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BOLD Noise Assumptions in fMRI
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This paper discusses the assumption of Gaussian noise in the blood-oxygenation-dependent (BOLD) contrast for functional MRI
(fMRI). In principle, magnitudes in MRI images follow a Rice distribution. We start by reviewing differences between Rician and
Gaussian noise. An analytic expression is derived for the null (resting-state) distribution of the difference between two Rician
distributed images. This distribution is shown to be symmetric, and an exact expression for its standard deviation is derived. This
distribution can be well approximated by a Gaussian, with very high precision for high SNR, and high precision for lower SNR.
Tests on simulated and real MR images show that subtracting the time-series mean in fMRI yields asymmetrically distributed
temporal noise. Subtracting a resting-state time series from the first results in symmetric and nearly Gaussian noise. This has
important consequences for fMRI analyses using standard statistical tests.
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1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) measures
activity in different areas of the brain under different experi-
mental conditions (e.g., active, rest). In the medical imaging
literature, magnitudes in MR images are assumed to follow
a Rice distribution [1–7], first studied by Rice [8, pages 100–
103]. Most statistical analyses of fMRI images test the differ-
ence between experimental conditions against a null distri-
bution, which applies when no task is performed. Paramet-
ric statistical fMRI analysis often assumes Gaussian noise [9–
14], but findings contradicting this assumption have already
been reported by Hanson and Bly [15], and tests for the dis-
tribution of the residual (noise) signal in fMRI data sets have
been developed [16].

In this paper, we examine the properties of Rician noise,
and the distribution of resting state images that are made
by pairwise subtraction of MR images. Most standard tests,
such as the t-test, F-test, and the z-test, rely on Gaussian dis-
tributed noise. Petersson et al. [17] argue that with Gaus-
sian spatial smoothing, many degrees of freedom, and the
multivariate central limit theorem, these tests are valid in
functional neuroimaging, but they warn that low-count PET
data show departures from normality. Similar effects can be
seen in functional MR images. The Rician probability density
function is very asymmetric if the signal is weak compared to

the noise, so for low signal intensities and with a low signal-
to-noise ratio (SNR), Rician noise and Gaussian noise behave
very differently and the Rician distribution has to be taken
into account in order to prevent biased statistical results.

This problem is important for fMRI, because the scans
may have relatively low SNRs, and the values of the BOLD
contrast are very small compared to the noise. This is espe-
cially true for data with high temporal and/or spatial resolu-
tion: this will inevitably lead to lower SNR values.

The remainder of this paper is organised as follows.
Section 2 introduces the Rician noise model for MR images.
Section 3 derives analytical expressions for the probability
distribution of the difference between two MR images, which
are verified in a series of tests on synthetic noise images.
Section 4 investigates the noise distributions in MR template
images contaminated with noise and in a real fMRI time se-
ries, and discusses implications for the design of fMRI exper-
iments. Section 5 contains some general conclusions.

2. NOISE IN MR IMAGES

During image acquisition in an MR scanner, magnetic fields
are transmitted in pulses varying in frequency and phase.
Voxel locations are selected by frequency and phase, and the
resulting data consist of complex values. The frequency space
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in which these data are represented is known as the k-space.
The values in the real and imaginary parts of the image are
Gaussian distributed. The k-space data are transformed to a
Cartesian space via an inverse Fourier transform (IFT). The
noise distribution in the resulting image is still Gaussian, be-
cause the IFT is a linear transform.

Most applications of MR imaging only use the magni-
tudes of the signal, because those magnitudes represent a
physical property of the scanned object [18]. Let A(x) rep-
resent the magnitude of the MR image at voxel location x
in the absence of noise. The magnitude r(x) of the signal at
voxel location x in the magnitude image is

r(x)=
√(
A(x) + n1(x)

)2
+ n2(x)2, n1(x),n2(x)∼ N

(
0, σ2),

(1)

where n1(x) and n2(x) are the real and imaginary parts of the
noise and N(0, σ2) is the Gaussian distribution with mean
zero and standard deviation σ .

The magnitude signal in each voxel x is Rician distributed
[1–3], that is, Prob[r ≤ r(x) ≤ r + dr] = pA(x),σ(r), where
pA,σ(r) is the Rician probability density with parameters A
and σ defined by

pA,σ(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, r < 0

r

σ2
e−(A2+r2)/2σ2

I0

(
Ar

σ2

)
, r ≥ 0,

(2)

where

Ik(z) = 1
π

∫ π
0
ez cos(θ) cos(kθ)dθ (3)

is the modified Bessel function of the first kind of order k,
k∈N. Figure 1 shows the Rician probability density function
(pdf) for varying values of A and σ . The shape of the PDF
changes with both parameters. The distribution for A = 0
is called the Rayleigh distribution. For high SNRs, the Rician
distribution approaches a Gaussian distribution [3].

