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Abstract

Background

Patients with pituitary lesions experience decrements in quality of life (QoL) and treatment

aims to arrest or improve QoL decline.

Objective

To detect associations with QoL in trans-nasal endoscopic skull base surgery patients and

train supervised learning classifiers to predict QoL improvement at 12 months.

Methods

A supervised learning analysis of a prospective multi-institutional dataset (451 patients) was

conducted. QoL was measured using the anterior skull base surgery questionnaire (ASBS).

Factors associated with QoL at baseline and at 12-month follow-up were identified using

multivariate logistic regression. Multiple supervised learning models were trained to predict

postoperative QoL improvement with five-fold cross-validation.

Results

ASBS at 12-month follow-up was significantly higher (132.19,SD = 24.87) than preoper-

ative ASBS (121.87,SD = 25.72,p<0.05). High preoperative scores were significantly

associated with institution, diabetes and lesions at the planum sphenoidale / tuberculum

sella site. Patients with diabetes were five times less likely to report high preoperative

QoL. Low preoperative QoL was significantly associated with female gender, a vision-

related presentation, diabetes, secreting adenoma and the cavernous sinus site. Top

quartile change in postoperative QoL at 12-month follow-up was negatively associated

with baseline hypercholesterolemia, acromegaly and intraoperative CSF leak. Positive

associations were detected for lesions at the sphenoid sinus site and deficient
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preoperative endocrine function. AdaBoost, logistic regression and neural network clas-

sifiers yielded the strongest predictive performance.

Conclusion

It was possible to predict postoperative positive change in QoL at 12-month follow-up using

perioperative data. Further development and implementation of these models may facilitate

improvements in informed consent, treatment decision-making and patient QoL.

Introduction

Pituitary adenomas are common and may be present in up to 10% of people with normal

endocrine function [1]. Prevalence ranges between 1 in 865 and 1 in 2,688 adults [2]. Func-

tioning pituitary tumours lead to hypersecretion syndromes including Cushing’s disease, acro-

megaly and hyperprolactinemia [3], negatively impacting patient function, life expectancy and

quality of life (QoL) [4]. Non-functioning tumours may lead to symptoms due to mass effect

and may present with visual disturbance [1]. Treatment is provided by experienced, specialised

multidisciplinary centres, which include neurosurgery, endocrinology, rhinology, radiology

and radiation oncology [2].

Patients with pituitary lesions experience worse QoL than the general population [3, 5, 6].

Treatment aims to improve QoL or at least arrest its decline, although postoperative QoL typi-

cally declines initially post-surgery [7] before improving. However, persistent decline has been

reported [6, 8]. Subtotal resection has been linked with QoL decrements, suggesting the need

for gross total resection [9]. Endoscopic pituitary surgery has been linked with preserved

patient QoL, compared to other surgical techniques [9, 10]. If future postoperative QoL

improvement could be accurately predicted prior to pituitary surgery, then this could provide

valuable decision support information to clinicians and patients, which may lead to altered,

more personalised treatment plans and clearer postoperative recovery expectations. Clinicians

could determine which patients would be most likely to experience QoL improvements and

patients with poor predicted QoL outcomes could be considered for alternative or adjunct

treatments.

Supervised machine learning is a subdomain of artificial intelligence (AI) that involves the

application of algorithms to identify complex patterns in large datasets enabling effective out-

come prediction and classification [11–17]. Supervised learning techniques have demonstrated

efficacy across a wide range of application domains and the application of machine learning to

neurosurgery is growing rapidly [14, 18, 19]. With regard to skull base surgery, supervised

learning has been applied to predict early postoperative outcomes [20], hyponatremia [21], the

risk of experiencing intraoperative cerebrospinal fluid (CSF) leaks [22], remission after surgery

[23, 24] and long-term postoperative control of Cushing’s disease [25]. It has been used to clas-

sify adenoma subtypes using magnetic resonance imaging data [26] and predict radiothera-

peutic response in patients with acromegaly [27].

This study was conducted to detect clinical associations with QoL in trans-nasal endoscopic

skull base surgery patients and train and test a collection of supervised learning classifiers to

predict QoL improvement at 12 months. The study was guided by the following two research

questions. (1) What clinical factors are associated with preoperative QoL in skull base surgery

patients? (2) Can postoperative change in QoL be effectively predicted using supervised learn-

ing algorithms?
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Method

Design

This multi-institutional study involved an analysis of a prospectively collected dataset. Each

patient was older than 18 years and underwent skull base neurosurgery to treat pituitary

pathology. Patients were treated at three tertiary hospitals in Melbourne, Australia: St Vin-

cent’s Hospital, Monash Medical Centre, and The Royal Melbourne Hospital.

Ethics

The study was conducted under institutional review board (IRB) ethics approval (2021-029S,

The University of Notre Dame Australia). Patients provided their consent for the use of their

data for quality improvement analysis. The IRB provided a waiver of consent for the use of the

deidentified dataset for research.

