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Abstract: Laryngeal squamous cell carcinoma is the second most common head and neck cancer.
Its pathogenesis is strongly associated with smoking. The management of this disease is challenging
and mandates multidisciplinary care. Currently, accepted treatment modalities include surgery,
radiation therapy, and chemotherapy—all focused on improving survival while preserving organ
function. Despite changes in smoking patterns resulting in a declining incidence of laryngeal cancer,
the overall outcomes for this disease have not improved in the recent past, likely due to changes in
treatment patterns and treatment-related toxicities. Here, we review emerging concepts and novel
strategies in the use of radiation therapy in the management of laryngeal squamous cell carcinoma that
could improve the relationship between tumor control and normal tissue damage (therapeutic ratio).
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1. Introduction

Laryngeal cancer is the second most common head and neck cancer, and it represents about
a fifth of the total head and neck cancer diagnoses [1]. The median age at diagnosis is 65 years,
with men more commonly affected than women, and with a higher incidence and mortality among
black individuals [2,3]. The Global Cancer Observatory reported a total of 177,000 estimated new cases
of laryngeal cancer and 94,000 deaths in 2018 [4]. In the United States, there were 12,370 estimated new
cases (9820 in men, and 2550 in women) and 3750 deaths (3000 men and 750 women) from laryngeal
cancer this year [5]. The vast majority (>95%) are squamous cell carcinoma (SCC), and smoking is the
main risk factor [6].

The larynx is an organ of the upper aerodigestive tract involved in three vital functions:
occlusion/protection of the airway during swallowing, phonation, and breathing. In consequence,
the management of SCC of the larynx is challenging, as both the cancer itself and its treatment may
significantly impact function and quality of life. For purposes of cancer staging, the larynx is divided
into three anatomic regions: the supraglottis, glottis, and subglottis. The incidence of larynx cancer in
the glottis represents the majority of cases (69%), whereas the cancer originating in the supraglottis
(30%) and subglottis (1%) is less common [7–10].

Currently accepted treatment modalities in the management of laryngeal cancer include surgery,
radiation therapy (RT), and chemotherapy. Decision-making is primarily based on tumor location,
histology, staging, baseline function, and in some cases, patient preference.
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The aim of the manuscript is to review the emerging concepts and newer strategies with the
use of RT in the management of laryngeal cancer, focusing on specific clinical scenarios, with the
goal of improving the delicate balance between tumor control and damage to surrounding normal
tissue, known as the therapeutic ratio. It is important to note that currently, none of the therapeutic
approaches discussed below are standard care or routinely used in clinical practice, but represent novel
treatment strategies in larynx cancer with the potential for improved outcomes.

2. Early-Stage Glottic Cancer (I–II)

At diagnosis, most glottic cancers are confined to the true vocal cords, usually one cord, with most
occurring at the medial and superior aspects of the anterior two-thirds of the vocal folds [11,12].
Persisting hoarseness is typically the presenting symptom. Tumors limited to one vocal cord (T1a)
or involving both (T1b) cords can be successfully treated with single modality therapy, either surgery
(endoscopic techniques) or RT alone, resulting in excellent oncologic outcomes with 5year local
control (LC) rates at around 90–95%. With respect to functional outcomes, specifically voice quality
preservation rates, there has not been a head-to-head comparison between both treatment modalities;
however, small, single-institution studies suggest equal or even slightly better voice quality after
RT [13–16]. A currently accruing clinical trial (NCT04057209) will evaluate voice quality after transoral
CO2laser surgery vs. RT for cTis (carcinoma in situ) or cT1a of the glottic larynx.

RT has been a key component in the management of laryngeal cancer for the last century [17,18].
Historically, the radiation treatment fields employed for Tis and T1 glottic cancers have consisted of
two opposed lateral fields (small laryngeal fields), 5 × 5 cm in size, defined by anatomic landmarks,
also called “conventional radiation” [19,20]. The optimal radiation dose, fraction size, and overall
treatment time for local control in early stage glottic cancers with conventional radiation was
evaluated in a Japanese prospective randomized trial [21]. The use of a slightly hypofractionated
radiation regimen (2.25 Gy per fraction) applied over a shorter overall treatment time was superior to
conventional fractionation (2 Gy per fraction), with respect to local control and without increasing
toxicity. Currently accepted RT doses for the management of Tis and T1 glottic larynx cancer are
60.75 Gy and 63 Gy at 2.25 Gy per fraction, respectively.

A limitation of conventional radiation is the total cumulative dose that the surrounding normal
tissues will receive, particularly the pharyngeal constrictor muscles, submandibular and thyroid
glands, and carotid arteries, raising the concern for increased risk of late complications, such as
dysphagia, aspiration, xerostomia, hypothyroidism, and cerebrovascular events [22,23], which could
negatively impact long-term outcomes. Therefore, there is a growing interest in the use of modern RT
modalities like intensity-modulated radiation therapy (IMRT), stereotactic ablative radiation therapy
(SABR), and charged particle therapy, with the attempt to decrease treatment-related toxicities while
maintaining, if not improving, outcomes.

