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Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a
penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography
(FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method
together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate
for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of
the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than
the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome

information for FMT.
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1. INTRODUCTION

Light with wavelength in the near-infrared range can prop-
agate a few centimeters through the tissue because of low
tissue absorption in the spectral of “near-infrared window.”
This finding has encouraged the development of fluorescence
techniques to visualize specific biochemical events inside liv-
ing subjects [1, 2]. In recent years, a great development has
happened to the fluorescence molecular tomography (FMT),
a technique that resolves molecular signatures in deep tis-
sue using fluorescent probes or markers [1, 3-6]. Tissue is
illuminated by a series of excitation light in FMT; multiple
measurements for the fluorescent emission light are collected
from the tissue surface to resolve and quantify fluorochromes
deep inside the tissue. With great potential, FMT has become
a promising imaging modality for in vivo small animal imag-
ing [1, 2].

Several reconstruction approaches for FMT have been
proposed. Most of them are based on the diffusion model [6—
10]. The model can be solved by methods such as finite differ-
ence method [8], finite element method [6], adaptive finite
element method [11], and statistical method [12]. A weight-
ing matrix can be obtained from the forward model, which

describes the influence of each volume element on the detec-
tor readings. Generally, the inverse reconstruction problem
of FMT is to find the fluorescent source distribution in the
target tissue based on the precalculated weighting matrix and
the measured data. Since the data measured from the tissue
surface is far less than the number of unknown points in-
side the tissue, the reconstruction problem is illposed, and
the solution is sensitive to noise as well as measurement er-
ror. Several algorithms have been reported, such as the mod-
ified Newton method-based optimization scheme [13] and
the Born-type approximation techniques [14]. The conjugate
gradient (CG) methods, which need less storage and compu-
tation, are favorable for the problems with large-dimension
data. They have been reported to be adopted successfully in
the reconstruction algorithms for imaging modalities such as
the positron emission tomography (PET) [15-17] and dif-
fusion optical tomography (DOT) [18]. Normally, two dif-
ferent kinds of CG with different properties are being used
under different conditions. They are the linear CG method
(L-CG) and the nonlinear CG method (N-CG) [19]. There
is a remarkable point that L-CG and N-CG have reciprocal
properties. Combining them together may generate an im-
proved algorithm, which has the advantages of both of them.
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In this paper, a penalized linear and nonlinear combined
conjugate gradient method (PLN-CG) for the reconstruc-
tion of FMT is presented. The L-CG method and the N-CG
method are employed separately at different period based on
a restart strategy, in order to exert their advantages while
compensating for their disadvantages. Besides, a quadratic
penalty method is adopted to give the result a nonnegative
constraint, as well as reduce the uncertainty and illposedness
of the problem. Simulation studies show that the PLN-CG
algorithm can give a more accurate and more stable result
for the reconstruction in FMT with less computation. De-
tailed description of the PLN-CG algorithm can be found in
Section 3. Section 2 gives a general review of the forward and
inverse problems in FMT, including the conventional CG-
based reconstruction method. Simulation experiments are
presented in Section 4 to demonstrate the validity and effi-
ciency of the proposed algorithm. Section 5 summarizes the
main results and gives a general discussion.

2. THEORY AND BACKGROUND
2.1. Forward model in FMT

When an external excitation light source works at continuous
wave mode (CW mode), the following diffusion equation can
be employed to model the propagation of the excitation light
and the fluorescent emission light [6-10]:

V- [Dx(r)vq)x(r)] - [.uax(r)""uaf(r)]q)x(r) :_®56(r_rsk):

V- [Dm(r)vq)m(r)] - ,“um(r)q)m(r) = —(Dx(l')l’]‘ugf(l'),
(1)

where r is the position vector belonging to the image region
Q. O, (r) represents the photon density at r for the excita-
tion light (subscript x) or the fluorescent emission light (sub-
script m). Dy, (r) is defined as the diffusion coefficient

Dn(®) = B(taxm(®) + (1 = Quaem(@®)) ™, (2)

where pay,m(r) and pg (1) are the absorption and scattering
coefficients, respectively. g is the anisotropy parameter. The
absorption of the excitation light due to fluorophores is de-
scribed as p, ¢ (r) and the fluorescent yield #u, (r) is required
for fluorescence parameter.