The mean μr =
∫∞

0 r pA,σ(r)dr of the Rice distribution is
given by [8, pages 100–103, Appendix 4B]

μr = σ
√
π

2
e(−z2/4)4

{[
1 +

z2

2

]
I0

(
z2

4

)
+
z2

2
I1

(
z2

4

)}
, (4)

where z = A/σ is the SNR, and Ik, k = 0, 1, is defined in (3).

The standard deviation σr =
√∫∞

0 r2pA,σ(r)dr − μ2
r of the

Rice distribution satisfies the relation [3]

σr =
√
A2 + 2σ2 − μ2

r . (5)

As A/σ goes to infinity, these formulas yield μr → A, σr →
σ , that is, the mean approaches the noise-free intensity and
the standard deviation approaches the corresponding value
of the underlying noise distribution N(0, σ2).

MR noise was modelled by computing the intensity dis-
tribution as in (1). To make a Rice-distributed noisy im-
age from a real-valued noise-free image f (x), we use the
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Figure 1: (a) Rician PDFs for σ2 = 1 and A ∈ {1, . . . , 6}, (b) Rician
PDFs for A = 1 and σ2

r ∈ {1, . . . , 6}, (c) Rician PDFs for σ2 = 4 and
A ∈ {1, . . . , 6}, (d) Rician PDFs for A = 4 and σ2

r ∈ {1, . . . , 6}.
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following procedure for each voxel location x:

(1) n1(x),n2(x) ∼ N(0, σ2),
(2) r(x) =

√
[ f (x) + n1(x)]2 + n2(x)2.

Again, the noisy image is denoted by r(x). The local SNR
is controlled through the ratio f (x)/σ , where f (x) and σ de-
termine μr and σr as described in (4) and (5), respectively.

3. MATHEMATICAL ANALYSIS OF fMRI NOISE

3.1. Statistical testing in fMRI

In fMRI analysis, one searches for activation in certain brain
areas via statistical hypothesis testing. The null hypothesis
H0 states that there is no activation, other hypotheses cor-
respond to several kinds of activation. Most fMRI analysis
methods, such as statistical parametric mapping [13], use
the general linear model (GLM). The GLM treats fMRI re-
sponses as the outputs of a linear time-invariant (LTI) system
using a number of temporal basis functions, f1(·), . . . , fM(·),
called explanatory variables. The GLM has the form

Yk,s = βk,1 f1
(
ts
)

+ · · · + βk,M fM
(
ts
)

+ ek,s, (6)

where Yk,s is the observed data at voxel k, k = 1, . . . ,N , and
time index s, s = 1, . . . ,T ; fm(ts) is value of the mth basis
function at time ts, m = 1, . . . ,M; the βk,m are weight factors
of each temporal component at each voxel (to be determined
from the measurements); and ek,s is the error (noise) at voxel
k and time index s. In matrix form, the GLM may be suc-
cinctly written as

Y = Xβ + e, (7)

where Y is a T × N matrix, X is the T × M design matrix
containing the fm(ts) values, β is T ×N weight matrix, and e
is the T ×N residual matrix containing the part of the signal
not modelled by any component in X. Statistical parametric
tests often assume that the error values in e are independent
and identically normally distributed, that is, ek,s ∼ N(0, σ2

k ),
where the standard deviation may depend on the voxel loca-
tion.

In brain activation studies, one considers an equation of
the form (6) for both the activated and the rest (null) con-
dition. Let Y

q
k,s denote the observed signals under condition

q (0 = “rest,” 1 = “active”). Then a test statistic is formed at
each voxel, for example, a t-statistic Tk defined by

Tk = Y
1
k − Y 0

k

S2
k · (2/M)

, (8)

where Y
q
k is the temporal average per voxel and S2

k is the
pooled variance estimate, that is,

Y
q
k =

1
T

T∑

s=1

Y
q
k,s,

S2
k =

1
2M − 2

1∑

q=0

T∑

s=1

(
Y
q
k,s − Y

q
k

)2
.