2.1. Carotid-Sparing IMRT

The MD Anderson Cancer Center group reported a large retrospective analysis comparing
conventional radiation vs. IMRT for the treatment of T1 glottic cancer. The IMRT technique in this
study limited the dose to the carotid arteries to as low as reasonably possible given no established dose
thresholds for carotid artery toxicity. After a median follow-up of 68 months, there were no significant
differences in local or locoregional control and overall survival (OS) between treatment techniques.
Interestingly, four patients (3%) had post-radiation cerebrovascular events in the conventional radiation
group vs. none in the cohort treated with IMRT. This was a single-institution study with relatively
small numbers; however, this analysis may suggest that modern RT techniques such as IMRT can
potentially be associated with a decreased risk of post-radiation cerebrovascular events compared to
conventional radiation [24] (Figure 1).
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Figure 1. Exemplification of carotid-sparing intensity-modulated radiation therapy (IMRT) plan. (A) 
Carotid arteries delineated using contrast-enhanced computed tomography (CT) simulation to be 
avoided during planning. (B) Carotid-sparing volumetric modulated arc therapy (VMAT) approach 
for T1a right-sided true vocal cord carcinoma; 63 Gy prescription delivered in 28 fractions. Dose color 
wash distribution. 

Similarly, a National Cancer Database (NCDB) Analysis [25] compared the outcomes of three-
dimensional (3D)-conformal radiotherapy (n = 2696) and IMRT (n = 1623) for the treatment of early-
stage glottic cancer. No difference in OS was found between groups, with a five-year OS of 72%. In a 
subset analysis, a survival benefit was observed in the group of patients that received 
hypofractionated RT (2.25 Gy per fraction) compared to those treated with conventional fractionation 
(2 Gy per fraction): 76% vs. 70%, respectively. Due to limitations in the analysis of the NCDB, no 
conclusions could be made with respect to toxicities between the two treatment modalities. 

Although current retrospective data with the use of IMRT for early-stage glottic cancer seem to 
support its efficacy and safety, to date there is no prospective data to show better outcomes or 
decreased toxicity with IMRT. The radiation oncologist should place careful attention on the selection 
of treatment volume margins to take into account larynx motion due to respiration and deglutition 
during treatment and on daily setup, with the use of image-guided radiation therapy (IGRT) to avoid 
potential marginal misses with the use of this technique. 

2.2. Single Vocal Cord Irradiation 

Figure 1. Exemplification of carotid-sparing intensity-modulated radiation therapy (IMRT) plan.
(A) Carotid arteries delineated using contrast-enhanced computed tomography (CT) simulation to be
avoided during planning. (B) Carotid-sparing volumetric modulated arc therapy (VMAT) approach for
T1a right-sided true vocal cord carcinoma; 63 Gy prescription delivered in 28 fractions. Dose color
wash distribution.

Similarly, a National Cancer Database (NCDB) Analysis [25] compared the outcomes of
three-dimensional (3D)-conformal radiotherapy (n = 2696) and IMRT (n = 1623) for the treatment
of early-stage glottic cancer. No difference in OS was found between groups, with a five-year OS
of 72%. In a subset analysis, a survival benefit was observed in the group of patients that received
hypofractionated RT (2.25 Gy per fraction) compared to those treated with conventional fractionation
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(2 Gy per fraction): 76% vs. 70%, respectively. Due to limitations in the analysis of the NCDB,
no conclusions could be made with respect to toxicities between the two treatment modalities.

Although current retrospective data with the use of IMRT for early-stage glottic cancer seem
to support its efficacy and safety, to date there is no prospective data to show better outcomes or
decreased toxicity with IMRT. The radiation oncologist should place careful attention on the selection
of treatment volume margins to take into account larynx motion due to respiration and deglutition
during treatment and on daily setup, with the use of image-guided radiation therapy (IGRT) to avoid
potential marginal misses with the use of this technique.

2.2. Single Vocal Cord Irradiation

Traditionally, since the implementation of RT in the management of early stage glottic cancers,
the entire anatomic larynx/hypopharynx complex is included and treated in the radiation fields,
which is likely explained by the historical diagnostic and technologic limitations in the delivery of RT.
We know that at diagnosis, most cases will have disease only in one vocal cord. Furthermore,
endoscopic surgical resection only addresses the involved vocal cord. Therefore, the question of
whether with newer and better technology the treatment of a single vocal cord with RT is feasible, safe,
and could further improve the toxicity profile, has yet to be answered.

The group from Erasmus Medical Center, Rotterdam, Netherlands, explored in a stepwise
manner the feasibility of single vocal cord irradiation for T1a SCC of the glottic larynx. First,
using four-dimensional (4D) computed tomography (CT) data, they tested vocal cord mobility
and daily reproducibility of the approach, showing a small intra-fraction motion of the vocal cords [26].
Second, they evaluated the adequacy of the daily positioning/set-up with cone-beam CT imaging [27].
Then, they analyzed the dosimetric and potential clinical advantages of the use of IMRT for single
vocal cord irradiation [28]. Using this methodology, they evaluated ten patients previously treated
with conventional RT. Single vocal cord IMRT plans were created, and estimated local control rates
were similar to conventional radiation, but with a better voice handicap index (VHI) [29]. Lately,
they reported their initial clinical results for thirty patients treated with single vocal cord irradiation.
Patients were treated with IMRT with a hypofractionated scheme, to a total dose of 58.08 Gy in 16
fractions of 3.63 Gy, five times per week. After a median follow-up of 30 months, no single local failure
was documented, and two-year OS was 90%. Only one patient developed grade 2 laryngeal edema,
which was treated successfully with steroids. A slight and temporary deterioration of VHI scores was
noted at the end of treatment, yet started to improve four weeks after and returned back to normal
levels around six weeks following RT completion [30].

Currently, two randomized trials are evaluating this question: a randomized study of vocal-cord
only vs. complete laryngeal radiotherapy for early glottic cancer (VOCAL; NCT03759431) and a
randomized trial evaluating voice quality after transoral CO2-laser surgery vs. single vocal cord
irradiation for larynx cancer (VoiceS; NCT04057209).