2.2. Theinverse reconstruction problem in FMT

In this work, the finite element method is used to solve
the forward model. Detailed description of the finite ele-
ment method for the FMT forward problem can be found in
[6, 11]. Based on the finite element solution of the forward
problem, (1) is transformed into a linear matrix equation as
follows:

Wx =1, (3)

where x, an N X 1 vector, denotes the real fluorescent source
distribution to be reconstructed. I, a M X 1 vector, is the emis-
sion data computed from the measurement at the surface of

the tissue. And W, a M X N matrix, is the weighting ma-
trix generated from the forward model. Generally, the inverse
problem for FMT is to find the fluorescent source distribu-
tion x in the target tissue from the measured data I and the
precalculated matrix W. As mentioned before, the problem
in (3) is quite illposed and undetermined.

2.3. TheL-CG and N-CG method

The implementation of CG in image reconstruction field is
generally in two ways. CG is one of the most useful methods
for solving large linear systems of equations with symmetric
and positive definite parameters, as it is called L-CG [19]. L-
CG can be employed in FMT reconstruction by transforming
equation (1) into a standard linear system. Since all parame-
ters of each step in L-CG can be obtained from the value of
the last step by iterative functions, the computation and stor-
age of the algorithm are reduced. Besides, with pertinence,
L-CG converges fast and has a good orientating ability. How-
ever, it is brittle and sensitive to noise. The requirement of the
standard form of the problem in L-CG limits the implemen-
tation of the regularization and penalty methods, which are
quite important for the illposed problem in FMT reconstruc-
tion. Thus, the CG method for nonlinear optimization prob-
lems, namely N-CG, which is more flexible to work along
with the regularization and penalty methods and has a bet-
ter capability to work under noise, is used widely for image
reconstruction [15, 17]. According to the least-squares (LS)
rule, problem (3) can be changed into a nonlinear optimiza-
tion problem as follows:

min ¢(x) = %||1—WX\|2+;7(X), (4)

where #(x) is the regularization or penalty term chosen on
various purposes. Then the N-CG method can be adopted
to find the optimal solution of (4). However, defects exist in
N-CG. This method is more computationally expensive than
L-CG, resulting in more time consuming for each iteration.
Besides, it converges slowly [20]. Nevertheless, it is noticed
that the properties of N-CG and L-CG are reciprocal. Thus,
combining N-CG and L-CG together may generate an im-
proved algorithm, which can get a higher speed and accu-
racy from L-CG as well as a good antinoise capability and the
flexibility from N-CG. Therefore, an improved CG-based al-
gorithm for FMT reconstruction, penalized linear and non-
linear combined conjugate gradient method (PLN-CG), was
developed according to this consideration. The main scheme
of the algorithm is presented in the following section.

3. APENALIZED LINEAR AND NONLINEAR COMBINED
CG METHOD

3.1. Searching the rough region using L-CG

The searching process for the optimal solution x* in PLN-
CG begins with an initial guess x¢, and takes a steepest de-
scent first step. The sketch of the scheme is shown in Figure 1.

At first, the search is general and the effect of noise is
low, so L-CG is employed to find the rough region of the
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F1GURE 1: The sketch of the combined L-CG and N-CG schemes.

optimal solution x*, that is, ;. Because L-CG has a better
orientating ability, and needs less computation, it can find
Q, faster and more accurately, while it does not have to ex-
pose its fragility under noise.

