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Diabetes is a chronic, systemic metabolic disease that leads to multiple

complications, even death. Meanwhile, the number of people with diabetes

worldwide is increasing year by year. Sensors play an important role in the

development of biomedical devices. The development of efficient, stable, and

inexpensive glucose sensors for the continuous monitoring of blood glucose

levels has received widespread attention because they can provide reliable data

for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of

functional nanocomposites that show incredible capabilities for high-level

biosensing. This article reviews glucose sensors based on electrospun

nanofibers. The principles of the glucose sensor, the types of glucose

measurement, and the glucose detection methods are briefly discussed. The

principle of electrospinning and its applications and advantages in glucose

sensors are then introduced. This article provides a comprehensive summary of

the applications and advantages of polymers and nanomaterials in electrospun

nanofiber-based glucose sensors. The relevant applications and comparisons

of enzymatic and non-enzymatic nanofiber-based glucose sensors are

discussed in detail. The main advantages and disadvantages of glucose

sensors based on electrospun nanofibers are evaluated, and some solutions

are proposed. Finally, potential commercial development and improved

methods for glucose sensors based on electrospinning nanofibers are

discussed.
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GRAPHICAL ABSTRACT

1 Introduction

Currently, about 537million people have diabetes worldwide.

The number of people with diabetes is increasing and is expected

to increase to 783million by 2045. Diabetes is the leading cause of

death or disease in the world. If the body maintains high glucose

levels, then it will continuously stimulate insulin secretion,

leading to islet cell failure with insufficient insulin secretion,

and eventually to diabetes (Breton et al., 2020; He et al., 2021;

Hickling et al., 2021). We can distinguish between the three types

of diabetes mellitus: 1) Type 1, the pancreas non-generates

insulin and accounts for 10% of people with diabetes, most

are young adults (Bergenstal et al., 2018); 2) Type 2, with a

low rate of insulin production or the body is without insulin

produced by the pancreas, accounts for 90% of people with

diabetes, the majority are middle-aged or elderly (Jermendy

et al., 2021); and 3) gestational diabetes, which occurs during

pregnant pregnancy, and both the mother and the child have the

possibility of developing diabetes (Koivusalo et al., 2016). For

normal blood glucose concentrations, fasting blood glucose

should be 3.9~6.1 mmol/L and postprandial 2 h blood

glucose <7.8 mmol/L. Insulin is the only substance in the

body that lowers blood sugar. When glucose concentration

reaches 17.0 mmol/L, insulin secretion reaches its limit. When

glucose concentration drops to 2.8~3.0 mmol/L, insulin secretion

is inhibited and insulin secretion below 1.7~2.5 mmol/L stops

completely. To prevent and treat the increasing number of

patients with diabetes, researchers aim to develop efficient,

easy to operate, and stable monitoring devices to measure

glucose levels in the stage of diabetic diagnosis.

Sensors are key to measurement equipment, and they have

attracted increasing attention in the development of medical

diagnosis and diabetes management (Gonzales et al., 2019). In

clinical trials, blood glucose monitoring is considered to be one of

the key factors in the early diagnosis of diabetes (Brown et al.,

2019; Shen et al., 2021). ISO 15197:2013 is the latest self-
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inspection standard for blood glucose monitoring equipment and

was released in 2013. In addition, the International Standards

Organization (ISO) has developed a set of standards for glucose

measuring equipment and blood glucose monitoring equipment,

providing quality requirements and specifications to ensure that

they are suitable for human use. Strict guidelines provide patients

and clinicians with greater confidence in health assurance, and

can help to persuade them that blood glucose monitoring devices

are accurate and reliable. Home monitoring equipment can be

divided into self-monitoring blood glucose (SMBG) and

continuous glucose monitoring (CGM) devices. SMBG is used

for self-monitoring of routine care and is used by clinicians to

modify treatment with usual care. The SMBG equipment is a

typical blood glucose monitor that requires a needle prick into

the capillaries (Seshadri et al., 2019; Sempionatto et al., 2020;

Jarosinski et al., 2021; Min et al., 2021). Yunos et al. (2021)

present a radio-frequency (RF) sensor based on a stepped

impedance resonator for remote blood glucose monitoring.

The aim is to replace the routinely used puncture method for

blood collection and instead use dipstick to measure blood

glucose signals (Chien et al., 2022). Due to the high accuracy

and sensitivity of laboratory CGM devices, they are used as

reference techniques for calibrating other devices. Although

SMBG devices are not as accurate as CGM devices, they can

still provide fast and relatively accurate results for personal care,

and its simpler operability compares well with the CGM devices

(Sempionatto et al., 2021). The preparation of sensors without

environmental influence, fast, continuous, accurate, low cost, and

excellent analytical performance has received wide attention.

Electrospinning is a simple, inexpensive, and highly efficient

method for the top-down production of continuous polymeric

nanofibers (NFs), which is widely used in medical applications

and other fields. Electrospun NFs prepared can be easily adjusted

by the electrospinning processes, the size, content, and additional

ingredients to change the fiber’s surface properties and structure

to obtain a high level of active sites and a specific surface area (Xu

H. et al., 2022). The superior sensing performance of functional

nanofibers provides new approaches for the development of

highly sensitive biosensors (Wei et al., 2021). NFs can directly

transfer electrons from the redox active site of the enzyme to the

electrode, and enhance the immobilization and electrocatalytic

activity of the enzyme. Direct electron transfer on the surfaces of

functional nanocomposites, which are NFs doped with

conductive nanomaterials, enhances the analytical signal of

the catalytic reaction on the electrode’s surface (Luo et al.,

2022). The redox reaction is achieved by immobilizing the

enzyme to functional nanocomposites, without requiring any

mediator on the electrode’s surface (Puttananjegowda et al.,

2021). This review summarizes various enzymatic and non-

enzymatic glucose sensors based on polymeric nanofibers with

additional ingredients. Analytical characteristics (e.g., sensitivity,

detection limit, linear range, selectivity, reproducibility, stability,

and response time) are an important basis for the evaluation of

the glucose sensors. Meanwhile, electrospun glucose sensors are

economical, and have good analytical and practical

characteristics.

2 Background knowledge for glucose
sensors

Diabetes mellitus is a body metabolic disorder (Madhavan

et al., 2013). Therefore, precise monitoring and careful control of

glucose levels in the blood is important for the correct diagnosis

and treatment of diabetes. To understand the key of

requirements for electrospinning technology to prepare

glucose sensors, this review will begin by giving a brief

introduction to the background of glucose sensors, including

the principle of glucose sensors, sample types in glucose

monitoring, and glucose detection methods in glucose sensors.

According to the principles of the glucose sensors, they can be

divided into enzymatic and non-enzymatic sensors (Hwang et al.,

2018). Their analytical properties are improved by continuously

improving the glucose oxidation mechanism in the glucose

sensors. Efficient and accurate glucose detection methods are

also critical for the preparation of glucose sensors. Methods of

FIGURE 1
Summary of glucose oxidation mechanisms, presented as first, second, third, and non-enzymatic.
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glucose detection in the NF-based glucose sensors mainly include

optical and electrochemical detection (Aldea et al., 2020). CGM is

an invasive measurement that requires repeated trauma to the

skin to obtain samples. In contrast, non-invasive measurement

detects glucose in the body’s fluids without causing harm to the

body and provides blood glucose data to treat diabetes

(Teymourian et al., 2020b).

2.1 Principles of glucose sensors

Typically, glucose sensors can be broadly divided into

enzymatic and non-enzymatic glucose sensors (Zhang et al.,

2017). Glucose detection involves the oxidation reaction of

glucose, which generates gluconic acid (Anicet et al., 1999;

Lewis and Schramm, 2003). Enzymatic glucose detection

involves the oxidation reaction of glucose, reaction mediators,

and enzymes. One of the most commonly used enzymes is

glucose oxidase (GOx), which is used in glucose sensors as a

catalyst, mainly due to the higher sensitivity and selectivity of

GOx in response to glucose (Antony et al., 2019;

Puttananjegowda et al., 2020a). Non-enzymatic glucose

detection involves the oxidation reaction of glucose, which

eliminates the need for reaction mediators and enzymes. A

summary of the glucose oxidation mechanisms in glucose

sensors is shown in Figure 1.

Enzymatic glucose biosensors have developed through three

generations (Figure 1A). The first-generation sensor involved the

oxidation reaction of glucose, reaction mediator, and enzymes,

which generates gluconic acid and H2O2 by oxidizing the glucose

present in the air (oxygen, O2), the key of reaction requires O2 as

the reaction mediator (Naderi Asrami et al., 2020; Musse et al.,

2021). The essence of glucose detection is the efficient oxidation

of glucose and electron transport on the electrodes, which detects

the amount of H2O2 generated, this value is then used to calculate

the glucose concentration (Juska and Pemble, 2020). Because the

first-generation biosensors mainly rely on the oxidation reaction

of a bioactive substance, much depends on free oxygen. In

addition, other electroactive species in the blood can interfere

with the detection results (Zhang Y et al., 2021b). Thus,

researchers developed the second-generation glucose

biosensors to overcome these problems. Synthetic mediators

were applied to the development of the second-generation

biosensors. Most second-generation glucose biosensors use

ferrocene derivatives, ferricyanide (FIC), and hydroquinone

(HQ) as mediators for glucose oxidation (Teymourian et al.,

2020a). The second-generation sensor involves the oxidation

reaction of glucose, enzyme, and synthetic mediator. These

media transport electrons from the redox active site of the

enzyme to the electrode, thereby participating in glucose

oxidation reactions in place of oxygen. However, the second-

generation biosensors still face challenges from the distractors,

mediator size, and diffusion molecules. The potential leaching of

the electrode and nearby enzyme, and the instability of the

response can both hinder the utility of second-generation

glucose biosensors (Guven et al., 2021). The incorporation of

nanomaterials not only reduces the enzyme leaching rate and

ensures the sensor reproducibility but also improves the electron

transfer rate so that the biosensor has a higher sensitivity (Liu

et al., 2020a). The third-generation sensor uses the oxidation

reaction of glucose, enzyme, and substrate for the immobilization

of the enzyme (nanomaterials), and therefore the mediator is

eliminated. In the third generation of glucose biosensors the

enzymes are in direct contact with the probe and the electrons are

transferred directly from the enzyme to the electrode, with a low

working potential close to the redox potential of the enzyme itself

(Sehit et al., 2020). Therefore, nanomaterials can promote

electron migration between the enzyme active site and the

working electrode, which results in a rapid reaction in the

third-generation biosensors. Nanostructures play a key role in

the third-generation biosensor electrodes, and high-surface-area

of nanostructures increase the electrical active area (Naresh and

Lee, 2021). The use of nanofibers as a substrate for

immobilization of the enzyme show excellent results because

of their high-surface-area, which allows for better action between

the electrode and enzyme to increase the electron transfer rate in

the glucose biosensors (Bollella et al., 2017).