An interesting clinical thought is if the low-dose radiation bath delivered to the contralateral,
uninvolved vocal cord is sufficient to treat potential microscopic disease without resulting in increased
rates of contralateral cord failure and the need for further treatment (Figure 2). If this concept is
clinically proven, the next logical step and ultimate way to spare the contralateral vocal cord will be
to use charged particle radiation therapy (i.e., proton therapy) for the treatment of T1a glottic cancer.
With this technique, however, careful attention and evaluation is imperative, particularly in tumors
located at the anterior third of the vocal cord that can extend/involve the anterior commissure. To date,
the feasibility and safeness of this approach remains under investigation and is unknown.
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Figure 2. Single vocal cord irradiation. (A) The affected cord is delineated as the clinical target volume 
(CTV), with 5 mm expansion in all directions to generate the planning target volume (PTV) (red). (B) 
Single cord irradiation planned with IMRT treatment technique for T1a, right-sided, true vocal cord 
carcinoma; a 63 Gy prescription was delivered in 28 fractions, with contralateral vocal cord mean dose 
kept under 30 Gy. Dose color wash distribution. 

2.3. Moderate–Extreme Hypofractionation 

Another area of recent interest is in the delivery of stereotactic ablative radiation therapy (SABR) 
(Figure 3). The University of Texas Southwestern (UTSW) group performed a phase I dose escalation 
study of SABR in early-stage glottic cancer (Tis–T2 disease). All patients were simulated using 4D-
CT, and all radiation therapy was delivered using the Cybernkife Robotic Radiosurgery System 
(Accuray Inc, Sunnyvale, CA, USA). An internal gross tumor volume (IGTV) was created to 
encompass gross disease throughout the respiratory cycle. Then, a clinical target volume (CTV) was 

Figure 2. Single vocal cord irradiation. (A) The affected cord is delineated as the clinical target volume
(CTV), with 5 mm expansion in all directions to generate the planning target volume (PTV) (red).
(B) Single cord irradiation planned with IMRT treatment technique for T1a, right-sided, true vocal cord
carcinoma; a 63 Gy prescription was delivered in 28 fractions, with contralateral vocal cord mean dose
kept under 30 Gy. Dose color wash distribution.

2.3. Moderate–Extreme Hypofractionation

Another area of recent interest is in the delivery of stereotactic ablative radiation therapy (SABR)
(Figure 3). The University of Texas Southwestern (UTSW) group performed a phase I dose escalation
study of SABR in early-stage glottic cancer (Tis–T2 disease). All patients were simulated using
4D-CT, and all radiation therapy was delivered using the Cybernkife Robotic Radiosurgery System
(Accuray Inc, Sunnyvale, CA, USA). An internal gross tumor volume (IGTV) was created to encompass
gross disease throughout the respiratory cycle. Then, a clinical target volume (CTV) was created by
expanding the IGTV by 2 mm, and the planning target volume (PTV) was formed by an expansion
of 3 mm on the CTV. A total of 29 patients were enrolled in the trial. Three dose levels—50 Gy in
15 daily fractions (n = 4), 45 Gy in 10 thrice-weekly fractions (n = 13), and 42.5 Gy in five twice-weekly
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fractions (n = 12)—were evaluated. After a median follow-up of 39 months, two patients developed
dose-limiting toxicity, a patient treated with 45 Gy in 10 fractions developed grade 4 laryngeal edema
and grade 3 dysphagia, and the other patient treated with 42.5 Gy in five fractions developed grade
3 laryngeal necrosis. Both cases occurred on actively smoking patients with large treatment volumes
(PTV ≥ 17 cc). Two recurrences in the group of patients treated with 50 Gy in 15 fractions, and three in
the group treated with 45 Gy in 10 fractions, were documented. The VHI results demonstrated excellent
long-term voice outcomes. Based on this preliminary data, they concluded that SABR delivered in five
fractions can be efficacious and tolerable in this selected group of patients [31].

Interestingly, Kang et al. [32] reported the results of their phase I dose escalation trial using SABR
in early-stage glottic cancer. A total of thirteen patients were enrolled. Volumetric modulated arc
therapy (VMAT) with simultaneous integrated boost (SIB) was used. CTV1 was defined as the gross
tumor volume (GTV), and CTV2 included the remaining larynx from the thyroid notch to the inferior
portion of the cricoid cartilage. The PTV was formed by adding a 3 mm margin in all directions to
the CTV. Seven patients received 59.5 Gy in 17 fractions to PTV1, and 47.6 Gy in 17 fractions to PTV2,
5 days per week. The last six patients received 55 Gy in 11 fractions to PTV1, and 40.7 Gy in 11 fractions
to PTV2, every other day, twice per week. The median follow-up for the first treatment group was
37 months, and for the second group was 14.5 months. In the former treatment group, no chronic
toxicity was observed, and in the latter treatment group, two (33.3%) of six patients experienced
late dose-limiting toxicities (grade 3 laryngeal inflammation). The trial was terminated early due to
unacceptably high risk of toxicity.

Cancers 2020, 12, x 6 of 22 

created by expanding the IGTV by 2 mm, and the planning target volume (PTV) was formed by an 
expansion of 3 mm on the CTV. A total of 29 patients were enrolled in the trial. Three dose levels—
50 Gy in 15 daily fractions (n = 4), 45 Gy in 10 thrice-weekly fractions (n = 13), and 42.5 Gy in five 
twice-weekly fractions (n = 12)—were evaluated. After a median follow-up of 39 months, two patients 
developed dose-limiting toxicity, a patient treated with 45 Gy in 10 fractions developed grade 4 
laryngeal edema and grade 3 dysphagia, and the other patient treated with 42.5 Gy in five fractions 
developed grade 3 laryngeal necrosis. Both cases occurred on actively smoking patients with large 
treatment volumes (PTV ≥ 17 cc). Two recurrences in the group of patients treated with 50 Gy in 15 
fractions, and three in the group treated with 45 Gy in 10 fractions, were documented. The VHI results 
demonstrated excellent long-term voice outcomes. Based on this preliminary data, they concluded 
that SABR delivered in five fractions can be efficacious and tolerable in this selected group of patients 
[31].  