(9)

Under the assumption of Gaussian noise, that is, e
q
k,s ∼

N(0, σ2
k ), Y

q
k,s is normally distributed with mean μq and stan-

dard deviation σk, and also the differences Y
q
k,s − Y

q
k are nor-

mally distributed. This implies that Tk ∼ t2M−2, that is, Tk
has a t-distribution with 2M − 2 degrees of freedom un-
der the null hypothesis H0 : μ0 = μ1, that is, no mean ef-
fect of activation occurs. For this reason the distribution of
Tk under this hypothesis is called the null distribution. Vox-
els where this hypothesis can be rejected are therefore des-
ignated as activated voxels. The significance of a certain ob-
served voxel value is expressed by a so-called p-value, which
is the probability of that voxel’s intensity being attributable
to mere chance. A p-value is calculated as the area under the
graph of the t-distribution to the right of a given intensity
value on the horizontal axis. A low p-value (say lower than
0.05) indicates that the measured value is probably not due
to mere chance, that is, that it is a real activation.

The Rician distribution which applies to MRI data has
a heavier right tail than a Gaussian, so p-values based on a
Gaussian noise assumption with the standard deviation of
the Rice distribution will be too low, introducing false pos-
itives. Hanson and Bly [15] found similar deviations, using
gamma distributions instead of Rician PDFs.

As we have seen, it is the null distribution which is needed
to compute p-values. From the discussion above, it is appar-
ent that a sufficient condition for the usual statistical analysis
to hold is that the difference signal at each voxel correspond-
ing to the case of no activation has a Gaussian distribution.
Therefore, our object of study in the remainder of this pa-
per is the distribution of the noise in difference images of
Rician-distributed MRI images without activation. As we will
see, this distribution is indeed very close to a Gaussian, albeit
with a standard deviation different from that of the initial
Rice distribution.

3.2. Null distribution of the difference fMRI signal

The difference of two noisy versions r1(x) and r2(x), con-
taining Rician noise, of the same underlying image f (x), is
not Rician distributed. Let the null image s(x) be defined as
s(x) = r2(x) − r1(x). Its probability density function (PDF)
is denoted by CA,σ(s), where we write A instead of f (x) and
σ is the standard deviation of the underlying noise distribu-
tion (cf. (1)). Then CA,σ(s) is the probability that the value
of the difference s(x) falls in an infinitesimal interval around
s : CA,σ(s) = Prob[s ≤ s(x) ≤ s + ds]. We will refer to CA,σ(s)
as the null distribution.

Since it is easy to see that CA,σ(s) is symmetric, that is,
CA,σ(s) = CA,σ(−s), we have the following expression valid
for arbitrary values of s ∈ R:

CA,σ(s) =
∫∫∞

0
pA,σ

(
r1
)
pA,σ

(
r2
)
δ
(
r2 − r1 − |s|

)
dr1dr2

=
∫∞

0
pA,σ

(
r1
)
pA,σ

(
r1 + |s|)dr1,

(10)

where δ(r) denotes the Dirac delta function. That is, CA,σ(s)
is the cross-correlation of two identical Rice distributions.
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The mean μs and standard deviation σs of the null distribu-
tion CA,σ(s) are given by

μs = 0, σs =
√

2σr , (11)

where σr is the standard deviation of the Rice distribution,
see (5). For the derivation, see Appendix A.1. In the case A =
0, the PDF of r1, as well as that of r2, is

p0,σ(r) = r

σ2
e−r

2/2σ2
. (12)

For the Rayleigh case (A = 0), the integral in (10) can be
explicitly evaluated. The resulting expression for C0,σ(s) is

1
2σ
e−s

2/4σ2
[ |s|

2σ
e−s

2/4σ2
+
√
π

2

(
1− s2

2σ2

)
erfc

( |s|
2σ

)]
, (13)

where erfc(z) = (2/
√
π)
∫∞
z e−t2 dt is the complementary error

function [19]. For the derivation of this formula, we refer to
Appendix A.2.

The following experiments investigate how well the PDF
CA,σ(s) can be approximated by a Gaussian distribution.

3.3. Numerical approximation by a normal distribution

The distribution CA,σ(s), see (10), was numerically approx-
imated by a Gaussian via the Levenberg-Marquardt curve-
fitting algorithm. The fit was carried out on an interval cen-
tered around zero with negligible function values outside this
interval. Figure 2 shows the PDF CA,σ(s), as well as the Gaus-
sian fitted to this distribution, for a number of values of A
and σ . The plots show an excellent fit.