For the enzymatic glucose biosensors, the most important

point is the immobilization with high stability of the enzyme on

the appropriate substrate (Lipińska et al., 2021a). However, these

biosensors lack long-term stability because of the properties of

the enzyme. Moreover, the sensing ability of these enzymes

during the measurement process is very easily affected by

changes in pH, temperature, and time. In addition, the price

of the enzymes is relatively expensive and not suitable for mass

use. As a result, the development of enzyme-independent glucose

sensors, or non-enzymatic glucose sensors (considered fourth-

generation sensors), has received more attention to improve the

shortcomings of enzyme biosensors (Dhara and Mahapatra,

2018). The principle of the non-enzymatic glucose sensor is

that it causes glucose oxidation directly on the electrode’s

surface in the absence of other mediators and enzyme

(Gonzales et al., 2019; Kim J et al., 2019b) (Figure 1B).

Selectivity is important in the analytical characteristics of the

glucose sensors, and therefore improving the anti-interference

ability of these sensors is critical (Naikoo et al., 2022). Glucose

sensors can suffer from interference from substances that may

electrochemically react at the sensor’s working electrodes, and

the generator of the reaction can give interference detection

results (Dhara andMahapatra, 2018). The biological species (e.g.,

dopamine and uric acid) in blood can easily be oxidized, which

interferes with the electrochemical detection of glucose

(Martinkova et al., 2019). They can also exhibit cross-

reactivity with the enzyme, and the structurally glucose-

associated molecules suffer from the possibility of cross-

reactivity (e.g., fructose, lactose, mannose) (Lorenz et al.,
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2018). In addition, pH values and commonly used medications

(e.g., ascorbic acid and acetaminophen) are also factors that

interfere with the measurement results (Nguyen T. et al., 2019).

In this review, an analysis of enzymatic and non-enzymatic

glucose sensors is used to understand the role of

electrospinning technology in glucose sensors.

2.2 Sample types for glucose
measurement

Currently, blood glucose measurement and analysis samples

mainly rely on an invasive (finger puncture) blood test. However,

repeated wound puncture can cause massive bleeding, infection,

FIGURE 2
Glucose sensors used to detect glucose in sweat, saliva, and tears. (A) Laser-induced graphene non-enzymatic glucose sensor to detect the
glucose in the sweat. (a) Fabrication process of the non-enzymatic glucose sensor electrodes. (i) Laser scribing to prepare LIG electrodes. (ii) Ni
plating and (iii) Au plating. (iv) Fabrication of working, reference, and counter electrodes. (b) Schematic illustration of a wearable glucose sensor (Zhu
J. et al., 2021a). (B) Fabrication process of the non-enzymatic Ni2CoS4-CNF/GCE electrodes to detect the glucose in the saliva (Ezhil Vilian et al.,
2021). (C) Colorimetric NECL and optical monitoring system to detect the glucose in the tears. (a) The glucose oxidation turns the NECL yellow in
color depending on glucose concentration. (b) A color CCD camera (Jeon et al., 2021).
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and even fainting and other serious problems (Teymourian et al.,

2020b). Because diabetic patients need continuous and long-term

monitoring of blood glucose levels, non-invasive glucose

monitoring of human body fluids has been explored by many

researchers. External fluids in the NF-based glucose sensor

measurement include tears, saliva, and sweat (Ates et al.,

2021; Li and Wen, 2021). The most important problem of

non-invasive glucose sensor is that the glucose content in

external fluids is much lower than that in blood, which

requires a non-invasive glucose sensor that has higher sensitivity.

Sweat is a very important biological fluid in non-invasive

biosensing technology because sweat contains rich chemical

biomarkers that are closely related to physiological health

assessment and it is easily collected from the skin after it is

secreted by skin pores (Li Jiankang et al., 2021). Sweat contains

about 99% water, and the rest includes electrolytes, calcium,

potassium ions, and metabolites [e. g., glucose (0.01–1.11 mM)]

(Alahnomi et al., 2021). Sweat glucose sensor technology

provides a solid platform for analyzing blood glucose levels in

human subjects in real time (Katseli et al., 2021; Manjakkal et al.,

2021; Tseng et al., 2021). However, sweat glucose levels are too

low in healthy people. Therefore, we need to improve the

sensitivity of sweat glucose sensors. Zhu et al. (2021a) made a

laser-induced graphene non-enzymatic glucose sensor

(Figure 2A). The 3D porous LIG foams or fibers were coved

on a flexible, thin-film substrate, which was followed by

electroless plating of Ni and Au. The Au/Ni/LIG electrode

exhibits a high sensitivity of 3,500 µA mM−1 cm−2, with a large

linear range 0–30 mM and a low detection limit of 1.5 µM. The

prepared sensor has a high sensitivity and a suitable linear range

to detect trace glucose in sweat.

Saliva is a kind of body fluid and is produced by salivary

glands. It is also the most easily available body fluid in the human

body. Therefore, saliva has also become a popularly studied

glucose monitoring biological liquid (Golcez et al., 2021).

Current salivary glucose levels have been shown to positively

correlate with blood glucose levels (Bergenstal et al., 2018).

Human salivary glucose levels are about 0.008–1.77 mM

(Tseng et al., 2021). Because the level of glucose concentration

in saliva is only 1%–10% of the glucose concentration level in the

blood, its detection equipment needs to have extremely high

sensitivity (Wei et al., 2021; Chakraborty P et al., 2021a). Ezhil

Vilian et al. (2021) fabricated the Ni2CoS4 nanomaterials on

carbon nanofibers by electrospinning and hydrothermal route to

measure the glucose in saliva (Figure 2B). Nanostructures were

grown on a doped tin oxide (FTO) coated glass substrate by

chemical bath deposition. The Ni2CoS4-CNF/GCE electrode

exhibited glucose sensitivity 6.201 µA nM−1 cm−2, with the

linear range 5–70 nM and a low detection limit of 0.25 nM,

along with fast response time by the amperometry method. The

lower concentration linear range and the extremely high

sensitivity all meet the detection requirements of glucose

levels in saliva.

Tears are an emerging body fluid used for medical

monitoring (Tam et al., 2021). The sweat and saliva blood

glucose monitoring problems include the sample collection

methods, sample contamination (skin dust and oral wounds),

and bias caused by skin exposure different environments, oral

drugs, and proteolytic enzymes (Chakraborty P et al., 2021a).

Tears usually contain more than 20 different substances,

including water, electrolytes, proteins, metabolites (e.g.,

glucose), and trace metals. The glucose levels in the tears also

correlate well with the plasma glucose levels, namely the tear

glucose concentration (0.05–5 mM) (Kim J et al., 2019b). Jeon

et al. (2021) designed a nanoparticle embedded contact lens

(NECL) for an optical monitoring system (OMS) to detect

glucose in tears (Figure 2C). Cerium oxide nanoparticles

(CNPs) were used as the chromogenic substrate (Ce3+ to Ce4+)

to make the GOx/CNPs/PEG (poly (ethylene glycol)) NECL of

OMS for tear glucose measurements. The OMS exhibited

the fluorescence turn-on for the glucose detection

concentration range of 0.1–0.6 mM, with a low detection limit

of 0.1 mM. This shows its practical application potential for

rapid field detection. Analysis of the sample protected in vivo

ensures the continuity of monitoring and the cleanliness of the

sample.

TABLE 1 Invasive and non-invasive glucose sensors, with analytical characteristics.

Sample Material Linear range
(mM)

LOD (µM) Sensitivity
(µA cm−2mM−1)

References

Blood CHIT (GOx)/AuLrTiND 0.04–15.05 1.75 23.47 Lipinska et al. (2021a)

15.05–40.00 10.63

Sweat Au/Ni/LIG (LIGF) 0–4 @ 0.5 V 1.5 1,200 (LIG) Zhu et al. (2021a)

0–30 @ 0.1 V 3,500 (LIGF)

3D-PMED 0–1.9 5 35.7 Cao et al. (2019)

Saliva Porous NiO nanostructures 0.005–0.825 0.084 2,432 Chakraborty et al. (2021a)

Tears GOx/CNPs/PEG 0.1–0.6 0.1 mM — Jeon et al. (2021)

a-GQD/PBA 0–20 2.1 — Tam et al. (2021)
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Samples and materials in invasive and non-invasive glucose

sensors are listed in Table 1, with details given on their sensitivity,

detection limit, and detection range. Comparing the analytical

characteristics of the invasive and non-invasive glucose sensors,

invasive (blood) samples have a wider glucose detection linear

range and a lower sensitivity than external body-fluid samples.

The narrow and low linear ranges with high sensitivity comply

with the conditions of glucose detection in external body fluids.

However, these techniques suffer from limitations in glucose

detection. The addition of electrospun NFs allows non-invasive

glucose detection combined with more techniques to improve the

analytical characteristics.