Data

Covariates and outcomes. Covariates (i.e., independent variables or features) included

operating institution, gender, age, presentation history, co-morbidities, anatomic site of the

lesion, histopathology, endocrine status, characteristics of the surgery, and intra- and postop-

erative complications. The primary outcome measure was QoL, as measured by the Anterior

Skull Base Surgery Questionnaire (ASBS). Scores range from 35 to 175 and higher scores indi-

cate a better state of QoL [28, 29]. Preoperative ASBS scores for each patient were stratified

into quartiles. Statistical models were designed to detect associations with the highest and low-

est preoperative ASBS quartiles. Postoperative change in ASBS score at 12-months was calcu-

lated for each patient and stratified into quartiles. Statistical models were designed to detect

clinical associations with the highest and lowest ASBS change quartiles and machine learning

models were trained and tested to predict the highest ASBS change quartile. Data were col-

lected between March 2016 and September 2020.

Data processing. Covariates and outcomes were coded as binary variables. If datapoints

were missing for>10% of cases for a given covariate, then it was excluded from the analysis. If

<10% of cases for a binary covariate contained missing data, then it was assumed that the

patient’s clinical state with regard to that covariate was normal and the missing fields were

filled with zeros. This was done to retain and include as many clinical covariates as possible in

the analysis, maximising the use of the specialist dataset collected. In the postoperative

machine learning dataset, this applied to five covariates: “any postoperative complication” (n

missing = 15), “secreting adenoma” (n missing = 8), “development of postoperative diabetes

insipidus” (n missing = 10), “development of postoperative syndrome of inappropriate anti-

diuretic hormone secretion (SIADH)” (n missing = 15) and “reoperation” (n missing = 4).

Patients with missing outcome data were excluded from the analysis.

Analysis

The analysis involved two phases: (1) statistical analysis using multivariate logistic regression;

and (2) training and testing supervised learning classifiers. The first phase involved applying

multivariate logistic regression to detect significant associations between covariates and out-

come variables. Covariates were included in multivariate models in a hypothesis-driven man-

ner based on clinical relevance and the expertise of senior surgeons [30]. Covariates with

negligible statistical contribution to these multivariate models (z-score<0.02, or p>0.9) were

excluded and models were subsequently retrained [15, 16, 31]. Discrete groups of related vari-

ables (e.g., demographics, presentation history factors, co-morbidities, etc.) were added
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sequentially and systematically to carefully assess the stability of associations. Odds ratios (OR)

and 95% confidence intervals (CI) were calculated to assess the strength of associations. Pre-

dictive modelling better practice guidelines informed model development [32–35]. Highly cor-

related variables were removed to control for multicollinearity (e.g., “presentation history:

visual” and “abnormal preoperative vision”). Logistic regression models were considered sig-

nificant if they achieved a log likelihood ratio (LLR) p-value of less than 0.05.

Numerous supervised learning classifiers were trained and tested, including random forest

(RF) [36], gradient boosting machines (GBM) [37, 38], AdaBoost classifiers [39], support vector

machines (SVM) [40], K-nearest neighbor (KNN) classifiers, gaussian naive Bayes (GNB) [41]

classifiers and neural networks (NN) [12, 42–44]. Hyperparameter tuning was conducted with

five-fold cross-validation. Neural networks comprised two hidden layers, the first containing 20

nodes and the second containing 10. Early stopping was implemented to mitigate overfitting.

Dimensionality reduction was achieved using two methods: (1) the statistical multivariate logis-

tic regression approach described above; and (2) recursive feature elimination (RFE) with sup-

port vector regression. The top 27 covariates were selected for inclusion. The synthetic minority

oversampling technique (SMOTE) was applied to counter class imbalance in the supervised

learning analysis [45]. SMOTE has been designed to avoid overfitting [46] and, as recom-

mended, was applied to the training dataset only [47]. Discrimination between outcome classes

was assessed primarily using the area under (AUC) the receiver operating characteristics (ROC)

curve and the Matthews correlation coefficient (MCC). MCC is a useful metric for evaluating

binary classifiers and has been presented as the preferred metric [48]. It ranges from -1 to 1,

with higher scores indicating a more effective classifier. Other performance metrics included

accuracy, sensitivity, specificity, positive predictive value (PPV) and F1 [49, 50]. Five-fold cross-

validation was applied. Two-tailed t-tests were used to assess differences between groups. Shap-

ley additive explanations (SHAP) were used to assess and visualise feature importance within

GBM models [51]. Analyses were conducted using custom Python scripts and the statsmodels

[52], SciPy [53], Scikit-learn [54], imbalanced-learn [55], Matplotlib [56], numpy [57], pandas

[58] and SHAP [59] packages. Fig 1 presents a methodological overview.