 

Figure 3. Cont.



Cancers 2020, 12, 1651 7 of 21
Cancers 2020, 12, x 7 of 22 

 

Figure 3. Exemplification of Stereotactic ablative radiation therapy (SABR) treatment plan. (A) Axial 
cross-section, target delineated by expanding the gross tumor volume (GTV) 3 mm uniformly to 
establish CTV, with uniform 5 mm expansion from the CTV to generate PTV. (B) Coronal-view of 
GTV, CTV, and PTV (red). (C) SABR VMAT approach to a single cord, with a prescription dose of 50 
Gy in 15 daily fractions. Dose color wash distribution. 

Interestingly, Kang et al. [32] reported the results of their phase I dose escalation trial using SABR 
in early-stage glottic cancer. A total of thirteen patients were enrolled. Volumetric modulated arc 
therapy (VMAT) with simultaneous integrated boost (SIB) was used. CTV1 was defined as the gross 
tumor volume (GTV), and CTV2 included the remaining larynx from the thyroid notch to the inferior 
portion of the cricoid cartilage. The PTV was formed by adding a 3 mm margin in all directions to 
the CTV. Seven patients received 59.5 Gy in 17 fractions to PTV1, and 47.6 Gy in 17 fractions to PTV2, 
5 days per week. The last six patients received 55 Gy in 11 fractions to PTV1, and 40.7 Gy in 11 
fractions to PTV2, every other day, twice per week. The median follow-up for the first treatment 
group was 37 months, and for the second group was 14.5 months. In the former treatment group, no 
chronic toxicity was observed, and in the latter treatment group, two (33.3%) of six patients 
experienced late dose-limiting toxicities (grade 3 laryngeal inflammation). The trial was terminated 
early due to unacceptably high risk of toxicity. 

The discrepancies in the results between the two protocols could be explained by their 
differences in target volume definitions, larynx motion (use of 4D CT for treatment planning), 
treatment volume sizes, delivered radiation doses, use of IGRT for daily setup, and clinical factors, 
such as current smoking status. Furthermore, different institutions advocate for not adding a margin 
from GTV to CTV (i.e., GTV = CTV), to reduce total treatment volume and normal tissue 
complications [30,33]. However, special caution should be taken in the radiation treatment planning 
and setup of these cases, to avoid potential marginal misses. To date, the use of SABR for the 
treatment of early-stage glottic cancer remains in an experimental phase. 

To further evaluate this question of SABR in early-stage glottic cancer, clinical trial NCT03548285 
is currently accruing. Patients are stratified by low- and moderate-risk categories based on planning 
target volume (PTV) and smoking status. Patients in the low-risk category will have PTV < 10 cc, no 
reported smoking within 1 month from registration, and RT will be delivered twice per week for a 
total dose of 42.5 Gy in five fractions. Patients in the moderate-risk category will encompass those 
with PTV ≥ 10 cc, smoking within 1 month from registration (no more than 1 pack per day), and RT 
for these patients will be delivered daily for a total dose of 58.08 Gy in 16 fractions. 

2.4. Partial Laryngeal IMRT 

T2 laryngeal tumors span a range of different clinical scenarios, from tumors extending to the 
supraglottic and subglottic larynx (old T2a stage), to tumors with impaired vocal cord mobility (old 

Figure 3. Exemplification of Stereotactic ablative radiation therapy (SABR) treatment plan. (A) Axial
cross-section, target delineated by expanding the gross tumor volume (GTV) 3 mm uniformly to
establish CTV, with uniform 5 mm expansion from the CTV to generate PTV. (B) Coronal-view of GTV,
CTV, and PTV (red). (C) SABR VMAT approach to a single cord, with a prescription dose of 50 Gy in
15 daily fractions. Dose color wash distribution.

The discrepancies in the results between the two protocols could be explained by their differences
in target volume definitions, larynx motion (use of 4D CT for treatment planning), treatment volume
sizes, delivered radiation doses, use of IGRT for daily setup, and clinical factors, such as current
smoking status. Furthermore, different institutions advocate for not adding a margin from GTV to
CTV (i.e., GTV = CTV), to reduce total treatment volume and normal tissue complications [30,33].
However, special caution should be taken in the radiation treatment planning and setup of these cases,
to avoid potential marginal misses. To date, the use of SABR for the treatment of early-stage glottic
cancer remains in an experimental phase.

To further evaluate this question of SABR in early-stage glottic cancer, clinical trial NCT03548285
is currently accruing. Patients are stratified by low- and moderate-risk categories based on planning
target volume (PTV) and smoking status. Patients in the low-risk category will have PTV < 10 cc,
no reported smoking within 1 month from registration, and RT will be delivered twice per week for a
total dose of 42.5 Gy in five fractions. Patients in the moderate-risk category will encompass those
with PTV ≥ 10 cc, smoking within 1 month from registration (no more than 1 pack per day), and RT for
these patients will be delivered daily for a total dose of 58.08 Gy in 16 fractions.