Transformation has to be made to (3) to make it a stan-
dard linear system with symmetric positive definite coeffi-
cient matrix. The optimal solution of the LS problem de-
scribed in (4) satisfies the normal equation as follows:

Wiwx = WTT, (5)
where W is the transpose of W. Thus
W*x =T*, (6)

where W*¥ = WIW, is an N X N symmetric matrix. The
reconstruction problem has become a standard linear one, as
is required by L-CG.

Starting from an initial guess X, the solution can be up-
dated iteratively by

Xkr1 = Xk + 0kPks (7)
where oy is the step size
T
I, Ty
X = T AT k . 5 (8)
P W*pk

and ry is the gradient of each step. It is defined in L-CG as the
residue of the linear system, which is obtained iteratively by

i1 = Ik + WP pg, 9)
where py is the searching direction and

Pk+1 = —Tks1 + Brs1Pro

I A (10)

ﬁk+1 = I'Zrk

The L-CG searching iteration process will cease when x
enters the region (),. The definition of the region Q, is de-
termined by a restarting parameter, which is described in the
following section.

3.2. Therestart strategy

The restart strategy is a modification that is often used in
nonlinear conjugate gradient procedures [19, 21]. The gen-
eral scheme is to restart the iteration and take a steepest

descent step according to some predetermined conditions.
Restarting serves to periodically refresh the algorithm, erase
old information that may not be beneficial or even harmful,
and renew the initial guess xg at every restarting time for the
new iteration process.

We adopt a restart strategy in the PLN-CG scheme de-
scribed as follows:

[ti| = |reo1 + e Wopr1 | <6, (11)

where ry represents the gradient of ¢(xx). When |ri| satis-
fies (11), it means that the x; obtained at current iteration
has entered the small region Q, around x*. Then, a steepest
descent step is taken, using the gradient direction at current
point as the searching direction. At the same time, a new it-
eration process with the N-CG method begins, using x; as
the initial guess xo. The experiential typical value for ¢ is be-
tween 1073 and 107>. Normally, we choose 107 for practical
use.

3.3. Useofthe N-CG method

After entering ), the searching result is getting quite closer
to the optimal solution, so the effect of noise has to be taken
into consideration. Besides, the uncertainty of the searching
has increased. Thus, the method has been shifted to N-CG,
which can work better with noisy data. Besides, N-CG can in-
troduce the penalty or regularization method to gain a con-
straint as well as to reduce the illposedness.

Now, problem (3) is transformed into a nonlinear opti-
mization problem:

min ¢(x) = %||I—WX||2+17(X), (12)

where 7(x) is a penalty term which will be discussed in
Section 3.4.

The N-CG method differs from L-CG mainly in two
ways. Firstly, rather than using a standard iterative function
to find the step length ax, a line search method is used to
identify an approximate minimum of the nonlinear function
¢(x) along the searching direction px [15, 17, 19]. Secondly,
the gradient of ¢(x) in L-CG is simply the residue of the lin-
ear system that can be obtained iteratively. While for N-CG,
it must be replaced by the gradient of the nonlinear objective
¢(x), that is, V(x).

Thus, using the x¢ obtained from L-CG as the initial
guess xo for N-CG, the solution is updated iteratively:

Xkr1 = Xk + OkPks (13)

where ay is the step size that is computed by a line search
method,

min f(x + apx) s.t.a >0, (14)

where py is the searching direction and

Pk+1 = —Tis1 + Brs1Pro

_ rfﬂ (e —1%) (15)

k+1 =
P ] 1) ’



International Journal of Biomedical Imaging

(a)

(b)

FiGure 2: (a) Configuration of the simulation experiment using two excitation sources. The object is homogeneous, with a fluorophore
(designated with o) imbedded in it. Two excitation sources (designated with o) are placed around the inner surface of the object. (b) Mesh

in the forward FEM model.
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FIGURE 3: Images reconstructed with different methods. (a) N-CG, (b) L-CG, (c) PLN-CG. All results were obtained with a hundred iter-
ations, y was chosen to be 50. A zero vector was used as the initial guess. The small circle in each figure shows the real distribution of the

fluorophore.