2.3 Methods of glucose detection

Glucose detection methods include Raman scattering,

fluorescence emission, luminescence quenching, colorimetric,

FIGURE 3
Detection methods for a glucose sensor. (A) The CNP-PEG-GOx colorimetric glucose sensor. (a) Colorimetric glucose sensor mold. (b)
Glucose levels weremeasured in tears using TMB as a colorimetric substrate (Gabriel et al., 2017). (B)Mechanismof cellulose/β-CD/GOxNFs glucose
sensor. (a) Amperometric responses of glucose in PBS at −0.2 V. (b) The effect of interfering substances on measuring glucose levels. (c) Schematic
illustration of iontophoresis printable electrodes, counter, reference, and working electrode for glucose sensors. (d) Mechanism of
iontophoresis on the epidermal cellulose/β-CD/GOx NFs (Kim et al., 2019).
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and electrochemistry, and so on. Although electrochemical

detection can perform accurate quantitative analysis, practical

applications require complex equipment operations

(electrochemical energy transfer systems) and sample

preparation. The colorimetric glucose sensor based on visual

detection can be used for qualitative analysis, with simple

operation and visual observation, but has poor quantitative

measurement. Given that most NF-based glucose sensors use

electrochemical detection and the colorimetric detectionmethod,

this review presents only these two methods.

In colorimetric sensors, the color change of the color-

developing substance can be identified directly when the

substance interacts with the analyte, without any other

technical requirements (Senthamizhan et al., 2016).

Colorimetric sensors neither display electromagnetic

interference nor require contact with electrons (Chen and

Wang, 2020). Colorimetric analysis of glucose can be

qualitative—quantitative analysis can only estimate the

approximate range when the accuracy is not high,

Colorimetric sensor quantitative analysis can be conducted by

a simple spectrophotometric measurement. At present, a large

number of chromogenic materials have been applied in glucose

sensors to achieve chromogenic reaction through glucose

oxidation. For example, Gabriel et al. (2017) used 3,3′,5,5′-
tetramethylbenzydine (TMB) as the chromogenic substrate to

prepare the colorimetric sensor for tear glucose measurements

(Figure 3A). To introduce chromogenic reaction into NFs,

researchers usually use three techniques: polymer

functionalization, changing the specific surface area of NFs,

and nanofiber doping (Schoolaert et al., 2017). Polymer

functionalization can solve the leaching or migration problems

on sensors, and covalent ligation is an effective strategy of

functionalized polymer substrate (Nguyen et al., 2014). The

method of changing the specific surface area can be achieved

by physical or chemical reactions, providing signal transduction

to analyte interactions (Mudabuka et al., 2016). The method of

placing functional matters in NFs to produce a colorimetric

reaction is called doping. Chromogenic substrate, enzymes,

and nanomaterials are doped with NFs for colorimetric sensor

preparation. The main drawback of this technique is that the

function simply physically packages the chromogenic substrate

in a nanofiber polymer network where matter can permeate or

migrate from the nanofiber structure (Geltmeyer et al., 2016;

Najarzadekan and Sereshti, 2016). The colorimetric sensor is

prepared into a blood glucose test kit and test strip. This simple

instrument is inexpensive and its production is easy to scale.

Electrochemical sensor detection mainly uses the following

electrochemical analysis methods. Cyclic voltammetry (CV) is a

widely used electroanalysis method that provides information about

electrochemical reaction rate in the analyte solution (Li Jiankang

et al., 2021). The principle is that the electric current at a constant

scan rate is recorded as the electrode potential varies over time

between the two potential limits. The changes in the scanning rate

produce corresponding results (Elgrishi et al., 2018; Chen et al., 2019;

Vanýsek, 2019; Vilas-Boas et al., 2019; Wen et al., 2021).

Amperometry is based on the Cottrell equation and defines the

measurement of the current at a controlled applied potential as a

function of time. Signal is related to the diffusion-controlled Faraday

current generated by the charge transfer reaction of the analyte

(Semenova et al., 2017; Wu et al., 2018; Pingarrón et al., 2020).

Electrochemical impedance spectroscopy (EIS) is a useful tool for

measuring the preparation and research of biosensor conductive

materials, which provides changes in electrode surface phenomena

and mass transfer resistance during electrochemical processes (Li

et al., 2019; Abraham et al., 2020). The principle of impedimetry is to

measure the complex impedance of the system as a function of the

reactive small-amplitude sinusoidal electrode potential (Pingarrón

et al., 2020). Differential pulse voltammetry (DPV) can detect low

concentrations of analyte, with a higher current sensitivity than

amperometry, and is used to calculate the lower limit of detection

technology (Arellano et al., 2020; Liu J et al., 2020b; Yudan et al.,

2019). Many researchers use electrospinning to make

electrochemical glucose sensors to improve the accuracy of

quantitative analysis. For example, Kim J. et al. (2019) prepared a

cellulose/β-cyclodextrin nanofiber patch as a glucose sensor

(Figure 3B). This detection method has high sensitivity and a

wide detection range, which far exceeds the colorimetric sensors

for quantitative analysis in accuracy and also provides a good

detection platform for non-invasive sensors. However, the

glucose detection devices calculate the glucose concentration by

the electrochemical oxidation reaction of glucose. Therefore, it is

necessary to eliminate the interference of other electrochemical

reactions, such as electrochemical water oxidation reaction

(WOR) or oxygen reduction reaction (ORR) (Mavrikis, et al.,

2021; Shi et al., 2021).

2H2O#H2O2 + 2H+ + 2e− (WOR)
where H2O is oxidized to H2O2 at the anode, via the water

oxidation reaction.

O2 + 2H+ + 2e− #H2O2 (ORR)
where O2 is converted to H2O2 at the cathode, via the oxygen

reduction reaction.

Due to the harsh conditions of electrochemical WOR or

OOR, the high selectivity of glucose is easy to achieve (Zhang C.

et al., 2022). However, the oxygen evolution reaction (OER) is

thermodynamic favorability, making it easy to completely bypass

the H2O2 production and directly generate O2.

2H2O#O2 + 4H+ + 4e− (OER)
where H2O is oxidized to molecular oxygen at the anode, via the

oxygen evolution reaction.

The O2 generated during OER can cover the active site, thereby

weakening the ability to oxidize glucose and the onset potential of

the OER is close to the glucose oxidation potential (Reier et al.,

2012). Thus, the most appropriate way to eliminate the interference
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is to achieve a large potential difference between the OER onset

potential and the glucose oxidation potential. Thakur et al. (2021)

developed a NiVP/Pi non-enzymatic electrochemical glucose sensor

where the OER interference can be overcome by fine-tuning the

metal ratio. This offers a new approach towards the electrochemical

detection of glucose that eliminates the OER interference.

The development of colorimetric sensors is limited by their

long response times and low sensitivity. There are still plenty of

areas where colorimetric sensors can be improved, including

chemical, thermal instability, and cumbersome manufacturing

procedures. Electrospun NF-based colorimetric glucose sensors

achieve higher sensitivity and shorter response times.

Electrochemical glucose sensors use transfer electrons to

achieve an electrochemical detection method. Due to its

superior detection range, low detection limit, and high

sensitivity, this sensor can be better used for non-invasive

biosensing modes in different biological liquids. However,

electrochemical detection requires the application of complex,

difficult electrochemical equations, and the resulting data require

secondary processing. In contrast, colorimetric detection

through the naked eye can directly obtain the results, its

operation is simple, and it is more popular.

3 Electrospun glucose sensors

3.1 Electrospinning technology

Electrospinning was initially an electrohydrodynamic

method for converting the filament-forming polymers into

nanofibers (Wang Y et al., 2021b; Chen, et al., 2022; Ji, et al.,

2022). It has drawn increasing attention recently because active

ingredients (including those for detecting glucose) can be easily

encapsulated into the polymeric nanofibers to form a new kind of

functional nanocomposites (Wang M. et al., 2021; Zhang M.

et al., 2022; Zhou Y. et al., 2022). Based on this strategy,

electrospun nanofibers have found potential applications in

almost all types of scientific fields, such as energy,

environment, medicine, tissue engineering, food, and

agriculture (Wang Y. et al., 2022; Zhang et al., 2022d; El-

Shanshory et al., 2022; Guo et al., 2022; Song et al., 2022;

Yuan et al., 2022). Its popularity has a close relationship with

its capability to create nanofibers, and also because this is a nano

era (Yu, 2021; Yu and Lv, 2022). A typical electrospinning

apparatus has four key elements: a power supply, a syringe

pump, a spinneret, and a collector, as shown in the diagram

of Figure 4A. The power supply often has two selections,

alternating current or direct current (Sivan et al., 2022;

Sriwichai and Phanichphant, 2022). The applied voltages are

often between 5 and 30 kV. Syringe pumps are exploited to drive

the working fluids to the spinneret in a quantitative manner (Liu

et al., 2022c; Liu et al., 2022a). The spinneret is the most

innovative section in an electrospinning apparatus (Wang M.

et al., 2022; Liu et al., 2022b). In the literature, the spinneret is

relied on to determine what kinds of electrospinning processes

are used; for example, a mono-axial spinneret leads to a single-

fluid blending electrospinning, a concentric spinneret is used for

a coaxial electrospinning, an eccentric spinneret is used for a

side-by-side electrospinning process, and spinnerets with

complicated structures are used for multiple-fluid processes

(Kang et al., 2022; Liu et al., 2022e; Liu et al., 2022d). Many

sorts of collectors are used to randomly collect the nanofibers and

FIGURE 4
(A) Schematic diagram of a typical electrospinning apparatus. (B) Classification of electrospinning processes.
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aligning them into a certain order. The four sections of an

electrospinning apparatus work together to prepare the

nanofibers. Besides some parameters of the apparatus (such as

nozzle diameter, power supply, and collector types), there are a

wide variety of parameters that influence the formation of

nanofibers. These parameters can be divided into three

categories. The first category includes the parameters of the

working fluids (e.g., polymer types, molecular weight of

polymer, solvent, additives, viscosity, conductivity, and surface

tension). The second category includes the operations

parameters, such as the applied voltage, the flow rate of fluid,

and deposition distance of nanofibers (Zhan et al., 2021). The

third category includes the parameters of the working

environment, mainly the relative humidity, and temperature

(Guo et al., 2021; Liu et al., 2021a; Liu et al., 2021b; Zhao

et al., 2021a). Although a very simple and direct one-step

process for creating nanofibers, the mechanism of

electrospinning is extremely complicated due to the

overlapping of several disciplines (Zhou et al., 2022b; Zhou

et al., 2022a). Many early investigations focused on the typical

three-step working processes; that is, the Taylor cone, the straight

fluid jet, and the instable bending and whipping region (Guo

et al., 2021; He et al., 2021; Nauman et al., 2021). A cone shape is

formed when the applied voltage is large enough to overcome the

surface tension of a droplet pumped out from the nozzle of a

spinneret, the famous Taylor cone. Later, a fluid jet is emitted

from the top of Taylor cone, which is followed by gradually

increased loops thanks to the complicated electric repulsion (Lv

et al., 2022; Yousefi et al., 2019). After these three steps, the

solvents in the working fluids are exhausted and solid nanofibers

deposit on the collector to form a random film (Brimo et al.,

2021; Feng and Hao, 2021).