Table 1 presents some quantitative results. It shows, for
various values of A and σ , (i) the exact standard deviation
σs =

√
2σr of the null distribution (11), where σr was com-

puted according to (4)-(5); (ii) the width σGauss of the Gaus-
sian fitted to CA,σ(s); and (iii) the mean square error of the
difference between CA,σ(s) itself and the fitted Gaussian. The
difference between the width σGauss of the fitted Gaussian and
the exact value σs is very small, especially for high SNR (i.e.,
A/σ). Since σr approaches σ for high SNR (see Section 2), σs
approaches

√
2σ in this limit. The mean square error should

decrease when the SNR increases; this is confirmed by the
experimental results. The null distribution does not have a
heavy tail (it is slightly lighter than a Gaussian of width σ ,
see below). Function values outside the interval used in the
fitting procedure represent a negligible portion of the dis-
tribution. Therefore, p-values from statistical tests based on
Gaussian noise with an estimated standard deviation σGauss

will be very accurate, and (because of the light tail) where
there is a difference, the estimates will be conservative.

3.4. Tail of the null distribution

An important property of the PDFCA,σ(s) for statistical fMRI
analysis is the tail behaviour (as |s| approaches infinity) of the
distribution under the null hypothesis, because this deter-
mines the p-value corresponding to a certain threshold (cf.
Section 3.1).

Table 1: Accuracy of Gaussian fits to the PDFCA,σ for various values
of A and σ . Shown are the exact standard deviation σs computed
from (11), the width σGauss of the fitted Gaussian, and the mean
square error of the difference between the exact distribution and
the fitted Gaussian.

A σ σs σGauss Error

0 1 0.9265 0.9103 0.0080

0 3 2.7795 2.7315 0.0045

0 5 4.6325 4.5526 0.0035

2 1 1.2933 1.3071 0.0030

2 3 3.0463 3.0085 0.0035

2 5 4.8079 4.7291 0.0033

8 1 1.4086 1.4086 0.0000

8 3 4.0552 4.0780 0.0008

8 5 6.1567 6.2188 0.0013

For the limiting cases of low and high SNR, that is, A = 0
and A/σ large, we mathematically analysed the behaviour of
the PDF CA,σ(s) when |s| becomes very large. The details are
presented in Appendix A.3. We find that both in the Rayleigh
case (A = 0) and for large values of A/σ , the tails of the dis-
tribution (10) are lighter than the tail of a Gaussian distribu-
tion:

CA,σ(s) ∼ constant · 1
|s| e

−(|s|−A)2/2σ2
, s −→ ∞, (14)

where the constant depends on A and σ . This is a Gaussian
tail of width σ multiplied by a factor 1/|s|, which means that
the distribution approaches zero even faster than a Gaussian
distribution of width σ . This implies that if p-values based
on a Gaussian are used, the test is slightly conservative, and
will not give extra false positives.

3.5. Statistical tests of normality

An image of a uniform underlying intensity with Rician noise
has a spatially stationary noise distribution. The distribution
of the difference between two such images is symmetric.

To test whether this distribution is close to Gaussian,
the Kolmogorov-Smirnov (KS) test was employed as follows.
We created two images of a uniform intensity A with Rician
distributed noise, and computed the difference between the
noisy images. The KS test was applied to the difference im-
age. The null hypothesis of the KS test is that the data are
normally distributed, and this is rejected if the p-value of the
KS test statistic is below 0.05. For a number of intensities A,
images of different sizes were tested, and for each size and
intensity, the test was repeated 32 times. Table 2 shows the
mean p-values of the KS test statistics for each size, with in-
tensity A = 1 and A = 5. As a reference, 32 images of the
same size containing N(0, 1) noise were also tested, and their
mean p-values are in the right column. This table shows that
deviations from normality can only be detected in very large
images with low intensities: for high intensities, they are too
small to measure.
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Figure 2: The exact null distribution CA,σ(s) (solid), the fitted Gaussian (dashed), and the difference between CA,σ(s) and the Gaussian
(dotted). Note that the fitted Gaussian is hardly distinguishable from the exact distribution.

3.6. Parameter estimation in fMRI with
the general linear model

For fMRI analysis, the possibility of accurately estimating the
parameters of the noise is at least as important as using the
right noise model. We tested the applicability of the GLM
(see Section 3.1) by estimating the noise parameters in dif-
ference images created in the same way as s(x) in Section 3.2,
and comparing them with the real underlying parameters.

A matrix e of error signals was created by making a time
series of 128 difference images. The standard deviation of the
temporal noise was computed in each voxel. Table 3 shows,
for the same input A and σ as before, the measured temporal
standard deviation σ temp, the mean standard deviation σs in
the difference images (which equals

√
2σr , see Section 3.2),

and the ratio σs/σ temp. It shows that the standard deviation σs
is very accurately predicted by formula (11).