where 1y is the gradient of the objective function ¢(x) at cur-
rent point, that is,

re = Vo (xx). (16)

3.4. The nonnegative penalty

It is known that a major problem of the conventional
gradient-based methods is that they are mainly designed for
unconstrained problems, but the fluorescent source distribu-
tion in the biological tissue has to be constrained to a non-
negative region [16, 22]. Here, a quadratic penalty method
[15, 19] is adopted to give the problem a nonnegative con-
straint.
Consider the penalty function described below

1=y 2 xiu(-x), (17)

where x; is the ith element of x, u(x) is the unit step function.
During the searching procedure, when the searched result x
at current iteration has negative values, the penalty term will
be increased. In this way, it will penalize x and force it to go
back. y is a penalty weighting parameter, which will gradu-
ally become zero as the iteration number increases. Thus, the
solution of the new unconstrained problem in (12) with the
penalty term (17) will approach the solution of the original
problem in (3). The value of y will be discussed experimen-
tally in Section 4.1.3.

Set an initial value xo, and the restarting parameter 6.

(1) Find x, using L-CG method,
the gradient ry = Axx — b, asin (9).

(2) Ifry < 8, go to (3). Else, repeat (1).

(3) Restart, set xg = x¢, f = 0.

(4) Find the optimal solution x* with N-CG method, use
¢(x) with penalty function #(x) as the objective function.

ArLcoriTHM 1: The PLN-CG scheme for FMT reconstruction.

Thus, a penalized linear and nonlinear combined conju-
gate gradient method is generated according to the scheme
described above. The main flow of Algorithm 1 is listed be-
low.

4, SIMULATIONS AND RESULTS
4.1. Simulations with two sources

In this experiment, a numerical model was set up to test
the validity of the PLN-CG algorithm. A circular object
was simulated with an outer diameter of 25 mm, which had
a fluorophore with a diameter of 4 mm embedded in it.
We supposed the optical property to be homogeneous, with
ta = 0.005mm~! and gy = I mm~'. In order to show the
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FIGURE 4: Images reconstructed with different initial guesses, using N-CG (Column 1), L-CG (Column 2), and PLN-CG (Column 3). Initial
guess for (a)—(c) was an all-0.005 vector, and for (d)—(f) was an all-0.01 vector. Results were all obtained with one hundred iterations. y was
50 for the PLN-CG approach. The small circle in each figure shows the real distribution of the fluorophore.

efficiency of PLN-CG better, only two excitation sources were
used this time. They were placed around the inner surface of
the circular object (as shown in Figure 2(a)), and were turned
on in turn. For each source, 32 detector readings were avail-
able through the detector fibers, which were distributed uni-
formly on the surface of the circular object.

The forward data were simulated by finite element
method [6, 10], using a FEM light transport model in
CW mode [7]. The object was divided into 518 small tri-
angular elements and the mesh is shown in Figure 2(b).
The FEM forward engine was based on COMSOL Mul-
tiphysics (Section 3.2). The reconstruction algorithm was
programed in MATLAB 6.5. A computer with CPU AMD
Athlonx23600+ and 512M DDRII memory was used.

Images reconstructed by N-CG, L-CG, and PLN-CG are
shown in Figures 3(a), 3(b), and 3(c). All images were ob-
tained with one hundred iterations, as the objective func-
tion would descend very slowly thereafter. The nonnegative
penalty parameter y used for PLN-CG was 50. A zero vector
was used as the initial guess for each algorithm.

It can be seen that images reconstructed by N-CG and L-
CG are noisy. Negative values exist, which affect the accuracy
of the results. While for PLN-CG, the values are all nonneg-
ative, and the image is cleaner and more accurate. The com-
puting time was about 5.02 seconds for N-CG, 0.22 second
for L-CG, and 1.45 seconds for PLN-CG. It indicates that
L-CG is much faster than N-CG. So helping N-CG with L-
CG has tremendously reduced the computing time, as in the
PLN-CG method.