Results

A preoperative ASBS score was recorded for 451 patients. Mean patient age was 53.63 years

(SD = 16.86). One hundred and ninety-nine patients had an ASBS score recorded at 12-month

follow-up. Mean patient age was 52.85 years (SD = 17.31). There was no statistically significant

demographic difference between the pre- and postoperative groups. Mean preoperative ASBS

was 121.87 (SD = 25.72), while mean ASBS at 12 months was 132.19 (SD = 24.87), which was

significantly higher (t = 4.68, p<0.05). Mean change in ASBS score at 12-month follow-up was

7.5 points (SD = 25.79). Descriptive statistics are displayed in Table 1. Most patients (n = 121)

experienced a positive postoperative change in ASBS at 12-months (mean = 23.29,

SD = 16.83), seventy-five patients experienced a negative change in ASBS at 12-months (mean

= -17.67, SD = 16.38) and three patients experienced no ASBS change.

Associations with preoperative quality of life

The two multivariate logistic regression models classifying the highest and lowest preoperative

ASBS quartiles were both significant (LLR p<0.05). High preoperative ASBS scores were sig-

nificantly associated with three covariates: institution, insulin dependent diabetes (negative

association) and lesions at the planum sphenoidale / tuberculum sella anatomic site (Table 2).

Patients with insulin-dependent diabetes were five times less likely to report high preoperative

ASBS scores than patients without insulin dependent diabetes. Patients with lesions at the
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planum sphenoidale / tuberculum sella anatomic site were more than five times more likely to

report high preoperative ASBS scores than patients with lesions at other anatomic sites.

Low preoperative ASBS scores were significantly associated with five covariates. There were

positive associations with female gender, a vision-related presentation history, insulin-depen-

dent diabetes and secreting adenoma. A negative association was found for lesions at the cav-

ernous sinus anatomic site (Table 2). Women were almost two times more likely to experience

QoL scores in the lowest quartile than men. Patients with a vision-related presentation history

were more than twice as likely to report preoperative QoL scores in the lowest quartile than

patients without a vision related presentation history. Patients with insulin-dependent diabetes

were more than three times more likely to report preoperative QoL scores in the lowest quar-

tile than patients without insulin-dependent diabetes. Patients with lesions in the cavernous

sinus were four times less likely to report low preoperative ASBS scores than patients with

lesions at other anatomic sites. The strength of the association between insulin dependent dia-

betes and QoL was highlighted by the significant positive association with low preoperative

ASBS and the significant negative association with high preoperative ASBS scores.

Associations with top quartile change in quality of life at 12-month follow-

up

The multivariate logistic regression model predicting top quartile change in postoperative

ASBS scores at 12 months was significant (Table 3). Five covariates were significantly

Fig 1. Methodology overview. RFE, recursive feature elimination. SMOTE, synthetic minority oversampling technique.

https://doi.org/10.1371/journal.pone.0272147.g001
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Table 1. Descriptive statistics. Covariates comprising<1% of the dataset were excluded.

Covariates Patients with preoperative ASBS

scores (n = 451)

Patients with ASBS scores at

12-month follow-up (n = 199)

Institution 1 38% 48%

Institution 2 35% 35%

Institution 3 27% 18%

Female 54% 50%

Presentation history:

Headaches 27% 27%

Hormonal 29% 31%

Visual 40% 41%

Incidental 13% 16%

Surveillance 10% 8%

Rhinorrhea 3% 4%

Other 8% 5%

Co-morbidities:

Atrial fibrillation 2% 3%

Asthma 3% 3%

Cancer (non-CNS) 3% 2%

Depression 4% 3%

Diabetes (non-insulin requiring) 8% 8%

Diabetes (insulin-requiring) 8% 6%

Hypertension 28% 25%

High Cholesterol 12% 12%

Osteoarthritis 3% 3%

Ulcer disease 2% 1%

Secreting adenoma 22% 22%

Preoperative endocrine function

normal

54% 54%

Preoperative endocrine function

deficient

18% 19%

Preoperative endocrine function

hypersecreting

24% 24%

Operative factors:

Reoperation 16% 17%

Anatomic site: sella 79% 81%

Anatomic site: suprasellar cistern 56% 59%

Anatomic site: clivus 8% 6%

Anatomic site: planum sphenoidale /

tuberculum sella

8% 6%

Anatomic site: anterior fossa /

olfactory groove

7% 6%

Anatomic site: sphenoid sinus 11% 9%

Anatomic site: ethmoid sinus 6% 4%

Anatomic site: cavernous sinus 7% 9%

Histopathology:

Acromegaly 9% 9%

Gonadotroph secretory pituitary

adenoma

4% 7%

Meningioma 8% 7%

Non-functioning pituitary adenoma 23% 25%

(Continued)
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associated with top quartile change in postoperative ASBS at 12-month follow-up. Patients

who presented with high preoperative cholesterol and acromegaly were less likely to experi-

ence a substantial positive change in QoL at 12 months. Patients with a lesion at the sphenoid

sinus anatomic site were almost five times more likely to experience a substantial positive

change in QoL at 12 months than patients with lesions at other anatomic sites. Patients with

deficient preoperative endocrine function were four times more likely to experience a substan-

tial positive change in QoL at 12 months than other patients. Patients who experienced a

Grade 3 intraoperative CSF leak (large diaphragmatic/dural defect) were more than six times

less likely to experience a substantial positive change in QoL at 12 months compared to other

patients. The logistic regression model classifying the lowest QoL quartile at 12 months was

not significant.