2.4. Partial Laryngeal IMRT

T2 laryngeal tumors span a range of different clinical scenarios, from tumors extending to the
supraglottic and subglottic larynx (old T2a stage), to tumors with impaired vocal cord mobility
(old T2b stage). Therefore, controversy exists with regard to a better approach and management
of these tumors. Some groups advocate using 6 × 6 cm opposed lateral fields depending on the
degree of supraglottic or subglottic extension. Other groups recommend treating/adding lymph node
levels II and III, based on the risk of lymphatic involvement. Radiation Therapy Oncology Group
(RTOG) 95-12 [34] analyzed 239 patients with T2N0 squamous cell carcinoma of the glottic larynx
treated with definitive RT, and randomized them to standard fractionation 70 Gy in 35 fractions
vs. hyperfractionation of 79.2 Gy in 66 fractions at 1.2 Gy bid. Patients in the standard arm were
treated with two-dimensional RT using 2 or 3 co-planar portals (6 × 6 cm), allowing field reductions
at 50 Gy to reduce the dose to the arytenoids. Patients that received hyperfractionation could have
field reductions at 60 Gy. Regional lymph nodes were not intentionally treated, except for a portion
of levels II and III that were in the treatment fields. The trial was powered to detect 15% absolute
difference in local control at 5 years. After a median follow-up of 7.9 years, the five-year local control
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was higher for hyperfractiontion (78%) vs. standard fractionation (70%), but it did not meet the primary
endpoint. No differences in disease-free survival (DFS) and OS were noted. Higher rates of acute
toxicity (skin, mucosal, larynx) were associated with hyperfractionation.

Princess Margaret Cancer Centre reported their experience with the treatment of partial laryngeal
IMRT for T2N0 glottic cancer. In their series, the GTV was delineated based on endoscopic and
radiographic findings, and expanded 5 mm to create the high-dose CTV. Another 5 mm were added
to form the low-dose CTV. The PTV was a systematic expansion of 5 mm radially and 10 mm
superiorly and inferiorly. Patients were treated either with hypofractionated IMRT 60 Gy in 25 fractions,
or with accelerated IMRT 66–70 Gy/33–35 fractions over a period of 5.5–6.0 weeks, using image
guidance matched to cervical vertebrae or laryngeal soft tissue. The three-year LC was significantly
higher for accelerated IMRT/IGRT–larynx (89%) vs. hypofractionated IMRT/IGRT–larynx (80%) vs.
hypofractionated IMRT/IGRT–bone (70%) [35].

The five-year LC rates of non-favorable T2 (bulky, impaired cord mobility; old T2b stage)
glottic lesions is around 70% [36–38]. Their management is challenging and an area of research
interest. Different treatment intensification strategies have been advocated, ranging from accelerated
fractionation, to hyperfractionation, to concurrent chemoradiatotherapy aiming to improve
outcomes [39–42].

The currently recommended standard-of-care RT doses and fractionations for the treatment
of favorable T2 glottic lesions (non-bulky, normal cord mobility; old T2a stage) are 65.25 Gy at
2.25 Gy per fraction or 70 Gy at 2 Gy per fraction (Figure 4). For non-favorable T2 (borderline T3)
glottic lesions, therapy intensification with hyperfractionation [34,36,37] or concurrent chemoradiation
may be considered [39–42].

1 

 

 

 

 

Figure 4. Cont.
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1 

 

 

 

  Figure 4. Partial laryngeal IMRT. (A) Axial view of target volume delineation for T2N0 glottic larynx
(impaired cord mobility) squamous cell carcinoma: primary GTV (red), 5 mm uniform expansion to
CTV (red), and 5 mm uniform expansion from CTV to render primary PTV (red). Intermediate CTV
(blue) consists of the larynx (CTV) superior to the hyoid, with uniform 5 mm expansion to render
intermediate PTV. (B) Sagittal view of both high and intermediate target volumes. (C) Partial IMRT
approach with 5 mm bolus utilizing a simultaneous integrated boost method: 70 Gy in 35 fractions to
primary PTV (red), with 56 Gy to intermediate risk PTV (blue). Dose color wash distribution.

3. Locally Advanced Stage (III–IV)

Locally advanced disease represents about 60% of all laryngeal cancers. Typically, the management
of these tumors will require multimodality therapy. Accepted treatment modalities include
surgery followed by adjuvant radiation and chemotherapy, based on high-risk pathologic
features, organ-preservation chemoradiation, and induction chemotherapy, followed by definitive
chemoradiation. An area of particular interest is how to accurately select the patient who is suitable
for organ preservation treatment. The optimal treatment strategy is contingent on multiple factors,
including initial tumor extent/stage, baseline/pre-treatment organ function, specific treatment goals,
patient preferences, oncologist experience, cancer center volume, and patient compliance for close
monitoring and detection of early recurrences [43–47]. In order to choose the appropriate treatment
course for an individual case, is imperative to consistently have a multidisciplinary approach [48].
Here, we present different strategies that can help to better select, further tailor, and individualize
therapy with the use of radiation.

3.1. Tumor Volume

The importance of the pretreatment tumor volume of laryngeal tumors treated with RT and its
relationship with outcomes has been demonstrated in multiple studies [49–51]. The University of
Florida evaluated primary tumor volume as a useful measure to better select laryngeal cancer patients
for organ preservation chemoradiation, using pretreatment computed tomography measurements [52].
A pretreatment tumor volume ≤12 cc was a predictor for local control and larynx function preservation
after chemoradiation, particularly in the setting of a supraglottic tumor. In addition, the University
of Michigan analyzed the value of anatomic volumes in untreated laryngeal cancer patients and
demonstrated the prognostic significance of the size of the primary tumor volume, composite nodal
volume, and composite total tumor volume [53].

