization, determination of association constants
by NMR titration, determination of critical vesicle
concentration, preparation of vesicles, laser diffraction

Figure 4. SEM images of CESQ vesicles, (a) without metal cations
and in the presence of (b) Li2SO4, (c) Na2SO4, (d) K2SO4, (e)
Rb2SO4, and (f) Cs2SO4.

Figure 5. Plot of aggregation sizes of CESQ vesicles in the presence of
alkali metal cations determined by SEM images (Figure 4) versus the
association constants (log Ka) of 18-crown-6 for alkali metal cations in
water at 25 °C; †cited from refs 14, 15.

Figure 6. Cryo-TEM images of CESQ vesicles in water, (a) without
metal cations and in the presence of (b) Li2SO4, (c) Na2SO4, (d)
K2SO4, (e) Rb2SO4, and (f) Cs2SO4.
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particle size analysis, dynamic light scattering, ζ-
potential, SEM and Cryo-TEM observation (PDF)
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