Training supervised learning models to predict improvement in quality of

life at 12-month follow-up

Supervised learning models were trained using two groups of covariates: (1) statistically

selected covariates from the preceding multivariate logistic regression analysis, and (2) the top

27 most relevant covariates selected using RFE. Mean five-fold cross-validation performance

metrics for each classifier are displayed in Table 4, sorted by MCC. AdaBoost, logistic regres-

sion and neural network classifiers demonstrated the strongest performance. Across all algo-

rithms, the application of SMOTE to the training dataset resulted in significantly lower

precision, accuracy and AUC on the holdout test set (Table 5). Features selected statistically

using multivariate logistic regression resulted in significantly higher AUC and MCC across all

algorithms when compared with RFE (p<0.05). Fig 2 presents ROC curves and performance

metrics for top performing classifiers. The SHAP summary plot (Fig 3) presents relationships

between covariates and the outcome variable in the highest performing GBM model. SHAP

relationships were consistent with the statistical associations demonstrated by multivariate

logistic regression. A blended ensemble approach did not yield classification performance

improvements. Models designed to predict the lowest quartile change in ASBS at 12 months

did not yield acceptable performance results.

Discussion

This multi-institutional study was designed to (1) determine associations between periopera-

tive clinical factors and (a) preoperative QoL and (b) postoperative improvement in QoL in

patients undergoing anterior endoscopic skull base surgery and (2) train supervised learning

Table 1. (Continued)

Covariates Patients with preoperative ASBS

scores (n = 451)

Patients with ASBS scores at

12-month follow-up (n = 199)

Pituitary cyst-Rathke’s cleft cyst 6% 4%

Postoperative development of diabetes

insipidus

11% 12%

Postoperative development of SIADH 6% 6%

Resection: subtotal / debulk 8% 17%

Kelly intraoperative leak: Moderate 3% 6%

Kelly intraoperative leak: Large

diaphragmatic / dural defect

8% 18%

Postoperative leak 4% 4%

Any postoperative complication 17% 15%

https://doi.org/10.1371/journal.pone.0272147.t001
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classifiers to predict postoperative change in QoL. Change in QoL 12 months after endoscopic

skull base surgery in this sample was, on average, significant and positive. Mean change in

ASBS score at 12-month follow up (7.5) was much higher than the established minimally

important clinical difference (0.4) [60], suggesting that endoscopic skull base surgery on aver-

age yielded substantial and clinically important QoL improvements for patients responding at

Table 2. Multivariate logistic regression showing associations between covariates and preoperative ASBS quality of life scores (top quartile). �p<0.05. ��p<0.01.

The MX.X numbers are model codes. M1 stands for model 1, which was designed to detect associations with high preoperative QoL. M1.1 is the first iteration of model 1,

M1.2 is the second iteration of model 1, and so on. The MX FULL model contains all covariates.

Covariate Associations with high preoperative quality of life Associations with low preoperative quality of life

M1.1 M1.2 M1.3 M1.4 M1 FULL M2.1 M2.2 M2.3 M2.4 M2 FULL

Coef. Coef. Coef. Coef. Coef. OR (95% CI) Coef. Coef. Coef. Coef. Coef. OR (95% CI)

Intercept -1.14 -0.69 -0.60 -0.88 -0.65 0.52 (0.11, 2.54) -1.22 -2.00�� -2.05�� -1.93� -2.10� 0.12 (0.02, 0.62)

Institution 01 0.06 0.03 -0.06 -0.06 -0.07 0.93 (0.52, 1.68) -0.28 -0.30 -0.35 -0.44 -0.36 0.7 (0.38, 1.29)

Institution 02 -0.29 -0.47 -0.55 -0.64 -0.78� 0.46 (0.22, 0.94) -0.23 -0.18 -0.12 -0.05 0.16 1.17 (0.56, 2.46)

Female -0.15 -0.07 -0.02 -0.06 -0.18 0.83 (0.52, 1.33) 0.63�� 0.66�� 0.58� 0.58� 0.66�� 1.93 (1.18, 3.16)

Age >20 to�40 0.13 -0.11 -0.12 -0.23 -0.22 0.8 (0.22, 2.97) 0.16 0.15 0.25 0.12 -0.09 0.92 (0.26, 3.29)

Age >40 to�60 0.24 -0.14 -0.10 -0.24 -0.27 0.76 (0.21, 2.8) -0.24 -0.17 -0.05 -0.13 -0.21 0.81 (0.22, 2.92)