Other groups have further evaluated this concept, using alternative diagnostic imaging modalities,
such as magnetic resonance Imaging (MRI), positron emission tomography (PET)/CT, and single-photon
emission computed tomography (SPECT)/CT, and analyzing endpoints, such as metabolic tumor
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volume (MTV), maximum standardized uptake values (maxSUV), and total lesion glycolysis (TLG)
as tools for better treatment selection [54].

3.2. Pretreatment Organ Function

Multiple studies have shown the importance of several prognostic factors as predictors for organ
preservation, treatment response, and outcomes in laryngeal cancer patients [55–57]. An area of interest
is the pretreatment larynx function and his predictor value for response to RT or chemoradiation.
Having a thorough and careful baseline evaluation in a multidisciplinary design approach for the organ
function (voice, swallowing) is key in the decision-making process and ultimate patient outcomes.
Knowing this crucial information upfront can help to further tailor down treatment options.

3.3. Selective Nodal Irradiation

It is known that the risk of lymph node involvement in laryngeal cancer is based on tumor
anatomic location, stage, and histology. Historically, patients with locally advanced larynx cancer
that require RT as part of their treatment will receive bilateral neck irradiation. A potential way to
further de-escalate therapy and decrease morbidity is to perform selective nodal irradiation only in
regions at risk of recurrence (>5%), and to lower the elective dose to 40 Gy. The INFIELD phase II
trial (Involved Field Elective Volume De-Intensification Radiation Therapy for Head and Neck Cancer)
is evaluating this question in oropharyngeal (n = 53) and locally advanced laryngeal (n = 19) SCC.
An IMRT plan with or without chemotherapy is delivered in two sequential courses. The first course
delivers 40 Gy in 20 fractions to the gross disease and elective volumes. The second course encompasses
a dose of 30 Gy in 15 fractions to the gross disease or 24 Gy in 15 fractions to the microscopic disease and
suspicious nodes. Each lymph node is characterized as involved or suspicious, based on anatomic and
PET criteria. Level IB will not be electively treated unless it is involved with pathologic or suspicious
lymphadenopathy. Level V will not be treated unless two or more ipsilateral nodal levels are involved
(or level V itself has pathologic or suspicious adenopathy). Levels III and IV will only be irradiated if
the immediately proximal level contains pathologic lymphadenopathy (i.e., level III will be irradiated
if level II is positive; level IV will be irradiated if level III is positive). Preliminary data presented at the
2019 annual meeting of the American Society for Radiation Oncology (ASTRO) showed no recurrences
in the 40 Gy untreated elective nodal stations after a median follow-up of 11.9 months. This intriguing
data requires further validation in a larger setting with longer follow-up [58].

3.4. Adaptive Radiotherapy

Adaptive RT is the process of re-planning patients during treatment in response to observed
spatial and structural changes, e.g., weight loss (anatomy-adaptive RT) and changes in tumor volumes
(response-adaptive RT) (Figure 5), or at preset intervals during the treatment course. The use of
adaptive RT will allow modifications of the radiation plan based on changes that occur during
treatment. In theory, this modality could potentially improve outcomes and reduce toxicity following
treatment response. An example is the case of persistent disease, where the use of adaptive RT will
allow the radiation oncologist to dose escalate radioresistant disease. Another frequent scenario is the
presence of volumetric reductions on tumoral volumes, resulting in unintended dosimetric changes
affecting the treatment efficacy and overdosing normal organs like parotid glands, which would
ultimately result in increased toxicity. The concept and utility of adaptive RT is promising and
continues to evolve [59,60].

3.5. Unilateral Neck Irradiation

Due to risks of lymph node involvement in locally advanced laryngeal cancer, patients that
require definitive or adjuvant radiation as part of their treatment will receive bilateral neck irradiation.
The concept of unilateral neck irradiation has been applied in the last few decades for the treatment
of well-lateralized oropharyngeal tumors, with good oncologic and functional results. Lately,
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with advances in diagnostic imaging and improvements on surgical techniques and radiation delivery,
we can envision the possibility of doing unilateral nodal irradiation on well-lateralized laryngeal
tumors (Figure 6). Some groups have advocated the use of imaging modalities, such as SPECT/CT,
with peritumoral 99mTc-nanocolloid injections for lymph drainage mapping for the planning of
unilateral elective nodal irradiation in head and neck SCC. These studies have included patients
with well-lateralized T1–3 N0–2b tumors not crossing midline of the oral cavity, oropharynx, larynx,
and hypopharynx. Lymphatic drainage was successfully visualized in 98% of patients. Twenty percent
of patients had visible contralateral drainage in levels II (88%), III (25%), and IV (13%), with an observed
increased risk of contralateral drainage associated with higher tumor stage (T3 (45%) vs. T1–T2 (14%)
tumors) [61]. Two comparison radiation plans (standard bilateral neck vs. selective SPECT/CT-guided
ipsilateral neck irradiation) were created for each case. Radiation doses to organs at risk were evaluated,
and the clinical benefits were predicted using different normal tissue complication probability (NTCP)
models [62]. Using this approach, a total of 50 patients were treated. With a median follow-up of
33 months, only one patient (2%) had contralateral regional failure. SPECT-guided elective nodal
irradiation was associated with lower rates of dysphagia, PEG tube placement, and late xerostomia
compared to standard bilateral nodal irradiation [63].
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Figure 6. Exemplification of Unilateral neck irradiation case. Unilateral neck irradiation treatment plan
for T1N0 squamous cell carcinoma of the right supraglottic larynx, after SPECT/CT with peritumoral
99mTc-nanocolloid injection for lymph drainage mapping. Prescription dose 70 Gy in 35 fractions to
high risk PTV. (A) Delineation of GTV, high risk CTV/PTV (red), intermediate (blue), and low (green)
utilizing 5 mm uniform expansion to render PTV’s. (B) VMAT treatment planning technique with
partial arcs delivered via simultaneously integrated boost method. Dose color wash distribution.