3.2 Electrospinning processes

This section will describe the continuous progress of the

electrospinning process; that is, single-fluid, double-fluid, and

multiple-fluid electrospinning (Figure 4B). Single-fluid

electrospinning is the first occurrence and the simplest

electrospinning process, which mainly includes blend

electrospinning and the emulsion electrospinning (Zhang

et al., 2021a). Metal-oxide NFs made by blend electrospinning

have attracted extensive attention in the research of non-

enzymatic glucose sensors with simple, mild, and efficient

virtues. Lu et al. (2014) prepared CuO NFs by electrospinning

PVP/Cu(CH3COO)2 composite and then the CuO/Cu2O NFs

were prepared by a hydrothermal method. The CuO/Cu2O NFs

electrode, with a multiple oxidation states system, promoted the

redox reactions between electrode and glucose, and the synergic

effect enhanced reaction site activity. During blend

electrospinning, the mixture fluid of the polymer and

functional ingredients is ejected through a single needle to

make nanofibers (Song et al., 2021). During emulsion

electrospinning, the hydrophilic functional ingredients dissolve

into the water and obtain a water/oil emulsion by diffusing in the

oil phase containing the surfactant, then obtaining nanofibers

with a core-shell structure by electrospinning. Li Jiankang et al.

(2021) fabricated a novel fiber-optic glucose biosensor

preparation using single-fluid electrospinning. The mixture of

polyvinyl alcohol (PVOH) and GOx solution was prepared for

electrospun NFs. The GOx was then encapsulated into a PVOH

nanofiber and covered the surface of the Fiber Bragg Grating

(FBG). It can be seen that nanofibers can ensure the activity of the

enzyme and improve the electron transfer ability of glucose

sensors by using polymer properties. The structural limitation

of nanofibers by single-fluid electrospinning, the release, and

immobilization of functional ingredients are not strong (Zhang

et al., 2022c). Common electrospinning processes for double-

fluid electrospinning include coaxial and side-by-side

electrospinning (Chen J. et al., 2022; Ghazalian et al., 2022).

Traditional coaxial electrospinning takes the spinnable solution

as the sheath solution to contact with the environment, and the

non-spinnable or spinnable solution as the core solution without

contact with the external environment to form a distinct core-

shell structure (Kang M. et al., 2020; Liu et al., 2021c). The

flexibility of the sheath solution is limited by its “spinnability.”

Researchers have proposed an modified coaxial electrospinning,

in which the sheath solution is non-spinnable, and the core

solution is non-spinnable or spinnable (Yu et al., 2010; Ning

et al., 2021). The sheath solution overcame the limitation that it

must be a spinnable solution, while expanding the range of the

sheath solution, regulating the nanofiber diameter, and

improving the quality of the fiber (Liu et al., 2022e; Liu et al.,

2022f). Ramon-Marquez et al. (2017) prepared microfluidic

devices by coaxial electrospinning for optical determination

glucose. The sheath solution of PolymBlend and the core

solution of PMMA with PdTFPP were used to make the

coaxial membrane, and then the GOx was immobilized on to

the membrane by physical adsorption. Most enzymatic glucose

sensors require multiple enzymes to couple the enzyme reaction,

so the reaction time between enzymes is an important factor to

improve the sensor’s analytical characteristics, while coaxial

electrospinning can generate bi-layer enzyme-containing

material that can provide a typical bi-phase enzyme

controlled-release profile to get enough time for the reaction.

Side-by-side electrospinning obtains the Janus structure of the

nanofibers, which is also one of the most basic structures and

differs from the traditional core-shell structure where its two

chambers are separated and parallel or eccentrically arranged

together, with both solutions in contact with the surrounding

environment (Xu L. et al., 2022). The eccentric spinneret creates

Janus nanofibers with high quality. Multi-fluid electrospinning

uses three or more different fluids through the triaxial, multiaxial

electrospinning, or multi-channel electrospinning technologies

to make fibers with special nanostructures (Wang et al., 2020;
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Zhao et al., 2021b; Lv et al., 2021; Yu et al., 2021). Later, methods

for designing nanofibers with complex structures were reported,

such as quad-fluid coaxial electrospinning and tri-fluid side-by-

side electrospinning (a coaxial electrospinning with a side-by-

side core and a coaxial electrospinning with an acentric eccentric

core). The electrospinning processes and detection methods used

TABLE 2 Electrospinning processes and methods of detection in glucose sensors.

Polymer material Functional ingredient Electrospinning process Detection method References

PAN Copper acetate, cobalt acetate Blend Electrochemic Ding et al. (2020)

Nickel chloride, cobalt chloride Blend Electrochemic Guo et al. (2020a)

Ce (NO3)3·6H2O Blend Electrochemic Kumar et al. (2021)

PVP Co (NO3)2·6H2O, Fe (NO3)3·9H2O Blend Electrochemic Ding et al. (2021)

Fe (NO3)3·9H2O, Cu (NO3)2·3H2O Blend Electrochemic Xia et al. (2018)

PCA, PAEK Cupric acetate, Cadmium acetate Blend Electrochemic Liu et al. (2019a)

PMMA GOx, PdTFPP Coaxial Luminescence quenching Ramon-Marquez et al. (2017)

PU GOx, o-dianisidine, HRP Coaxial Colorimetric Ji et al. (2014)

TABLE 3 Enzymatic electrospun NF-based biosensors for glucose detections, with analytical characteristics.

Detection
method

Material Linear
range
(mM)

LOD
(µM)

Sensitivity
(µA cm−2 mM−1)

Selectivity test References

Colorimetric
method

GOx–HRP/PU 0.01–20 — — — Ji et al. (2014)

GOx-HRP/CS/PVA 2.7–13.8 2.7 mM — — Coşkuner Filiz et al. (2021)

GOx@HRP@TMB@
Mn3(PO4)2-NFs

0.25–10 0.14 mM — NaCl, KCl, urea Luo et al. (2022)

Amperometry Cellulose/β-CD/GOx 0–1 0.0935 5.08 fructose, Suc, UA, AP Kim et al. (2019c)

GOx/Au/PMMA/PET Up to 1.0 0.33 3.10 AA, UA, mannose, galactose,
xylose

Aldea et al. (2021)

GOx/HNF-TiO2 0.002–3.17 0.8 32.6 AA, DA, UA, xylose, mannose,
maltose, lactose

Guo et al. (2022)

Au/SiCNPs-PEDOT-PSS-
PVDF-ENFM/GOx

0.5–20 0.56 30.75 — Puttananjegowda et al.
(2021)

Au/PEDOT-PSS/
PVDF/GOx

0–25 2.3 5.11 — Puttananjegowda et al.
(2020b)

PAN/DDAC-Mt 0.01–2.45 2.4 52.3 Suc, fructose, AA, CA Apetrei and Camurlu
(2020)2.45–15 24.7

PAN/MB-Mt 0.01–2 3.4 56.5

2–8 20.5

CuO/PCL@PPy/ITO 0.002–6 2 NR AA, UA, DA Xu et al. (2018)

Cu-nanoflower@AuNPS-
GO NFs

0.001–0.1 0.018 — AA, saccharose, urea, NaCl,
KCl, BSA

Baek et al. (2020)

PABA/f-CNTs 0.56–2.8 67 0.40 µA mm−2 mM−1 UA, AA, DA Sriwichai and
Phanichphant (2022)

GOx/CS/GO nanofibers 0.05–20 20 1,006.86 AA, AC, UA, metal ions (Fe3+,
Cd2+, Cu2+)

Mehdizadeh et al. (2020)

Impedimetry PVA/PEI/GOx 0.01–0.2 0.9 — AA, UA Sapountzi et al. (2017)

EIS TMC/CNs-rGO-Au-SPE 3.3–27.7 0.1 mM 9.9 × 10−4 KΩ−1 mM−1 — Ahmadi et al. (2021b)

GOx/PPy/PPy3COOH/
PAN NFs

0.020–2 0.002 — — Sapountzi et al. (2020)

NFZ-GQDs@GOx 0.1–6 32 — AA, CaCl2, KCl, NaCl Mercante et al. (2021)

NFZ-rGO@GOx 14

CV GOx/PVA/PAA- Cu/Ni 0–33 — 0.85 µA mM−1 — Kim and Kim (2017)
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in glucose sensors are listed in Table 2, with the polymer

materials and functional ingredients. Various electrospinning

processes with polymer materials and functional ingredients

have been applied to glucose sensors. At present, a variety of

polymer materials have been tried as scaffold materials and

different properties of functional ingredients have been

introduced, but the preparation of glucose sensors still mostly

uses single-fluid electrospinning (Aldea et al., 2021; Li Jinze et al.,

2021). Multiple-fluid electrospinning processes are less used in

the development of glucose sensors, and therefore they have high

application development value in the future. The significant

benefits of preparing glucose sensors using electrospinning are

as follows:

(1) Polymers with different characteristics can use double-fluid or

multiple-fluid electrospinning processes to prepare conductive

nanofibers and substrates, to load various functional ingredients,

and improve the electron transfer capacity of the sensor.

(2) The high porosity of nanofibers can uniformly and

effectively immobilize various functional nanomaterials on

the surface of nanofibers, and promote the electrocatalytic

activity of the electrodes.

(3) The high flexibility of electrospun NFs helps the sensor to

easily handle stabilization and reproduction.

(4) NF-based sensors with high specific surface area are good

immobilization substances for enzymes, providing more

active sites for the redox reactions of glucose.