Age >60 0.16 -0.26 -0.11 -0.19 -0.19 0.83 (0.22, 3.07) -0.12 -0.02 0.02 0.03 -0.10 0.91 (0.25, 3.26)

Presentation history:

Headaches -0.22 -0.19 -0.12 -0.09 0.92 (0.53, 1.6) -- -- -- -- --

Hormonal -0.40 -0.22 -0.22 -0.16 0.85 (0.39, 1.86) 0.92�� 0.76� 0.44 0.40 1.49 (0.71, 3.14)

Visual -0.10 -0.10 -0.05 -0.22 0.81 (0.42, 1.53) 0.71�� 0.78�� 0.96�� 0.87� 2.38 (1.2, 4.72)

Incidental 0.60 0.54 0.53 0.45 1.57 (0.73, 3.37) -0.40 -0.26 -0.15 -0.18 0.83 (0.31, 2.25)

Surveillance 0.50 0.39 0.35 0.52 1.69 (0.7, 4.06) 0.43 0.54 0.63 0.33 1.39 (0.54, 3.6)

Rhinorrhea -0.85 -1.01 -1.08 -0.86 0.42 (0.07, 2.5) 1.27� 1.31� 1.55� 0.91 2.48 (0.6, 10.2)

Other 0.15 0.30 0.29 0.52 1.67 (0.63, 4.45) 0.50 0.37 0.35 0.10 1.11 (0.43, 2.85)

Co-morbidities:

Atrial fibrillation 0.13 0.10 0.21 1.24 (0.27, 5.66) -1.77 -1.76 -1.55 0.21 (0.02, 2.34)

Asthma -0.52 -0.57 -0.61 0.55 (0.1, 2.85) -0.33 -0.29 -0.19 0.82 (0.19, 3.51)

Cancer (non-CNS) -0.48 -0.45 -0.45 0.64 (0.12, 3.24) 0.11 0.12 0.04 1.04 (0.3, 3.62)

Depression -0.87 -0.89 -1.18 0.31 (0.07, 1.45) -0.22 -0.26 -0.13 0.88 (0.28, 2.8)

Diabetes (non-insulin requiring) -0.08 -0.09 0.12 1.12 (0.44, 2.88) 0.81 0.72 0.62 1.87 (0.77, 4.51)

Diabetes (insulin-requiring) -1.50� -1.51� -1.81�� 0.16 (0.04, 0.64) 1.37�� 1.18�� 1.13�� 3.11 (1.35, 7.14)

Hypertension -0.25 -0.27 -0.47 0.63 (0.33, 1.18) -0.39 -0.44 -0.34 0.71 (0.38, 1.31)

High Cholesterol 0.51 0.49 0.74 2.09 (0.92, 4.75) -0.68 -0.68 -0.78 0.46 (0.18, 1.16)

Osteoarthritis -0.41 -0.33 -0.32 0.72 (0.13, 3.88) 1.02 0.81 0.77 2.16 (0.52, 8.94)

Ulcer disease -1.18 -1.15 -1.07 0.34 (0.02, 6.22) 1.03 1.08 0.83 2.29 (0.43, 12.26)

Secreting adenoma 0.56 0.48 1.61 (0.71, 3.67) 0.58 0.94� 2.56 (1.12, 5.85)

Normal preoperative endocrine function 0.52 0.50 1.65 (0.89, 3.06) -0.31 -0.33 0.72 (0.37, 1.37)

Reoperation -0.29 0.75 (0.36, 1.57) 0.41 1.5 (0.74, 3.05)

Anatomic site:

Sella 0.01 1.01 (0.49, 2.08) -0.28 0.75 (0.34, 1.65)

Suprasellar cistern -0.16 0.85 (0.47, 1.56) 0.60 1.82 (0.92, 3.61)

Clivus 0.02 1.02 (0.41, 2.55) 0.71 2.03 (0.79, 5.21)

Planum sphenoidale / tuberculum sella 1.65�� 5.22 (2.19, 12.45) -0.59 0.55 (0.2, 1.51)

Anterior fossa / olfactory groove -0.58 0.56 (0.16, 1.96) 0.69 1.99 (0.64, 6.17)

Sphenoid sinus -0.04 0.96 (0.39, 2.35) -0.08 0.92 (0.36, 2.38)

Ethmoid sinus -1.20 0.3 (0.07, 1.24) 0.72 2.05 (0.58, 7.28)

Cavernous sinus 0.21 1.24 (0.49, 3.14) -1.33� 0.26 (0.07, 0.94)

https://doi.org/10.1371/journal.pone.0272147.t002
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12-month follow-up. Multiple significant associations were detected between clinical covari-

ates and QoL scores, controlling for demographics, comorbidities, lesion anatomic site, histo-

pathology and various other perioperative factors. These associations may facilitate treatment

planning, understanding of clinical mechanisms and clinical decision making. Machine learn-

ing models demonstrated moderate predictive performance. AdaBoost, neural network and

logistic regression classifiers demonstrated the highest predictive performance as measured by

the MCC, F1 and AUC metrics. Models may be further refined and improved, externally vali-

dated and considered for deployment in practice as clinical decision support tools. Accurately

predicting postoperative improvement in QoL may facilitate treatment decision making and

recovery planning for clinicians and patients. Appropriately implemented supervised learning