Cancers 2020, 12, 1651 12 of 21

This concept can also be translated into patients treated with surgery upfront. The current
clinical trial NCT03622164 is evaluating the role of unilateral neck RT in patients with squamous
cell carcinomas of the head and neck (oral cavity, oropharynx, larynx, or hypopharynx) undergoing
primary surgical resection and bilateral, modified radical, or selective neck dissections, with ≥10
pathologically negative lymph nodes removed on the contralateral neck that will require adjuvant RT,
based on final pathologic features.

If unilateral neck irradiation is perhaps indicated, treatment with charged particles, such as
proton therapy using modern delivery techniques, like intensity modulated proton therapy (IMPT) [64]
or individual field simultaneous optimization (IFSO) [65], could further spare organs at risk and the
contralateral neck, due to the physical properties of charged particles.

3.6. Omission of Resected Neck—Radiation to the Primary Surgical Bed Only

A phase II trial from Washington University omitted postoperative radiation to the pathologically
node-negative neck in patients with primary head and neck squamous cell carcinoma. Seventy-two
patients with tumors of the oral cavity, oropharynx, larynx, and hypopharynx were included.
After oncologic resection (primary and neck dissection), patients with a pathologically negative
neck (pN0), and with risk features mandating adjuvant radiation, were treated only at the primary
tumor bed. The median of sampled lymph nodes on the ipsilateral neck was 28.5. For the contralateral
neck dissection, 10 or more lymph nodes were resected in 88% of patients. At a median follow-up
of 53 months, only two patients were documented with recurrences on the pathologically negative
and unirradiated neck, for a regional control of 97%. Of note, the two patients with neck failures also
experienced local recurrences [66] (Figure 7).
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cell carcinoma of glottic larynx with close margins, positive lymphovascular and perineural invasion,
with >90 lymph nodes negative in the bilateral cervical neck(s). PTV is rendered using uniform 5 mm
expansion from the CTV (red), cropped back 3 mm from the skin’s surface for build-up. (B) VMAT
treatment planning technique for the primary, post-operative surgical bed only, depicted with a total
prescription of 60 Gy delivered in 30 fractions to PTV. Dose color wash distribution.

3.7. Radiation to Neck(s) Only

Similar to the concept of sparing the pathologically negative neck, it may be possible to omit
the primary surgical bed in the radiation field in the circumstance of a resected primary tumor that
shows no adverse risk features on pathology, such as positive/close margins, perineural invasion
(PNI), lymphovascular invasion (LVI), or indications for adjuvant radiation based only on pathologic
analysis of the neck (number of positive lymph nodes or extranodal extension (ENE)) (Figure 8).
This treatment approach is currently being evaluated in other anatomic sites of the head and neck,
such as the oropharynx [67–69].Cancers 2020, 12, x 14 of 22 
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(B) VMAT treatment plan to the bilateral neck(s) avoids the primary surgical bed in a resected pT3
N2 SCC of the glottic larynx showing no adverse pathologic risk features in the primary tumor
specimen/surgical bed, with indications for adjuvant radiation as a result of multiple positive lymph
nodes. Prescription dose 54 Gy in 27 fractions. Dose color wash distribution.

3.8. Nanoparticle Therapy

One area of increased research interest in the treatment of head and neck cancers is nanoparticle
therapy. Theoretically nanoparticles can be used as vectors to target the tumor site by achieving
controlled drug release, or to selectively potentiate radiation dose deposits while keeping toxicity
lower in the surrounding normal tissues. Preclinical studies using nanoparticles as radiosensitizers
have shown an improved therapeutic index with increased tumor control efficacy and safety toxicity
profile. Their potential clinical applications are currently under investigation [70]. NBTXR3 is an
aqueous suspension of crystalline hafnium oxide that, after intramural injection prior to the first
radiation fraction, increases the energy deposited from ionizing radiation within the cancer cell without
increasing doses to the surrounding normal tissues. Preliminary data of a phase I/II trial of NBTXR3
nanoparticles activated by IMRT in the treatment of local advanced-stage SCCs of the head and neck in
elderly or frail patients who are ineligible for cisplatin or intolerant to cetuximab showed the efficacy
of the radioenhancer [71]. Coming up is NBTXR3-312, a phase III trial for elderly patients with locally
advanced disease ineligible for cisplatin therapy. Other possible clinical applications are nanoparticle
technology in combination with anti-PD1 inhibitors (NCT03589339).

3.9. Deep Machine Learning: Radiomics

The use of machine learning algorithms in the field of artificial intelligence has the potential to
help identify and evaluate pretreatment tumor characteristics that could be considered for physician
decision-making. The spectrum of machine learning applications is extensive, promising, and continues
to evolve. Some applications in the area of radiation planning are automatic organ-at-risk delineation
and adaptive radiotherapy. Machine learning may also be useful in identifying and developing normal
tissue complication probability (NTCP) models [72]. Kann et al. [73] used deep-learning algorithms to
identify pretreatment extranodal extensions (ENEs) in the SCCs of the head and neck, and compared
their own performance against two board-certified neuroradiologists. Preoperative, contrast-enhanced
CT scans and pathology results from two external data sets were employed for analysis. The computer
algorithm was able to achieve an area under the receiver operating characteristic curve (AUC) of 0.84,
outperforming the neuroradiologists’ AUCs of 0.70 and 0.71. Detection of ENE prior to treatment can
help with clinical decision-making, since most patients with ENEs in the final pathologic specimen
will require additional therapy. Using machine deep-learning assistance may improve the accuracy of
diagnostic radiologists.