(5) NFs can achieve the high sensitivity and selective

characteristics of sensors, and can be used in continuous

blood glucose monitoring devices (Xu X. et al., 2022).

(6) Electrospinning is a simple and effective method with

various materials for nanofibers.

From different standpoints, electrospinning technology has

attracted extensive attention in the application of 1D

nanomaterials. Different structural nanofibers, such as porous

structures (Zhang et al., 2022c), beads-on-string structures (Liu

et al., 2022b), hollow structures (Liu et al., 2022c) and tri-

chamber complex nanostructures (Wang et al., 2020), are

prepared directly or indirectly (post-treatment) by regulating

the electrospinning parameters. For example, a porous structure

can be regarded as a core-shell structure with some shell holes

and an empty core section that can accelerate the electron

transfer along the longitude direction to increase the electron

transfer rate. Interestingly, different structural electrospun

nanofibers could be further optimized through decoration

with other sensing materials. Electrospinning technology is

powerful in preparing nanostructures, which increases the

diversity of nanofiber properties. These structures have

promising applications in future sensors.

4 Materials for nanofiber-based
glucose sensors

The preparation of glucose sensors using electrospinning

usually involves two non-biological materials, polymers

(substrate) and functional ingredients (i.e., conductivity,

biocompatibility, and catalysis) (Table 3). The use of polymers

as the substrate of the nanofibers ensures the immobilization

FIGURE 5
Types of polymers in electrospun glucose sensors.
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efficiency of the enzyme and also has various other functions,

such as catalysis and electrical conductivity (Chansaenpak et al.,

2021; Naresh and Lee, 2021). The polymers in electrospun can be

divided into the following categories: natural polymer, synthetic

polymer, conductive polymer, and molecular imprinted polymer

(Chakraborty et al., 2021a; Kim et al., 2019a). Most of the

functional ingredients in electrospun nanofiber membranes

are nanomaterials, which can serve both as substrates of

enzymes and reaction mediators to improve the detection

signal (Chakraborty S et al., 2021; Yang et al., 2020). The

nanomaterials used in electrospinning can be divided into the

following categories: 0D NM, 1D NM, 2D NM, and 3D NM

(Gong et al., 2019; Wongkaew et al., 2019; Guo Qi et al., 2020;

Sehit and Altintas, 2020).

4.1 Polymer

Electrospun nanofibers use polymers with different functions

in the preparation of glucose sensors, such as natural polymer,

synthetic polymer, conductive polymer, andmolecular imprinted

polymer, which can ensure the immobilization efficiency of the

enzyme, and have catalytic electricity and conductivity. Sensors

can be prepared by making functional polymer electrospun

directly into nanofibers with the induction function. The

fabricating process of the glucose sensor is simple, and the

nanofibers synthesized by functional polymers have a range of

characteristics that can effectively improve the analytical

characteristics of the glucose sensor. This review focuses on

the properties and advantages of polymers in the preparation

of glucose sensors by electrospinning. The types of polymers in

electrospun glucose sensors are shown in Figure 5.

4.1.1 Natural polymer
Natural polymer refers to the high molecular weight

compounds connected by the basic structure of natural animals

and plants, with good biocompatibility and biodegradability.

Chitosan (CS) is a natural polysaccharide derivative

deacetylated by chitin, with good biocompatibility,

biodegradability, and amino activity (Kalantari et al., 2019;

Bakshi et al., 2020). Aqueous solutions of organic acids such as

formic acid and acetic acid are commonly used to prepare the CS

spinning solution (Al-Jbour et al., 2019). Due to the difficulty of

electrospinning of single CS solution, a second polymer acting as

an attenuation factor enables electrospinning by limiting the

hydrogen bonds between CS chains (Augustine et al., 2020).

Mehdizadeh et al. (2020) made a glassy carbon electrode (GCE)

that was modified with GOx/CS/graphene oxide (GO) electrospun

NFs to detect glucose. The GOx/CS/GO GCE exhibited a wide

linear range with a high sensitivity and low detection limit. The

addition of GO and GOx to the CS nanofibers improves the

conductivity and catalytic activity of the nanofibers and enables

the high sensitivity of the glucose sensor.

4.1.2 Synthetic polymer
Synthetic polymer is synthesized by chemical means (i.e., a

single organic molecule is formed through chemical reactions

with repetitive units) and because of its own uniqueness has been

used the most widely in electrospinning technology.

Polystyrene (PS) is a hydrophobic polymer that uses styrene

rings as a side chain and requires surface modification to

introduce hydroxy groups (Lin et al., 2019). The PS is soluble

in a variety of nonpolar organic solvents (such as DMF) and is

one of the important materials for preparing electrospun NFs.

Zhou et al. (2013) used polystyrene electrospun optical fibrous

membrane (EOF) prepared by electrospinning technology, and

GOx is functionalized to achieve rapid and highly sensitive

optical glucose biosensors. The GOx/EOF exhibited a wide

linear range with the detection limit. The good

biocompatibility of PS makes it a suitable material for use in a

biosensor, enabling (bt) 2Ir (acac) to be uniformly and stably

doped on the PS NFs.

Polyacrylonitrile (PAN) is a high-carbon polymer, and its

carbon-carbon skeleton ensures its high biostability and

degradation resistance. Nanofibers prepared by PAN have the

advantages of excellent attractive properties, heat resistance,

chemical resistance, and mechanical properties (Khan, 2017).

Sapountzi et al. (2020) used a two-step approach to fabricate

glucose biosensors. The first step uses electrospinning to prepare

non-conductive PAN NFs, which are deposited on the gold

electrode surfaces, and the PAN NFs are then immersed into

FeTos oxidant solution. The second step uses vapor phase

polymerization to prepare a conductive polymer by co-

polymerizing pyrrole (Py) and pyrrole-3-carboyxylic acid

(Py3COOH) on the electrode, and the Gox is immobilized

by the covalent bonding method. The GOx/PPy/PPy3COOH/

PAN/FeTos oxidant NFs exhibited a wide linear range with

a low detection limit. The PAN was used as a scaffold

material to facilitate the growth of PPy coated onto the PAN

NFs surface.

Polyvinyl alcohol (PVA) is a white powdered semi-crystalline
polymer. Unlike other polymers, PVA is not synthesized by
polymerization of a structural monomer (vinyl alcohol). It is
soluble in water—the higher the temperature, the greater the
solubility—but is almost insoluble in organic solvents. While
PVA has excellent biocompatibility, heat resistance, optical
properties, and charge storage capabilities, the
physicochemical and mechanical properties of PVA are
determined by the number of hydroxyl groups present in the
polymer (Aslam et al., 2018). Coşkuner Filiz et al. (2021)
designed a colorimetric glucose biosensing GOx-HRP/CS/PVA
nanofiber in a water-based medium by electrospinning. The
naked eye colorimetric CS/PVA glucose detection strips
exhibited a concentration range with a lower detection limit.
Crosslinked CS-PVA NFs are suitable substrates for the
immobilized GOx and HRP, improving the immobilization of
enzymes and stability of colorimetric glucose sensor.
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Polyurethane (PU) is a block copolymer containing low

molecular weight polyester or polyether segments that are

covalently attached to a polyurethane group (-NH-C(=O)-O-).

Polymers are synthesized by step growth and polymerization in

reactions with three basic components of isocyanate, polyol, and

a low molecular weight chain amplifying agent. Ji et al. (2014)

designed a new glucose test strip based on polyurethane hollow

nanofiber membrane that was prepared by coaxial

electrospinning. This hollow nanofiber membrane test strip

can serve as either a colorimetric sensor in solution or as an

optical biosensor operating in an “immersion-read” mode.

Polyvinylpyrrolidone (PVP) is a water-soluble, chemically

inert, and amorphous polymer (-CH2CHC4H6NO-)n that is

made from the monomer N-vinylpyrrolidone (NVP) through

bulk polymerization and solution polymerization (Grant et al.,

2021). PVP is soluble in water and most organic solvents, and has

low toxicity. Huang et al. (2011) designed a biological glucose

detection device by electrospun Mn2O3-Ag NFs. The PVP NFs

were calcined under air atmosphere for Mn2O3-Ag NFs with the

degradation of PVP. The Mn2O3-Ag/GOx platforms obtained

over a glucose concentration range with a high sensitivity.

Poly (methyl methacrylate) (PMMA) is a hydrophobic

amorphous polymer that is insoluble in water and soluble in

organic solvents, with good chemical stability and weather

resistance (Simões et al., 2019). The electrospun PMMA NFs

have low mechanical properties and require increased fiber

loading to enhance (Ali et al., 2015). Aldea et al. (2021) made

a glucose sensor by preparing electrospun PMMA fibers, with

surface-immobilization of GOx and coated with a gold layer,

which was applied a high sensitivity and a low detection limit.

PMMA NFs were coated on the electrode to increase the surface

area and improve the stability of the glucose sensor.

Poly (acrylic acid) (PAA) is a water-soluble, anionic

polyelectrolyte composed of charged carboxy macromolecules

(Hamnca et al., 2022). With a large negatively charged active site,

suitable for cation loading (Park et al., 2019; Ziyadi et al., 2021).

The PAA has a negatively charged carboxyl group and may

covalently bind to a GOx with a positively charged amine group

(NH2) (Riccardi et al., 2017). Kim and Kim (2017) synthesized

dual-functionalized electrospun PVA/PAA NFs with GOx to

enhance catalytic activity. The GOx/PVA/PAA NFs were

coated on Cu/Ni electrode to make the glucose sensor. The

GOx/PVA/PAA NFs applied wide linear range 0–33 mM, with

sensitivity 0.85 µA mM−1. Crosslinked PVA-PVA NFs with

biocompatibility are suitable substrates for the immobilization

GOx, improving the immobilization of enzymes.