Table 3. Multivariate logistic regression showing associations between covariates and high positive changes in postoperative ASBS quality of life scores at 12

months (highest quartile). �p<0.05. ��p<0.01. SIADH, syndrome of inappropriate antidiuretic hormone secretion. The MX.X numbers are model codes. M3.1 is the first

iteration of model 3, M3.2 is the second iteration of model 3, and so on. The M3 FULL model contains all covariates.

Covariate Predicting top quartile change in postoperative ASBS score at 12 months

M3.1 M3.2 M3.3 M3.4 M3 FULL

Coef. Coef. Coef. Coef. Coef. OR (95% CI)

Intercept -1.29 -1.09 -1.14 -1.08 -1.42 0.24 (0.03, 1.92)

Institution 01 1.00� 0.81� 0.75� 0.71 0.61 1.85 (0.76, 4.5)

Age >20 to�40 -1.14 -1.11 -1.09 -0.99 -1.09 0.33 (0.05, 2.34)

Age >40 to�60 0.00 0.08 0.08 0.51 0.42 1.52 (0.24, 9.78)

Age >60 -0.29 -0.10 -0.05 0.04 -0.27 0.77 (0.12, 4.88)

Presentation history:

Headaches -0.01 -0.02 -0.10 -0.14 0.87 (0.35, 2.18)

Incidental -0.28 -0.25 -0.89 -0.82 0.44 (0.13, 1.51)

Surveillance -0.44 -0.59 -1.02 -0.37 0.69 (0.11, 4.25)

Co-morbidities:

Diabetes (non-insulin requiring) -0.60 -0.79 -0.84 -1.21 0.3 (0.04, 2.14)

Diabetes (insulin-requiring) -0.02 -0.37 -0.21 -0.44 0.64 (0.07, 5.66)

High Cholesterol -1.09 -1.12 -1.81� -2.03� 0.13 (0.02, 0.85)

Anatomic site:

Planum sphenoidale / tuberculum sella -0.49 0.58 1.48 4.37 (0.46, 41.87)

Anterior fossa / olfactory groove -0.02 0.46 1.23 3.42 (0.34, 34.23)

Sphenoid sinus 1.10 0.90 1.56� 4.76 (1.26, 17.96)

Histopathology:

Acromegaly -2.36 -2.76� 0.06 (0.01, 0.79)

Gonadotroph secretory pituitary adenoma -1.17 -1.40 0.25 (0.05, 1.33)

Meningioma -3.19 -2.31 0.1 (0, 6.02)

Non-functioning pituitary adenoma 0.70 0.75 2.11 (0.73, 6.11)

Pituitary cyst-Rathke’s cleft cyst -2.19 -2.57 0.08 (0, 3.23)

Preoperative endocrine function deficient 1.40� 4.06 (1.23, 13.35)

Preoperative endocrine function hypersecreting 0.79 2.2 (0.69, 6.95)

Postoperative development of diabetes insipidus -0.50 0.61 (0.15, 2.44)

Postoperative development of SIADH -0.99 0.37 (0.04, 3.24)

Resection: subtotal / debulk 0.71 2.03 (0.69, 5.99)

Kelly intraoperative leak: Moderate 0.30 1.35 (0.23, 8.12)

Kelly intraoperative leak: Large diaphragmatic / dural defect -1.93� 0.15 (0.03, 0.73)

Postoperative leak -0.71 0.49 (0.03, 8.56)

Any postoperative complication 1.07 2.93 (0.77, 11.08)

https://doi.org/10.1371/journal.pone.0272147.t003
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Table 4. Mean 5-fold cross-validation algorithm performance results, sorted by MCC. SMOTE was applied to the training dataset only. GBM, gradient boosting

machine. LR, logistic regression. NB, naïve Bayes. RFE, recursive feature elimination. SMOTE, synthetic minority oversampling technique. SVM, support vector machine.