3.7. Evaluation of the test results

The statistical tests, the analytical results, and the numeri-
cal computations, all show that the difference between two
MR images whose intensities are Rician distributed, can
be very well approximated by a Gaussian distribution. The
approximation is closest for high SNR, but is still very good
for lower SNR. Given the parameters A and σ of the Ri-
cian spatial noise in a series of MR images and defining null
images as pairwise difference images, the parameters of the
Gaussian distribution that describes the temporal noise can
be accurately estimated.
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Table 2: p-values produced by the KS test for the difference be-
tween images with Rician distributed noise with signal amplitudes
A = 1 and A = 5, and for images of the same size with N(0, 1)-
noise.

Size p-value (A = 1) p-value (A = 5) p-value N(0, 1)

2 × 2 0.6573 0.5607 0.4569

4 × 4 0.5761 0.5565 0.4249

8 × 8 0.5511 0.5493 0.4894

16 × 16 0.5801 0.5564 0.5854

32 × 32 0.5833 0.5378 0.5946

64 × 64 0.5629 0.4869 0.4816

128 × 128 0.5270 0.5426 0.5147

256 × 256 0.4390 0.5554 0.5225

512 × 512 0.3210 0.5219 0.4006

1024 × 1024 0.0587 0.5236 0.5037

Table 3: Measured temporal standard deviation σ temp, the mean
standard deviation σs in the difference images, and the ratio
σs/σ temp.

A σ σs σ temp σs/σ temp

0 1 1.4280 1.4338 0.9959

0 3 4.2854 4.3017 0.9962

0 5 7.1352 7.1667 0.9956

2 1 1.8001 1.8071 0.9961

2 3 4.4708 4.4890 0.9959

2 5 7.2472 7.2815 0.9953

8 1 2.1579 2.1667 0.9959

8 3 5.7924 5.8157 0.9960

8 5 8.5195 8.5542 0.9959

4. THE NOISE DISTRIBUTION IN fMRI

Images in an fMRI time series have a range of intensities,
so the noise distribution is a sum of Rician PDFs (sums of
Gamma PDFs have also been used, see [15] for an example).
For each intensity A in the image, the noise is distributed dif-
ferently (see Figure 3(c)), and this will have an influence on
the parameter estimates of the GLM. Areas with a “true” grey
value of 0, like the space around the body, have Rayleigh-
distributed noise, and the areas with higher grey values have
more symmetric distributions, which are quite similar to a
Gaussian, and they are centered around the grey value at that
location. The total noise distribution is a mixture of all those
distributions. The question is whether the conclusions about
the noise in the difference image obtained in Section 2 also
hold for noisy images with mixed distributions.

4.1. Shape of the noise distribution in MR images

A simulated MR image was acquired from the BrainWeb
Magnetic Resonance Imaging simulator [20] with the follow-
ing parameters: modality T2, slice thickness 1 mm, noise 0%,
intensity nonuniformity 0%. Nonbrain voxels were excluded
with the Brain Extraction Tool [21]. This noise-free T2∗-
weighted image (Figure 3(a)) was contaminated by Rician

(a) (b)

25002000150010005000

(c)

25002000150010005000

(d)

Figure 3: (a) A noise-free T2-weighted MR image. (b) Image (a)
with Rician noise of σ = 81.67 (SNR 10 dB). The histogram of a
noise-free T2∗-weighted MR image (c) and of the same image with
Rician noise of σ = 81.67, SNR = 10 dB (d).

noise with a known σ (see Figure 3(b)). A residual image
was obtained by subtracting the original MR image from the
noisy MR image, and a null image was made using the proce-
dure proposed in Section 3, that is, as the difference between
two MR images containing Rician noise.

The dissimilarity between a Rician distribution and a
Gaussian is largest for low signal intensities A. The previ-
ous section showed that the difference between two images
of a uniform intensity A and Rician noise has zero mean and
is near-Gaussian distributed, also for low signal intensities.
This section examines the difference images when the noise-
free images contain more than one intensity. Figure 4 shows
the histograms of a noisy MR image, the difference between a
noisy MR image and the noise-free image, and the difference
between two noisy MR images, respectively. The histograms
were computed for a range of values for σ and are presented
together as surface plots. As σ decreases, the histogram of the
noisy MR image changes from one Rayleigh-like PDF to a
number of near-Gaussian PDFs (see Figure 4(a)). The his-
togram of the noisy image after subtraction of the original is
asymmetric for high σ , and becomes more symmetric as σ
decreases (see Figure 4(b)). The histogram of the difference
images is symmetric for all σ (see Figure 4(c)).
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Figure 4: (a) Histogram of a noisy MR image, (b) histogram of the difference between a noisy MR image and the noise-free MR image, and
(c) histogram of the difference of two noisy MR images, for various σ . Top: surface plots, bottom: grey-value maps.