Poly-(vinylidene fluoride) (PVDF) and its copolymers are

one of the most challenging polymers during electrospinning

(Chen et al., 2015). Poly (vinylidene difluoride)-co-

hexafluoropropylene(-HFP) is a PVDF copolymer with

excellent film forming capacity and rapid hydrophobicity that

is widely used in electrochemical sensors due to its unique,

piezoelectric, high dielectric permittivity, and thermochemical

properties (Martins et al., 2014; Hartono et al., 2018; Ruan et al.,

2018). Saravanan et al. (2022) made a decoration of PVDF-HFP

NFs with Co-Fe metal nanoparticles serves as an electrochemical

non-enzymatic glucose sensor. The of PVDF-HFP/Co–Fe

membrane was applied over a wide linear range with high

sensitivity, and a low limit detection and selectivity due to the

high electron transfer.

4.1.3 Conductive polymer
Conductive polymers have unique high conductivity, high

electron affinity, strong redox activity, stability, and low cost that

make it practical biosensing materials. Using conductive

polymers for electrospun glucose sensors gives good

conductivity, biocompatibility, and electrochemical stability,

with effective immobilization of enzymes and functional

materials on the nanofiber surface, which makes a direct

electron transfer between enzymes and electrodes to improve

sensitivity.

Polyaniline (PANI) is a π–π conjugated polymer synthesized

by chemical or electrochemical oxidation of a monomer (Popov

et al., 2021). The unique π–π-conjugated structure acts as a redox
medium between the redox center and the enzyme electrode,

facilitating electron transfer to the electrode (Neupane et al.,

2021). Because PANI has strong effective reaction and anti-

interference ability between enzyme and electrode, it has

optimal sensing performance. The PANI is moderately

conductive at low pH, but is insulated at pH 3 or 4 (Zare

et al., 2020). German et al. (2020) designed a conducting

polymer nanocomposite fiber glucose biosensor loaded with

GOx and gold nanoparticles on the graphite rod (GR)

electrode. Liu M. et al. (2019a) designed a hollow CuO/PANI

NFs, electrospun PAA NFs as a sacrificial template, in-situ

polymerization of aniline monomers to make the hollow

PANI fibers and doping CuO on the PANI fibers. The CuO/

PANI electrode was applied to a low detection limit, with a wide

linear range. The PANI NFs have imine- and amine-groups, with

high conductivity, improving adsorption ability, and reactivity of

glucose sensing.

Poly (3,4-ethylenedioxythiophene) (PEDOT) is one of the

most promising conductive polymers because of its excellent

electrochemical activities, ion and electron transport properties,

high conductivity, and stability (Abu Zahed et al., 2020).

Meanwhile, PEDOT can serve as the main substrate of the

biosensor due to its excellent physicochemical stability, good

compatibility, reversibility, and reproducibility (Kitova et al.,

2021; Liu et al., 2021d). Nashruddin et al. (2021) used

PEDOT: Polystyrene Sulfonate (PSS)/Titanium Carbide

(Ti3C2)/Graphene Quantum Dots (GQD) to make a label-free

glucose electrochemical biosensor. The PEDOT: PSS/Ti3C2/

GQD-based sensor applied a wide linear glucose range with a

low limit of detection of and a high sensitivity. PEDOT:PSS has

good stability, low redox potential, and poor electrocatalytic

capability. PEDOT:PSS needs to be incorporated into
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conductive nanomaterials to stabilize electron transport and

improve electrical conductivity.

Polypyrrole (PPy) is a polymer of non-toxic, highly

conductivity, and porous structures, with unique molecular

recognition systems and good biocompatibility, and it has

been widely researched in the field of biosensors (German

et al., 2021). However, because PPy cannot directly

immobilize biomolecules and needs to be recombined with

noble metal nanoparticles to increase the charge transfer

between the enzyme and the electrode, and improve the

sensitivity of the sensor. Emir et al. (2021) made an

electrochemical glucose biosensor of a graphite rod electrode

modified with nickel nanoparticles and PPy composite. Xu et al.

(2018) designed electrospun CuO/polycaprolactone (PCL)@PPy

NFs for a glucose sensor. The NFs were dipped into pyrrole

solution to obtain the PCL@PPy NFs electrode and doping CuO

on the electrode, which applied low detection limit, with wide

linear range. The PPy NFs have high electrical conductivity,

thermal stability, and great redox properties, which makes them

suitable for glucose sensing.

4.1.4 Molecular imprinted polymer
The molecular imprinted polymer (MIP) is an artificial

recognition element that resembles a natural receptor, which

specifically recognizes and binds target molecules with higher

thermal and chemical stability of the MIP compared to other

biometric elements (Sehit et al., 2020). By self-assembling

monomer molecules at a target during formation, the fixed

monomer polymerization process creates specific binding sites

for the target (Asghar et al., 2019). In the MIP glucose sensor, the

MIP with catalytic and conductive properties are obtained by

wrapping the GOx into the conductive polymer. Crapnell et al.

(2021) prepared a glucose sensor of electrospun nylon 6,6 fibers

containing PPy MIPs. Added PPy MIPs in nylon 6,6 solutions

were prepared as the electrospinning solutions. The PPy MIPs

provided the widest linear range, with a low limit of detection.

FIGURE 6
Summary of the nanomaterials in electrospun glucose sensors.
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This method combines MIPs with electrospinning technology to

fabricate sensing functional NFs, offering the possibility for

future development of glucose biosensors using this technology.

In this review, we summarized the applications and

properties of polymers in electrospun glucose sensors, and the

diversity of polymer properties brings about a diversity in the

performance of electrospun nanoproducts. For example,

conductive materials have good electrical conductivity and

natural materials have good biocompatibility. Currently, only

one or two polymers are used in nanofiber glucose sensors and

FIGURE 7
Glucose sensor loaded with nanomaterials using electrospinning technology. (A) Fabrication procedure of PVA/GO/AuNPs/GOx-HRP sensor,
cysteamine-AuNPs solution was dropped onto the surface of PVA/GONFs (Baek et al., 2020). (B) (a)Nyquist plots of NFZ and NFZ@GOx. (b)Nyquist
plots of NFZ-GQDs and NFZ-GQDs@GOx (Mercante et al., 2021). (C) (a) Schematic diagram of the detection process. (b) Fabrication process of
GOx@HRP@TMB@Mn3(PO4)

2− nanofibrous strip of colorimetric glucose sensor, the Mn2+ adsorbed onto themembrane and formed the GOx@
HRP@TMB@Mn3(PO4)2 hybrid nanoflowers (Luo et al., 2022). (D) Fabrication of the PABA/f-CNTs composite film glucose biosensor based on
electrospinning, the PABA/f-CNTs solutionwas prepared by adding f-CNTs (Sriwichai and Phanichphant, 2022). (E) Fabrication process of TMC/CNs/
GOx-rGO-Au-SPE, SPEs were fabricated by a thick layer of Au and rGO modified the TMC/CNs substrate surface (Ahmad A. et al., 2021).
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may be limited by the single electrospinning process (i.e., most

are single-fluid electrospinning). The process of electrospinning

includes single-fluid, double-fluid, and multiple-fluid

electrospinning. Polymers with different characteristics can

use double-fluid or multiple-fluid electrospinning processes to

prepare a new functional nanocomposites. The characteristics of

different polymers are used to achieve the simultaneous loading

and bi-phase control of functional nanomaterials and active

ingredients. Moreover, the nanofibers’ surface with special

polymers or functional nanomaterials are negatively charged

and biological species can also be negatively charged due to

loss of protons. Under the influence of the repelling effect, the

negatively charged nanofiber surfaces can strongly repel the

negatively charged biological species, thus reducing the

electrical oxidation of biological species on the nanofibers’

surfaces and improving the sensor’s selectivity.

4.2 Nanomaterials

In glucose sensors, the high surface-to-volume ratio, effective

enzyme immobilization, high electrical conductivity and catalytic

activity are all beneficial to improve their analytical performance.

The glucose sensor of NFs with functional ingredients

(nanomaterials) can be fabricated by two approaches. The first

is electrospun nanofibers solutions, which are fabricated by

mixture of functional ingredients and polymer, followed by

post-treatment, which changes the NFs’ morphology. The

second is electrospun nanofibers solutions, which are fabricated

by mixture of precursor and polymer, and then grown in situ by a

catalyst on the nanofibers’ surfaces, without changing the NFs

morphology. The former is simple to operate, and nanofibers with

strong adsorption capacity can achieve immobilization of

nanomaterials, but nanomaterials can easily gather in the

polymer (Abdel-Karim et al., 2020; Guo Qi et al., 2020). The

latter disperses the nanomaterials and improves the charge transfer

ability, but the preparation method is difficult. Nanomaterials

loaded by electrospinning can be divided into: 0DNM (NP and

QD), 1DNM (CNT), 2DNM (nanosheet), and 3DNM

(nanoflower) (Figure 6).

4.2.1 Zero-dimensional nanomaterials
Zero-dimensional nanomaterial (0D NM) is a nanosized

material in all three dimensions, including nanoparticles

(NPs) and quantum dots (QDs). Metal nanoparticles such as

noble metals (Au, Ag, Pt, Pd), transition metals (Fe, Cu, Co) and

metal oxides (CuO, Fe2O3, MnO2, ZnO) can catalyze glucose

oxidation, which have great advantages due to their high surface

volume ratio and electrocatalytic properties (Malekzad et al.,

2017; Azharuddin et al., 2019; Naikoo et al., 2021). With unique

chemiluminescence and photochemical activity, QDs are useful

applications in colorimetric and glucose sensing (Ramanavicius

et al., 2021).

The noble metals include gold (Au), silver (Ag), platinum

(Pt), and palladium (Pd). The main features of these metals are

their unique biological, chemical, and physical specificities,

oxidation resistance, and corrosion resistance (Li et al., 2019;

Li et al., 2021c). Nanoscale noble metal materials are flexible, with

good biocompatibility and catalytic properties (Basiri et al., 2018;

Afzali et al., 2019; Amiripour et al., 2021; Lakhdari et al., 2021).

Baek et al. (2020) designed gold nanoparticles (AuNPs), GO, and

copper nanotube decorated nanofibers for use as electrochemical

biosensors for glucose detection (Figure 7A). The main benefit of

using AuNP is that its good catalytic properties make the glucose

oxidation current higher than the other noble metals, which

improves the conductivity, sensitivity, mechanical, and electrical

properties of the sensor (Kumar et al., 2017; Xiao et al., 2020).