4.1.1.  Reconstruction using different initial guesses

Being sensitive to the initial guess is a big disadvantage for
most of the iterative approach based algorithms. It is re-
garded as a standard to test the stability of the algorithm.
Figure 4 shows the results reconstructed with different
initial values, using N-CG (Column 1), L-CG (Column 2),
and PLN-CG (Column 3), respectively. Since most elements
of the original solution are zero and the quantity of the flu-
orochrome intensity in FMT is relatively small, a zero vec-
tor is closer to the solution of the problem and is a bet-
ter choice to be the initial value (Figure 3). When the initial
value is increased to 0.005 and 0.01, the reconstructed im-
ages of N-CG (Figures 4(a) and 4(d)) and L-CG (Figures 4(b)
and 4(e)) become perturbed, with artifacts distributed in the
background. Whereas the PLN-CG (Figures 4(c) and 4(f)) is
still giving a clear result, with only a slight blur on the edge.

4.1.2.  Reconstruction using noisy data

To test the stability of the algorithm, white Gaussian noise
was added to the detector readings. Figure 5 shows the im-
ages reconstructed by N-CG (Column 1), L-CG (Column
2), and PLN-CG (Column 3). The L-CG method reveals
its fragility under noise. The image is perturbed when the
noise level is 5% (Figure 5(e)). When the noise level is 10%,
the image is totally blurred, as is shown in Figure 5(h). The
N-CG method has a better performance compared with L-
CG (Figures 5(i) and 5(g)). However, many artifacts exist in
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F1GURE 5: Images reconstructed with noisy data, using N-CG (Column 1), L-CG (Column 2), and PLN-CG (Column 3). Noise level for
(a)-(c) was 1%, for (d)—(f) was 5%, and for (g)—(i) was 10%. Results reconstructed with N-CG and L-CG were obtained with one hundred
and fifty iterations. For PLN-CG, when y was 50, the iteration number was one hundred. The small circle in each figure shows the real

distribution of the fluorophore.

the images and affect the quantification of the fluorophore.
Whereas, images reconstructed with PLN-CG approach are
clear when the noise levels are 1% (Figure 5(c)) and 5%
(Figure 5(f)). When the noise level is 10%, the fluorescent
source distribution is still relatively clear, with a little artifacts
appearing on the edge.

4.1.3. Thevalue of the penalty parameter y

When using the PLN-CG method, y is the weighting parame-
ter that controls the effect of the penalty term. Figure 6 shows
the images reconstructed with different y.

It can be seen that when y is 1073, the effect of the penalty
term is not enough. Negative values exist and the background
is not clean. Increasing y to 1 does produce better results
(Figure 6(b)), and a further increase to 10° enhances the im-
provement (Figure 6(c)). When y increases to 10°, the qual-
ity of the image begins to get worse (Figure 6(d)). The results
show that the penalty term can work well for a large varia-

tion of y. A typical value for y is 10 to10>. Besides, y should
be increased when the total iteration number increases.

In addition, rather than keeping y fixed, one can use dif-
ferent y according to the experiential equation [18]

y = an’, (18)

where 7 is the iteration number. a is a fixed weighting pa-
rameter, which can be set to a value between 1073 and
1. Figure 6(f) shows the images reconstructed according to
(18). The iteration number was one hundred and a was cho-
sen to be 0.005.

4.2. Simulations with more sources

Simulation studies above were based on two excitation
sources, in order to demonstrate the qualities of the PLN-
CG approach better. When the number of sources is in-
creased, a larger dataset can be obtained. It will improve
the information content of the measurements and reduce
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FIGURE 6: Reconstructed images using different y: (a) y = le — 3; (b) y = 1; (c) y = 1e3; (d) y = 1e5; (e) y = 1e7; (f) y = 0.005n%, where
n is the iteration number. A zero vector was used as the initial guess for each reconstruction process, and all results were obtained with a
hundred iterations. The small circle in each figure shows the real distribution of the fluorophore.