4.2. Time series of MR images

A time series of 164 EPI scans was made on a 3 Tesla Intera
scanner (Philips Medical Systems, The Netherlands), with
repetition time TR = 3 seconds, volume size = 64× 64× 46
voxels of 3.5×3.5×3.5 mm3. No stimuli were presented, and
the null hypothesis of no activation was assumed to be true
throughout the experiment. Alignment of the images was
done with SPM′99 program [13].

The time series was split in two disjoint sets: TS1 (images
1, . . . , 82) and TS2 (images 83, . . . , 164). The noise of TS1 was
centered around 0 by subtracting the time series mean image
of TS1 from each image. Note that although this is a common
procedure in fMRI analysis, this means treating Rician noise
as additive noise. To obtain an image with a symmetric noise
distribution, difference images were made by subtracting the
corresponding image of TS2 from each image of TS1.

The histogram of the time series mean image (see
Figure 5) was used to divide the images into three intensity
ranges: low intensity (grey value 0, . . . , 300), medium inten-
sity (grey value 301, . . . , 600), and high intensity (grey value
> 600).

Figure 6 shows the histograms of the grey values in the
resulting time series within the three ranges. Gaussians were
fitted to the histograms with the Levenberg-Marquardt
curve-fitting algorithm. For medium and high intensities, the
time series histograms show no significant asymmetries. For
low intensities however, the time series TS1 after subtracting
the mean has an asymmetric histogram, while the time series
TS1 after subtracting TS2 has a symmetric histogram. The
fits are never perfect, except in the case of low intensities and
after subtracting TS2. In that case, the intensity distribution
has one predominant intensity (A = 0, see Figure 5), and the

150010005000

Figure 5: Histogram of the time series mean image of TS1.

difference distribution is close to those in the A = 0 cases of
the previous section. In the other cases, the noise originates
from voxels with various intensities, and the noise distribu-
tion resembles a mixture of Gaussians with mean μ = 0 and
various σ .

Because the amount of asymmetry in the medium and
high grey-value ranges is very small, the combination of
thresholding and subtracting the time series mean may solve
most of the problems concerning the Rician distribution of
the noise. However, the new method presented in this paper
of subtracting a second-time series is preferable: it has proved
to yield symmetric noise distributions in all measurements
considered.

4.3. Implications for fMRI designs

The assumption of Gaussian noise in the analysis of fMRI
data should be used with care. Relying on the robustness of
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Figure 6: Histograms of three intensity ranges of the images in the time series. Top: time series TS1 after subtracting the time series mean:
(a) low intensity, (b) medium intensity, (c) high intensity. Bottom: time series TS1 after subtracting the corresponding images of time series
TS2: (d) low intensity, (e) medium intensity, (f) high intensity.

the standard tests most often works, but it does not solve
the problem of the asymmetric noise distribution. A recent
maximum-likelihood test based on the Rician distribution
shows to be as powerful as the GLM-based test with a high
SNR, but performs much better with a low SNR [22]. For
using the assumption of Gaussian noise, difference distribu-
tions like the one presented here will be required. The exam-
ple presented here of using an extra data set for every exper-
iment is difficult for large studies, but this can be solved in a
more practical way: a relatively small set of “null data” can be
reused after randomisation in the time dimension. The only
change in the formula for the GLM (7) is using Y − Y0 in-
stead of Y, with Y0 the resting-state data set. It is trivial to see
that this does not change the way the estimates are computed,
even if different (more complex) design matrices X are used.

5. CONCLUSIONS

We have presented a noise model in BOLD fMRI that takes
into account the Rician distribution of MR noise known
from the literature. BOLD noise was defined as the difference
between two MR images with Rician noise. We investigated
the properties of the difference image under the null hypoth-
esis (no brain activation), which is needed to determine p-
values in a statistical analysis. The problem was studied in
several complementary ways: analytical calculation, numeri-
cal simulation, statistical estimation, and experimental vali-
dation on real EPI data. An analytic expression was derived
for the statistical null distribution CA,σ(s) as an integral in
terms of two underlying Rician probability densities with pa-
rameters A and σ . From this basic formula, analytical expres-
sions were derived for the mean and standard deviation of

the null distribution, as well as for its tail, that is, its asymp-
totic behaviour as s goes to infinity.