The PVA/GO/AuNPs/GOx-HRP sensor exhibited a wide linear

range and a low detection limit, and the high selectivity is a

stronger enhancement of AuNPs nanofibers for glucose

oxidation than for other biological species oxidation. Metal-

oxide nanoparticles have good electrocatalytic activity and

high organic trapping capacity (Kamyabi and

Moharramnezhad, 2020). Nanometallic metal-oxide particles

are widely used in biosensors due to their interconnected

porosity, huge surface area to volume ratio, high catalytic

activity, and easy synthesis properties, thus improving their

sensitivity and detection limit (Saravanan et al., 2017; Liu

et al., 2018; Ding et al., 2020; Ding et al., 2020; Naderi Asrami

et al., 2020; Ding et al., 2021). Electrospinning is a top-down

nanofabrication method that can be used to make metal-oxide

nanofibers (Hsieh et al., 2016). Liu et al. (2018) designed carbon

nanofibers (NiCo2O4/ECF) by using electrospinning and one-pot

hydrothermal process. The NiCo2O4/ECF electrode exhibited a

wide linear range, with a high sensitivity and a low detection

limit. Benefiting from the synergistic effect of the properties of

NFs and metal-oxide nanoparticles, the obtained electrodes have

activity for direct electrocatalytic oxidation of glucose with high

sensitivity (Lu et al., 2016). The metal-oxide composites with the

multiple valence-states and redox-couples may boost the electron

transport with high anti-interference ability (Hou et al., 2022).

Metal alloys [Au-Pt, Au-Pd, Au-Ti, and Cu-Ag (Li and Du, 2017;

Shim et al., 2019; Lipinska et al., 2021b; Chawla et al., 2021)] have

also been used for glucose detection, and alloy electrodes can

provide better electrochemical properties for electrodes to

glucose cooperative activity when compared to single metal

electrodes. Many transition metals have good catalytic

properties, redox reaction of the transition metal centers, and

can be used to prepare biosensors for application in high

pH samples (Lin et al., 2018; Yang et al., 2019; Kailasa et al.,

2020).

Quantum dots (QDs) are inorganic nanocrystals (NCs) that

can be prepared by atoms from groups of II-VI, III I or IV-VI in

the periodic table, and belong to 0D NMs (Zhou et al., 2021).

They have unique photophysical properties, such as strong

photostability, high brightness, and high signalability
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(Ramanavicius et al., 2021). Their unique chemiluminescence

and photochemical activities make them attractive materials for

preparing efficient biosensors to detect a wide variety of

biomolecules (Yanyan et al., 2021). Biomolecular-mediated

QD synthesis devices have great potential for colorimetric

glucose sensing, due to the presence of different color changes

during QD synthesis (Hu et al., 2020a; Ma et al., 2018). However,

the underlying mechanism of the biological ligand effects of QD

synthesis is unclear, which is a promising area for further

exploration. Hu et al. (2020b) used a C/CdTe QDs–GOx

aerogel designed microfluidic assay glucose sensor based on

colorimetric detection of urine glucose that the L-Cys-

mediated synthesis of fluorescent CdTe QDs. The C/CdTe

QDs–GOx exhibited a wide linear range of 0–13 mM and a

low detection limit of 0.223 mM. This shows that QDs glucose

sensor combined with GOx has excellent selectivity, specificity,

and stable for a long time. Mercante et al. (2021) designed a

glucose detector utilizes zinc oxide nanofibers, graphene

quantum dots (GQDs), and reduced graphene oxide (rGO)

(Figure 7B). The NFZ-GQDs@GOx and NFZ-rGO@GOx

platforms presented the detection range of glucose

concentration was 0.1–6 mM, with a detection limit of 32 and

14 µM. According to the results, it can be found that loading QDs

can distinguish between different glucose concentrations and

distractors, their lower detection range and high sensitivity also

provide feasibility for the applicability of non-invasive glucose

sensors.

4.2.2 One-dimensional nanomaterials
Carbon nanotubes (CNTs) are a one-dimensional

nanomaterial (1D NM) that is composed of one, two, or

several concentric graphite layers, which is topped by hollow

cylindrical tubes in the Fullerian hemisphere (Sireesha et al.,

2018; Karimi-Maleh et al., 2020). CNTs are the most widely

studied nanotube-like material in biosensors because of their

unique structure, excellent mechanical properties, high chemical

stability, and high specific surface area (Pundir et al., 2021; Zou

et al., 2021). CNTs have higher conductivity, like metals and

semiconductors, and better electrochemical with chemical

stability in both aqueous and non-aqueous solutions (Kour

et al., 2020; Kumari et al., 2021). Hong-Yan et al. (2013)

designed CuO electrospun composite nanofibers doped with

carbon nanotubes or nickel oxide for electrochemical glucose

determination. The CuO/C-NFs and CuO/NiO-NFs electrodes

exhibited wide linear range, with a low detection limit and a high

sensitivity. The possible synergistic effect of carbon nanofibers

during catalysis to improve the detection performance. Sriwichai

and Phanichphant (2022) fabricated electrochemical glucose

sensor by electrospinning for poly (3-aminobenzylamine)

(PABA)/functionalized multi-walled carbon nanotubes

(f-CNTs) composite film (Figure 7D). The electrospun PABA/

f-CNTs composite film exhibited wide linear range of

0.56–2.8 mM with a sensitivity of 0.40 µA mm−2 mM−1 and

low detection limit of 0.067 mM. CNTs provide large

electroactive surface area to increase electron transfer

performance. In the enzymatic sensors, CNTs as molecular

wires to direct transfer electrons from the enzyme active site

to the electrodes.

4.2.3 Two-dimensional nanomaterials
Nanosheets have an ultrathin 2-D thickness and a large area-

to-thickness ratio, and most two-dimensional nanomaterial (2D

NM) sensing properties depend on the surface area of the active

interface (Liu et al., 2021e). The application function of the

sensor can be improved by increasing the total reaction area of

the nanosheets (Wang et al., 2021c). Nanosheets can be divided

into inorganic nano-sheets (i.e., graphene, graphene oxide, and

reduced graphene oxide nanosheets) and organic nanosheets

[i.e., metal-organic framework (MOF) nanosheets] (Zhan

et al., 2020). Graphene and rGO nanosheets are frequently

applied in biosensors (Adeel et al., 2021; Chen et al., 2020; Jia

et al., 2021; Kang S. et al., 2020; Li Jiankang et al., 2021; Lohar

et al., 2021). Graphene is a carbon material with high electrical

conductivity, owing to sp2-hybridized carbon atoms with out-of-

plane π bonds (Zhang et al., 2019; Cardoso et al., 2020; Cardoso

et al., 2020). Graphene derivatives, namely graphene oxide (GO)

and reduced graphene oxide (rGO), usually serve as the basis for

electrochemical biosensors because they optimize the electron

transfer process (Huang et al., 2019; Lohar et al., 2021). GO is

better water soluble and has superior electrocatalytic activity than

graphene (Phetsang et al., 2021a; Wu et al., 2021). RGO

nanocomposites can improve GOx activity to have a positive

impact in biosensor analysis signals (Zhu et al., 2021b; Mao et al.,

2021). The presence of rGO facilitates the transfer of electrons

from the GOx redox center to the electrode and increases the

current response of the biosensor (Phetsang et al., 2021b; Popov

et al., 2021). Ahmad A. et al. (2021) designed electrochemical

paper-based analytical devices (ePADs) for biosensing of glucose

(Figure 7E). The cellulose nanofibers (CNs) were prepared by

electrospun cellulose acetate (CA) nanofibers and deacetylating

to regeneration, and were then modified with trimethyl chitosan

(TMC). The screen printed three electrodes (SPEs) were

fabricated by a thick layer of Au and rGO modified the TMC/

CNs substrate surface. The TMC/CNs/GOx-rGO-Au-SPE

presented the detection linear range of 3.3–27.7 mM, with the

sensitivity increased to 9.9 × 10−4 KΩ−1 mM−1 and the detection

limit decreased to 0.1 mM. The rGO modified the electrode to

enhance electron transfer and short the response time.

4.2.4 Three-dimensional nanomaterials
Nanoflowers are nanomaterials withmoderate layer spacing and

ultra-high specific surface area, the synergistic action of nanoalloys

can promote more surface-active electron transfer during catalysis

(Cao et al., 2021). At the same time, the nanoflower’s surface

component is closely related to the peroxidase activity, and can

improve the peroxidase simulation activity (Ma et al., 2021). Luo
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et al. (2022) prepared a nanofiber base band with a multienzyme-

inorganic hybrid nanoflower structure for visual colorimetric

detection for highly sensitive glucose detection (Figure 7C). A

composite containing GOx, HRP, 3,3′,5,5′-tetra-methylbenzidine

(TMB) and Mn3 (PO4)2 was fixed to a layered porous PVA-co-PE

nanofiber band. The strips exhibited concentration range of

0.25–10 mM with a low detection limit. Therefore, nanoflowers

can enhance electrochemical detection stability by promoting

surface electron transfer and generate substances for colorimetric

reactions by enhancing the activity of peroxidase. The small

detection range and detection limit of the nanoflowers glucose

sensor also provide hope for non-invasive humoral glucose

detection.

Superior nanomaterials can directly improve the results of glucose

detection and analysis, and can greatly improve the accuracy,

specificity of the detection limit, and detection range. The

response time can also be reduced by overcoming the diffusion

limit. However, the same material provides different properties at

different sizes, and the nanomaterials doped in the nanofibers are

mostly smaller sizes. Nanofibers doped with nanomaterials can

remain stable in any environmental and experimental conditions,

good biocompatibility, have low toxicity during operation, reduce

costs, and optimize analysis procedures. The repelling effect of the

nanofiber surfaces and biological species reduces the electrical

oxidation of biological species and improves the sensor good

selectivity. Another factor in the improved selectivity is the

stronger enhancement of nanofibers for glucose oxidation than for

other biological species oxidation. In addition to these nanomaterials,

there are many other nanomaterials that can be applied in glucose

sensors prepared by electrospinning technology, which provide more

ideas for the future development of glucose sensors.