Another potential advantage of the use of deep machine learning is the evaluation of anatomic
and functional changes during treatment to predict toxicity and improve functional outcomes.
Scalco et al. [74,75] applied texture analysis to CT images obtained during RT to evaluate and
monitor structural and anatomic changes of the parotid glands, and whether these changes could
characterize preclinical signs of xerostomia.

Similarly, the Johns Hopkins group explored radiomorphologic dose patterns in salivary glands
(parotid and submandibular glands) that could predict xerostomia three months after treatment.
The ridge logistic regression method was used to evaluate the influence patterns of doses in the
salivary glands on xerostomia. It was found that the superior–anterior portion of the contralateral
parotid gland and the medial portion of the ipsilateral parotid gland were the most influential areas
regarding dose effect on xerostomia [76]. Furthermore, the spatial radiation dose influence on the
recovery of xerostomia eighteen months after treatment was also analyzed. This analysis found that
the superior portions of the two parotid glands are the most influential in xerostomia recovery [77].
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Machine learning methods have the potential to help optimize and improve radiation treatment
planning and decrease toxicity after treatment.

Radiomics is a method that works through characterization algorithms to extract and analyze large
amounts of dimensional data from radiographic medical images, helping to personalize treatment.
For example, radiomics can identify regions of radioresistant tumoral cells and help the radiation
oncologist to selectively intensify or escalate radiation dose to those areas [78]. It can also provide
information about tumor heterogeneity/segmentation and predict pathological grading, gene expression
profiling, oncologic outcomes, and risk stratification, as well as monitoring tumor response and normal
tissue changes after RT [79,80].

3.10. Tumor Heterogeneity

It is well-established that molecular variations between (intertumor heterogeneity) or within
tumors (intratumor heterogeneity) exist. Tumor heterogeneity contributes to the ambiguous clinical
responses and outcomes observed in clinical practice. For example, it is believed that therapeutic
resistance may develop as a result of treatment-induced evolution and natural selection of cancer
sub-clones. Tissue and tumor analysis and profiling will further help to aid in the understand of
molecular changes and mechanisms implicated. Furthermore, improved understanding of tumor
heterogeneity may also assist in the development of biomarkers and selection/stratification of patients
into distinctive prognostic groups, allowing patients to receive precision cancer medicine [81].

3.11. MRI-Guided Radiotherapy

The use of MRI in laryngeal cancer can be useful to better evaluate tumor extension/invasion
into the pre- and paraglottic space, cricoarytenoid unit, and subglottic and base of tongue regions
in locally advanced tumors. It can also be helpful to assess perineural tumor spread and vascular
involvement. Due to its superior soft-tissue contrast resolution, MRI can be particularly advantageous
for a more precise target volume delineation, and additionally reduce or adapt treatment volumes.
Moreover, with recent advances in the delivery of imaged-guided RT, we can envision the use of
real-time, MRI-guided RT to track anatomical motion during treatment, and account for respiratory
and deglutition real-time motion of the larynx to assist in more accurate treatment delivery, allowing
further reduction in treated volumes, and improving the therapeutic ratio [82–86].

3.12. Ultra-High-Dose-Rate (FLASH) Radiotherapy

Conventional head and neck RT is delivered in protracted courses of 6–7 weeks, with daily dose
fractions of 1.8–2.0 Gy (standard fractionation) at dose rates around 0.01–0.03 Gy/s. The total dose
delivered is determined by tumor type, location, and dose tolerance limits of surrounding normal
tissues. Recently, with the development of newer technology, it is possible to deliver highly curative
radiation doses (≥10 Gy) to tumors at ultra-high dose rates (≥40 Gy/s), known as “FLASH” irradiation.
Preclinical studies in animals have shown relative protection of normal tissues, perhaps due to the very
short time of exposure, while maintaining the antitumor response of conventional radiation [87–89].
The mechanism of the underlying effects observed in FLASH RT and its clinical applications remains
under investigation [90].

3.13. Radiotherapy Coupled with Biological Agents

The combined effects of ionizing radiation and biological agents have gained considerable interest in the
recent past. Different agents, including monoclonal antibodies (cetuximab, bevacizumab) [91], proteasome
inhibitors (bortezomib) [92], immunomodulatory drugs (nivolumab, pembrolizumab) [93,94],
intra-tumoral TNFerade [95], Aurora kinase A (AURKA) and WEE1 inhibitor [96] [NC03028766],
inhibitors of the enzyme poly-ADP ribose polymerase (PARP inhibitor, i.e., olaparib) [97]
[NCT02229656], and peptidomimetics of the second mitochondrial-derived activator of caspases
(SMAC mimetic, i.e., birinapant) [98] [NCT03803774] have or are currently being studied to evaluate
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their synergistic effects with RT. The current data of combining radiation and biological agents is mixed,
both in clinical response and also in toxicity profiles.

4. Future Directions

The current management of laryngeal cancer is standardized based on tumor extent/stage, location,
histology, organ function, and patient preference. Continued research, translation, and incorporation
of new promising approaches into clinical practice will help evolve the process of laryngeal cancer
treatment to become more personalized.

5. Conclusions

The treatment of larynx cancer remains challenging. A multi-disciplinary approach is key for
treatment success. There are multiple, promising novel strategies to better select and individualize
the treatment of laryngeal cancer. Although most of these concepts remain under investigation,
the presented data in this review suggest their potential to continue to improve the therapeutic ratio
and quality of life of these patients. Newer studies incorporating these ideas in the clinical setting in a
prospective manner with a larger number of patients are warranted, in order to further determine their
safety and efficacy.
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