The null distribution CA,σ(s) was numerically approxi-
mated by a Gaussian function with the Levenberg-Marquardt
nonlinear curve-fitting algorithm. The approximation by a
Gaussian distribution was very good, with the accuracy in-
creasing with SNR (i.e., A/σ). The standard deviation of the
fitted Gaussian was found to be in excellent agreement with
the exact standard deviation σs derived from the analytical
expressions.

The statistical properties of the noise were examined in
two ways. The Kolmogorov-Smirnov test was applied to dif-
ference images of noise-only images with Rician distributed
noise. A second test using the general linear model (GLM)
compared the estimated noise parameters to the value pre-
dicted by the model, and showed that the agreement is excel-
lent.

From the analytical results, the numerical computations,
and the statistical tests, we concluded that the assumption of
Gaussian distributed noise used in the fMRI literature could
be justified. That is, the difference between two images whose
intensities follow a Rice distribution can be very well ap-
proximated by a Gaussian distribution. The approximation
is closest for high SNR, but is still quite good for lower SNR.
Given the parameters A and σ of the Rician spatial noise in a
series of MR images, the standard deviation of the Gaussian
that describes the temporal noise can be accurately predicted.

The noise model was tested on simulated and real MR
images. In a test that contaminated noise-free MR templates
with Rician noise, MR noise was shown to have an asym-
metric distribution when it is—incorrectly—treated as addi-
tive noise. As in the test with noise-only images, difference
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images of noisy MR pictures were found to have a symmetric
distribution. The consequence for fMRI time series analysis
is that subtracting the time series mean does not get rid of
the asymmetry in temporal noise.

We tested thresholding the MR images as a fast and sim-
ple alternative to the difference image approach: it can re-
move asymmetry in the noise distribution to a large extent,
depending on the robustness of the test that is used. Subtract-
ing a second time series from the time series being analysed
yields symmetric and close to Gaussian distributed noise.

APPENDIX

A. MATHEMATICAL ANALYSIS OF THE
NULL DISTRIBUTION

This appendix presents the derivations of the exact analytical
results in Section 3 on the distribution of the difference sig-
nal under the null hypothesis. Extensive use is made of the
concept of asymptotic expansions. We first provide a few for-
mal definitions. Let φ(x) and ψ(x) be two functions defined
for x ≥ x0. One writes φ(x) = O(ψ(x)), x → ∞, when con-
stants K and x1 exist such that |φ(x)| ≤ K|ψ(x)| for x ≥ x1.
We call

∑∞
n=0 anφn(x) the asymptotic expansion of a function

f when, for every N , | f (x) −∑N
n=0 anφn(x)| = O(φN+1(x)),

and write

f (x) ∼

∞∑

n=0

anφn(x), x −→ ∞. (A.1)

Below, we only use the first term in the asymptotic expansion
of some special functions (error function, Bessel function),
and use the shorthand notation

f (x) ∼ a0φ0(x), x −→ ∞. (A.2)

To make this precise, one has to refer to the full asymptotic
expansions, as can be found in Abramowitz and Stegun [19];
for easy reference, we refer to the relevant sections of this
handbook at the appropriate places.

A.1. Mean and variance of the null distribution

First, the mean μs is zero because of the symmetry of CA,σ(s).
Second, since the mean is zero, the variance of the null
distribution satisfies (see (10))

σ2
s =

∫∞
−∞

ds s2C(s)

=
∫∞
−∞

ds s2
∫∞

0
dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
)
δ
(
r2 − r1 − |s|

)

=
∫∞

0
dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
) ∫∞

−∞
dss2δ

(
r2 − r1 − |s|

)
,

(A.3)

where δ(·) denotes the Dirac delta function. Since δ(r2−r1−
|s|) is zero except when r2 − r1 − |s| = 0, we find

σ2
s =

∫∞
0

dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
)(
r1 − r2

)2

=
∫∞

0
dr1

∫∞
0

dr2pA,σ
(
r1
)
pA,σ

(
r2
)(
r2

1 + r2
2 − 2r1r2

)

=
∫∞

0
dr1r

2
1 pA,σ

(
r1
)

+
∫∞

0
dr2r

2
2 pA,σ

(
r2
)

− 2
(∫∞

0
dr1r1pA,σ

(
r1
))(∫∞

0
dr2r2pA,σ

(
r2
))

= 2E
(
r2)− 2E(r)2 = 2σ2

r .
(A.4)

Here E(· · · ) denotes the average of the quantity within the
brackets. So we have found that σ2

s = 2σ2
r , which directly

yields (11).