Algorithm Features Data augmentation MCC AUC Sensitivity / Recall Specificity PPV / Precision Accuracy F1

AdaBoost LR statistical SMOTE 0.30 0.70 0.84 0.44 0.76 0.71 0.79

AdaBoost LR statistical No SMOTE 0.26 0.70 0.80 0.48 0.88 0.75 0.84

Logistic regression LR statistical SMOTE 0.25 0.68 0.83 0.40 0.70 0.67 0.76

Neural network RFE No SMOTE 0.24 0.62 0.78 0.54 0.93 0.75 0.85

Neural network LR statistical No SMOTE 0.23 0.65 0.81 0.43 0.81 0.71 0.81

Random forest RFE No SMOTE 0.22 0.66 0.77 0.57 0.95 0.75 0.85

Neural network LR statistical SMOTE 0.21 0.64 0.81 0.39 0.73 0.67 0.76

Random forest LR statistical SMOTE 0.20 0.65 0.80 0.38 0.74 0.67 0.77

GBM RFE No SMOTE 0.18 0.65 0.77 0.47 0.90 0.73 0.83

SVM LR statistical SMOTE 0.18 0.65 0.79 0.39 0.80 0.69 0.80

GBM LR statistical SMOTE 0.18 0.63 0.80 0.36 0.70 0.65 0.75

K-nearest neighbor LR statistical No SMOTE 0.17 0.62 0.77 0.55 0.93 0.74 0.84

Logistic regression LR statistical No SMOTE 0.16 0.71 0.77 0.00 0.97 0.76 0.86

K-nearest neighbor RFE SMOTE 0.16 0.57 0.78 0.42 0.86 0.71 0.82

K-nearest neighbor LR statistical SMOTE 0.15 0.63 0.81 0.32 0.57 0.58 0.67

Gaussian NB LR statistical SMOTE 0.14 0.65 0.81 0.31 0.49 0.54 0.61

Random forest LR statistical No SMOTE 0.14 0.63 0.78 0.34 0.89 0.73 0.83

AdaBoost RFE No SMOTE 0.13 0.64 0.77 0.40 0.89 0.72 0.82

Gaussian NB LR statistical No SMOTE 0.13 0.64 0.88 0.28 0.19 0.38 0.31

Logistic regression RFE No SMOTE 0.11 0.65 0.76 0.00 0.97 0.75 0.85

Logistic regression RFE SMOTE 0.10 0.59 0.79 0.29 0.49 0.52 0.60

AdaBoost RFE SMOTE 0.09 0.61 0.79 0.29 0.48 0.52 0.59

K-nearest neighbor RFE No SMOTE 0.09 0.57 0.76 0.40 0.96 0.74 0.85

Neural network RFE SMOTE 0.08 0.60 0.77 0.31 0.51 0.53 0.60

GBM LR statistical No SMOTE 0.06 0.66 0.76 0.31 0.85 0.69 0.80

Gaussian NB RFE No SMOTE 0.06 0.65 0.00 0.25 0.45 0.50 0.00

SVM RFE No SMOTE 0.05 0.65 0.75 0.00 0.92 0.71 0.83

Random forest RFE SMOTE 0.05 0.59 0.77 0.28 0.51 0.52 0.60

Gaussian NB RFE SMOTE 0.05 0.58 0.82 0.22 0.36 0.45 0.42

GBM RFE SMOTE 0.02 0.57 0.74 0.28 0.49 0.50 0.58

SVM LR statistical No SMOTE -0.01 0.68 0.74 0.00 0.97 0.73 0.84

SVM RFE SMOTE -0.02 0.50 0.74 0.25 0.51 0.50 0.59

https://doi.org/10.1371/journal.pone.0272147.t004

Table 5. Differences in mean performance results across all applied algorithms. AUC, area under the receiver operating characteristic curve. MCC, Matthews correla-

tion coefficient. ns, not significant. RFE, recursive feature elimination. SD, standard deviation. SMOTE, synthetic minority oversampling technique.

Unaugmented data (mean,

SD)

SMOTE on training set (mean,

SD)

Significance Logistic regression features

(mean, SD)

RFE features (mean,

SD)

Significance

Sensitivity 0.73 (0.20) 0.79 (0.03) ns 0.80 (0.03) 0.72 (0.19) ns

Specificity 0.31 (0.21) 0.33 (0.07) ns 0.34 (0.15) 0.31 (0.16) ns

Precision 0.84 (0.21) 0.61 (0.15) p<0.01 0.75 (0.20) 0.70 (0.23) ns

Accuracy 0.70 (0.11) 0.59 (0.09) p<0.01 0.67 (0.10) 0.62 (0.12) ns

MCC 0.14 (0.08) 0.13 (0.09) ns 0.17 (0.08) 0.10 (0.07) p<0.05

F1 0.75 (0.24) 0.67 (0.11) ns 0.75 (0.14) 0.67 (0.23) ns

AUC 0.65 (0.03) 0.62 (0.05) p<0.05 0.66 (0.03) 0.61 (0.04) p<0.01

https://doi.org/10.1371/journal.pone.0272147.t005
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models have the potential to improve the informed consent process, healthcare efficiency, care

quality and patient safety [14, 15, 61]. Routine assessment of QoL for patients with pituitary

tumours, both before and after treatment, has been recommended [3]. This recommendation

may be extended to incorporate the application of high performing predictive models to fore-

cast and optimise future QoL. The utility of appropriately developed supervised learning-

based decision support systems for neurosurgeons and their patients is becoming clearer [14,

16, 25, 62].