0ee
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FiGgure 7: Configuration of the simulation experiments using more excitation sources. (a) 4 sources. (b) 8 sources. (c) 16 sources. The
excitation sources are distributed uniformly around the inner surface of the object (designated with o). For each experiment, the object is
homogeneous, with a fluorophore (designated with o) embedded in it.

the illposedness of the inverse problem [5]. Thus, in prac-
tice, FMT equipments normally use more excitation sources
[3, 4]. Here, simulation experiments were designed using 4
sources (Figure 7(a)), 8 sources (Figure 7(b)), and 16 sources
(Figure 7(c)), respectively.

In each experiment, sources were turned on in turn and
32 detector readings were available for each source. Results
with clean data were obtained with a hundred iterations for
about 2.99 seconds in the 4 sources case (Figure 8(a)). While
the computing time was about 4.9220 seconds and 9.1560
seconds for 150 iterations in the 8 sources case (Figure 8(b))
and 16 sources case (Figure 8(c)), as they have a larger
dataset. y was simply set to 50 for all cases because the dif-
ference among the iteration numbers was small. It is shown
that as the source number increases, the qualities of the re-

constructed images are in progress. The reconstructed fluo-
rochrome region marked with the small black circle is more
even and closer to the original value.

After the experiments using clean data described above,
white Gaussian noise with a constant variance was added
to the detector readings. The noise level was 10%. It is
shown that the reconstructed results become clearer and bet-
ter when the sources number increases from 2 (Figure 5(i))
to 4 (Figure 8(d)) and 8 (Figure 8(e)). However, when us-
ing 16 sources (Figure 8(f)), the image is not improved com-
pared with the 8 sources case, or even worse, which defies the
common sense. The reason may be that, when using clean
and accurate data for the reconstruction, more datasets mean
more information, whereas for the cases using noisy data,
too many data may interfere with each other and counteract
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FIGURE 8: Images reconstructed in the experiments which have more excitation sources. (a) 4 sources, clean data; (b) 8 sources, clean data;
(c) 16 sources, clean data; (d) 4 sources, 10% noise; (e) 8 sources, 10% noise; (f) 16 sources, 10% noise. The small circle in each figure shows

the real distribution of the fluorophore.

the effect. Nevertheless, the results of this experiment further
demonstrate the capability of the PLN-CG method to work
under noise.

5. DISCUSSION AND CONCLUSION

The goal of this work was to establish a fast and accurate al-
gorithm for FMT reconstruction, which is illposed. In order
to achieve this goal, a penalized linear and nonlinear com-
bined conjugate gradient algorithm was developed. Simula-
tion studies have indicated that this PLN-CG method can ex-
hibit very favorable performance and produce relatively sta-
ble behavior. Further studies show that, when using sixteen
sources, the reconstruction algorithm can work under 15%
noise, which is sufficient for practical use. The better perfor-
mance is partly achieved by the combination of L-CG and
N-CG. L-CG makes the algorithm faster and more accurate.
While at the same time, N-CG gives the whole algorithm a
better capacity to deal with noise. It introduces the penalty
method to get a nonnegative constraint and reduce the un-
certainty of the problem. The restart strategy also improves
the efficiency of the algorithm by refreshing the algorithm
periodically.

Further improvement can be made for the PLN-CG al-
gorithm in future. Some kind of regularization techniques
can be employed to regularize the results and smoothen the
images [6]. The prior knowledge about the intensity of the
fluorochrome can be used to utilize a general threshold of
the reconstructed fluorescent source density to decrease the
permissible region [11]. In addition, doing more restarting
procedures appropriately may also upgrade the reconstruc-

tion images. Currently, we are involved in the practical use of
the PLN-CG reconstruction algorithm for the ongoing FMT
experiment in our laboratory.
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