A.2. Exact form of the null distribution in the
Rayleigh case

Substituting the form (12) of the Rayleigh distribution in ex-
pression (10), we find

C0,σ(s) =
∫∞

0
dr

r

σ2
e−r

2/2σ2 r + |s|
σ2

e−(r+s)2/2σ2
. (A.5)

Putting r/σ = x, |s|/σ = q, A/σ = a, we find after some
algebra

C0,σ(s) = 1
σ

∫∞
0

dx
{(

x +
q

2

)2

− q2

4

}
e−(x+q/2)2−q2/4. (A.6)

Again, putting y = x + q/2,

C0,σ(s) = 1
σ
e−q

2/4
∫∞
q/2

dy
(
y2 − q2

4

)
e−y

2
. (A.7)

Writing τ = q/2, we can write this integral as the sum
of two terms, each of which can be expressed in terms of the
complementary error function

C0,σ(s) = 1
σ
e−τ

2
S2 − 1

σ
e−τ

2
τ2S0, (A.8)

where

S0 =
∫∞
τ

dye−y
2 =

√
π

2
erfc(τ),

S2 =
∫∞
τ

dyy2e−y
2 = 1

2
τe−τ

2
+
√
π

4
erfc(τ).

(A.9)

Substitution of these expressions in (A.8) yields

C0,σ(s) = 1
2σ
e−τ

2
{
τe−τ

2
+
√
π

2

(
1− 2τ2)erfc(τ)

}
. (A.10)

Reexpressing τ in terms of the original variable s (i.e., τ =
q/2 = |s|/(2σ)), we obtain formula (13).
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A.3. Tails of the null distribution

We consider the limiting case of low versus high SNR, that is,
A = 0 and A/σ large.

A = 0. This is the Rayleigh case, for which we have de-
rived an exact expression for the null distribution, see for-
mula (13). When s is large, we can use the asymptotic be-
haviour of the error function [19, section 7.1.23]

erfc(z) ∼

1√
πz
e−z

2
, z −→ ∞. (A.11)

Substituting this in (13), we find (after rearrangement of
terms)

C0,σ(s) ∼

1
2|s| e

−s2/2σ2
, s −→ ∞, (A.12)

which behaves as a Gaussian tail of width σ multiplied by a
factor 1/|s|.

A/σ large. Since A/σ is large, we apply the Gaussian ap-
proximation of the Rice distribution:

pA,σ(r) ∼

1√
2πσ2

e−(r−A)2/2σ2
. (A.13)

As shown in [3], this approximation is already accurate for
A ≥ 2σ . This formula is easy to derive by using the asymp-
totic expansion of the Bessel function I0 as given in [19, Sec-
tion 9.7.1]. Substituting this in (10), we get

CA,σ(s) ∼

∫∞
0

dr
1

2πσ2
e−(r−A)2/2σ2

e−(r+|s|−A)2/2σ2
. (A.14)

Putting r/σ = x, |s|/σ = q, A/σ = a, we find after some
algebra

CA,σ(s) ∼

1
2πσ

∫∞
0

dxe−(x−a)2/2e−(x+q−a)2/2

= 1
2πσ

e−q
2/4
∫∞

0
dxe−(x+q/2−a)2

.
(A.15)

Again, putting y = x + q/2− a,

CA,σ(s) ∼

1
2πσ

e−q
2/4
∫∞
q/2−a

dye−y
2

= 1
2πσ

e−q
2/4
√
π

2
erfc

(
q

2
− a
)
.

(A.16)

In terms of the original variable s,

CA,σ(s) ∼

1
4
√
πσ

e−s
2/4σ2

erfc
( |s|/2− A

σ

)
. (A.17)

Applying the asymptotic expansion (A.11) of the erfc
function for large argument, we find

CA,σ(s) ∼

1
2π
(|s| − 2A

) e−((|s|−A)2+A2)/2σ2
. (A.18)

Finally, since |s| is large, we can replace |s| − 2A by |s|:

CA,σ(s) ∼ constant · 1
|s|e

−(|s|−A)2/2σ2
, s −→ ∞, (A.19)

which again behaves as a Gaussian tail of width σ multiplied
by a factor 1/|s|.
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