Statistical associations detected using multivariate logistic regression were well supported

by existing literature. For example, lower cholesterol has previously been associated with

higher QoL [63] and endocrinopathy [64, 65] and female gender [66] have previously been

associated with lower QoL amongst neurosurgery patients. Diabetes was strongly and nega-

tively associated with QoL in this patient sample, reinforcing a well-established relationship

[67]. QoL consists of cognitive and emotional components (e.g., satisfaction and happiness)

[68] and multiple factors modify QoL in patients with diabetes, including medication adher-

ence, disease duration, depression, insulin use, and the presence of comorbidities [69–72].

People with diabetes often feel burdened by the management demands of their disease and

lower mood has been associated with higher HbA1c levels [73]. The complications of diabetes

have a negative emotional and physical impact on patients and are associated with wellbeing

decrements [74, 75].

It appears that QoL was influenced by lesion anatomic site. Patients with a lesion at the cav-

ernous sinus site were less likely to report low preoperative QoL, while patients with a lesion at

the planum sphenoidale / tuberculum sella site were much more likely to report high preopera-

tive QoL than patients with lesions at other sites. Together, these results suggest that, overall,

Fig 2. Mean 5-fold cross-validation ROC curves and performance metrics for the top performing classifiers used to predict top quartile change in

postoperative ASBS score at 12 months.

https://doi.org/10.1371/journal.pone.0272147.g002
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lesions at these sites tended to be associated with higher preoperative QoL. Patients with sphe-

noid sinus lesions were more likely to experience a positive change in postoperative QoL at 12

months. There may be numerous factors (e.g., location accessibility, ease of lesion resection,

corresponding endocrinopathy, or impingement on adjacent anatomical structures, etc.) asso-

ciated with lesions at some sites that may influence preoperative QoL and make them more

amenable to surgical treatment, resulting in more substantial QoL improvements. Lesions at

the planum sphenoidale tend to be meningiomas, which are typically benign and usually cause

visual disturbance rather than endocrine dysfunction [76]. This may explain an increased like-

lihood of higher preoperative QoL in patients with lesions at this anatomic site. Similarly,

tumours in the cavernous sinus tend to be benign and responsive to simple symptomatic treat-

ment [77], which may explain the negative relationship between lesions at this anatomic site

and low preoperative QoL.

Overall, the highest performing machine learning classifiers yielded a moderate level of

classification performance. These classifiers, nevertheless, demonstrated performance that was

Fig 3. Gradient boosting machine (GBM) feature importance. SHAP, Shapley additive explanations. SIADH, syndrome of inappropriate antidiuretic

hormone secretion.

https://doi.org/10.1371/journal.pone.0272147.g003
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better than chance and as such may offer an additional useful input into the clinical decision-

making process. We have, in this work, presented a benchmark for the field using some stan-

dard methods and a modest dataset. Interestingly, classifier performance appeared to be signif-

icantly affected by the dimensionality reduction and data augmentation methods applied.

Dimensionality reduction using multivariate logistic regression appeared to yield superior

classifier performance when compared with RFE. Furthermore, data augmentation applied as

recommended [47] did not yield superior classifier performance results in this study, which

casts doubt on the utility of SMOTE when working with small clinical datasets. These results

may be useful to machine learning practitioners and beneficially inform future clinically

applied machine learning work.

A salient issue in the field of clinically applied machine learning and machine ethics, which

was intentionally addressed, is that of model interpretability or explainability [78]. Neural net-

works are opaque, trading higher performance for poor interpretability. Coupling neural net-

works and other inscrutable classifiers with multivariate logistic regression, which presents

statistical association information for each covariate in the model, helps to facilitate interpret-

ability, clinician understanding and trust [16]. Deploying tree-based models with SHAP analy-

sis is another technique that further facilitates interpretability [31]. Both techniques were

applied in this project to promote clinical insight, understanding and model utility.

Limitations and future research

Future research may consider the development of refined high-performance models that con-

tain less covariates to facilitate more efficient system implementation, usability and generalisa-

bility. Analyses based on larger sample sizes from multiple institutions would facilitate a more

detailed investigation of QoL associations at additional postoperative time points. Larger data-

sets would also allow for the use of one or more holdout datasets to more rigorously evaluate

and validate classifier performance. The number of ASBS respondents at 12 months was lower

than the number of preoperative respondents. Verification of results through replication and

external validation is required as selection bias may have influenced results. Specialist clinical

datasets are difficult and expensive to acquire and maximal use of data for beneficial research

is an ethical issue. The research team is exploring the use of alternative classifier implementa-

tions that allow for missing data.

Conclusion

Significant associations were detected between perioperative clinical factors, preoperative QoL

scores and improvement in postoperative QoL scores at 12 months amongst patients undergo-

ing anterior endoscopic skull base surgery. This study demonstrated that machine learning

may be applied to predict changes in QoL at 12-month follow-up using perioperative data,

facilitating optimisation of patient care and outcomes.
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