5 Electrospun nanofiber-based
enzymatic and non-enzymatic
glucose sensors

Glucose sensors can be divided into enzymatic and non-

enzymatic glucose sensing. Enzymatic glucose detection

involves the oxidation reaction of glucose and enzymes,

while non-enzymatic glucose sensors are based on directly

electrocatalytic glucose oxidation on the electrode’s surface.

Enzymatic glucose sensors have low stability, high sensitivity,

and selectivity, and are affected by the characteristics of the

enzyme. Non-enzymatic glucose sensors eliminate the enzyme

and have high stability, low sensitivity, and selectivity. This

section will review glucose sensors prepared by

electrospinning to solve the problems of enzyme

immobilization, and improve sensor stability and

reproducibility. Functionalized nanofibers improve glucose

and reduce electrochemical oxidation in other biological

species, and improve the sensitivity and selectivity of non-

enzymatic sensors.

5.1 Enzymatic glucose sensors

Enzymes can catalyze many complex metabolisms in the

human body through chemical reactions, and GOx is mostly used

in glucose sensors (Naghdi et al., 2018; Semwal and Gupta, 2018;

Kahoush et al., 2019; Naseer et al., 2020). Glucose oxidase (β-D-
glucose: oxygen-1-oxidoreductase) (GOD or GOx) is a

homodimeric enzyme that is composed of two identical

subunits and two non-covalently bound flavin adenine

dinucleotides (FADs) (Pazur and Kleppe, 1964; Kriechbaum

et al., 1989). The FAD is a very versatile organic cofactor,

consisting of two main components: an adenine nucleotide

and a flavin mononucleotide linked together by a phosphate

group (Walsh and Wencewicz, 2012). Each GOx monomer has

two distinct domains: one non-covalent but tightly bound FAD,

and another bound D-glucose (Delfino et al., 2017). The GOx can

oxidize glucose to D-glucose-1,5-lactone, two protons and two

electrons, and the cofactor FAD forms FADH2. A medium where

FADH2 can be oxidized back to FAD, leads to GOx recovery on

the surface of the electrode. This process is called deep

bioelectrocatalysis of GOx (Haouz et al., 1998). These

processes can be displayed as follows:

GOx (FAD) + β − D − glucose → GOx (FADH2)
+ D − glucono − 1, 5 − lactone

Two-electron and two-proton redox reaction of the enzyme

cofactor FAD is as follows:

FAD + 2H+ +2e− ↔ FADH2

The conversion of FAD to FADH2 in this reaction does not

alter the number of β-helices in the protein shell.

The oxygen oxidizes FADH2 back to FAD and H2O2 is

formed:

GOx (FADH2) + O2 → GOx (FAD) + H2O2

GOx (FADH2) → GOx (FAD) + 2H+ + 2e−

and this reaction regenerates GOx back to its original state.

An enzyme-catalyzed pathway during glucose oxidation is as

follows:

β − D − glucose + O2 → D − gluconic acid + H2O2

The reaction of hydrogen peroxide is as follows:

H2O2 → 2H+ + O2 + 2e−

The analytical characteristics (sensitivity, detection limit, linear

range, selectivity) and detection methods are listed in Table 3, with

materials in enzymatic glucose sensors. Adding active ingredients in

the colorimetric glucose sensors, which are GOx and horseradish

peroxidase (HRP), couples the enzyme reaction for the chromogenic

reaction. Glucose oxidizes with GOx, and generates gluconolactone

and H2O2, and a chromogenic substrate oxidation with HRP in the

presence of H2O2. Due to the nature of enzymes, enzymatic sensors
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have high sensitivity and selectivity but they are easily changed

during the fabrication andmeasurement process in different pH and

temperatures. When glucose biosensors are exposed to

environments with unsuitable pH or temperature, the

electrospinning technique can encapsulate enzymes into

nanofibers to avoid inactivation. In addition, nanofibers can be

fabricated with special structures by electrospinning, which helps to

protect the activation of enzymes and limit the leaching of enzymes

FIGURE 8
The enzyme immobilization methods on the NFs. (A) (a) Cross-linking method. (b) Fabrication of electrospun PAN/Mt NFs with MB-Mt or
DDAC-Mt and immobilized the GOx by cross-linking method (Apetrei and Camurlu, 2020). (B) (a) Covalent bonding method. (b) Fabrication of Au/
PMMA/PET electrode by covalent bonding method (Aldea et al., 2021). (C) (a) Adsorption method. (b) SiCNPs-ENFM glucose-sensing electrode
immobilized with GOx by adsorption method and photo of the ENFM sensor electrode (Puttananjegowda et al., 2021). (D) (a) Entrapping
method. (b) Glucose test strips were prepared by coaxial electrospinning and dual enzymes by entrapping method, with the glucose oxidation and
chromogenic reaction (Ji et al., 2014).
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in the electrolyte solution, while increasing the GOx recovery and

thus improving the reproducibility of the enzyme sensor. The

general enzyme glucose sensor takes a long time to transfer

electrons from the redox active site of the enzyme to the

electrode surface. The functionalized nanofibers can also provide

direct electron transfer to short the response time because of the

steric separation between the electrode and the FAD of GOx (Guo

et al., 2021; Liu et al., 2020a; Liu et al., 2020c; Nauman et al., 2021).

5.2 Enzyme immobilization

The enzymes in the NF-based glucose sensors are

immobilized on the NFs. The high sensitivity, selectivity, and

catalytic efficiency of the enzyme gives it a high application

efficiency in biosensor manufacturing, but the application of

enzyme is still limited by its instability and reproducibility

(Nguyen H. H. et al., 2019; Aldea et al., 2021; Ramanavicius

and Ramanavicius, 2021). NFs can solve these problems because

surface modification of NFs to achieve multi-point attachment

can limit the undesirable conformational changes of the enzyme

protein in an unfriendly environment and insoluble substrates

can make soluble enzymes easier to recycle (Chen and Wang,

2020). There are four immobilization methods for the enzyme

(Figure 8).

The first is the crosslinking method, where a multifunctional

cross-linking reagent (glutaraldehyde) and biometric element

(enzyme) are used to generate a network structure to achieve

the effect of immobilization (Naresh and Lee, 2021). The cross-

linking reagent forms bridges between fibers, which improves the

water resistance and tensile of fiber membrane without changing

the fiber morphology. Themixture is prepared by mixing enzyme

solution with glutaraldehyde and dripping onto the fiber’s

surface, which are then dried at room temperature. Apetrei

and Camurlu (2020) fabricated electrospun PAN NFs of

glucose sensors, with MB-Mt or DDAC-Mt. Electrospinning

on the surface of the Pt disk electrode and then GOx was

immobilized by cross-linking (Figure 8A). The advantage is

that the chemical method to make the enzyme can bind more

tightly to the substrate and retain the catalytic activity of the

enzyme. The disadvantages are that the preparation method

is troublesome and the chemical reaction distorts the

partial structure of the enzyme, leading to the loss of the

enzyme activity.

The second is the covalent bonding method (du Toit and Di

Lorenzo, 2014). The reaction group (carboxylic group) on the

polymer surface in the fiber interacts with the group of the

enzyme (the side chain of the amino acid) to form a covalent

bond. The formation of self-assembled monolayer is prepared by

immersing the fibers in the 11-mercaptoundodecanoic acid (MUA)

solution in ethanol, and the carboxylic groups of MUA are activated

in a mixture of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide

hydrochloride (EDC) and N-hydroxysulfosuccinimide sodium salt

(NHS). Aldea et al. (2021) made the Au/PMMA/PET electrodes by

electrospinning, and then immersed the electrode in a 11-

mercaptoundodecanoic acid solution for immobilizing enzyme by

covalent bonding method (Figure 8B). Its advantages are that the

covalent bond stability and less affected by the environment. The

disadvantages are that the reaction conditions are relatively strict,

not easy to form covalent bonds, and the strong bond formation of

enzyme and substrate is not easy to reuse.

The third is the adsorption method (Deng et al., 2020). The

interaction of the enzyme with the fiber’s surface (i.e., ion, van

der Waals, and hydrogen bonds) is used to immobilize the

enzyme on the nanofiber surface. The immobilization of the

enzyme on the fibers can be achieved by immersed or dropped

the GOx solution, and dried in air, with wash in deionized water.

Puttananjegowda et al. (2021) made PEDOT: PSS-SiCNPs NFs

by electrospinning, and then dropped the GOx onto the

nanofibrous membrane coated electrodes for immobilizing

enzyme by adsorption method (Figure 8C). The advantages

are that the simple process and the molecular structure of the

enzyme is not destroyed to maintain a high activity. The

disadvantage is that the interaction between enzyme and fiber

TABLE 4 Enzyme immobilization methods and materials in enzymatic electrospun NF-based biosensors.

Scaffold material Functional material Enzyme Solvent Immobilization
method

References

PAN Mt GOx DMF Crosslink Apetrei and Camurlu (2020)

— GOx DMF Crosslink Sapountzi et al. (2020)

PVA CS GOx DI water, CH3COOH Crosslink

PVOH — GOx PBS Crosslink Li et al. (2021c)

PMMA Au GOx DMF Covalent Aldea et al. (2021)

PVP Zinc nitrate, GQD GOx DMF Physical adsorption

PEDOT PSS, PVDF, SiCNPs GOx DI water, THF Physical adsorption Puttananjegowda et al. (2021)

PVA PAA GOx DI water Physical adsorption Kim and kim (2017)

PU — GOx, HRP DMAc, Glycerol Entrapment Ji et al. (2014)
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is not very strong. The enzyme is easily shed and susceptible to

environmental influence with poor stability.

The fourth is the entrappingmethod (Ji et al., 2014). Enzymes

are immobilized in polymer semipermeable membrane

substrates by electrospinning, which would be promising

candidates for the development of enzymatic glucose sensors.

Electrospinning technology has less effect on enzyme activity and

can directly mix the enzyme into the polymer solution to

electrospin nanofibers. Ji et al. (2014) prepared

electrospinning solution mixing GOx and HRP in ultra-pure

water. The entrapping method can be used to realize

immobilization of the enzyme in the electrospun hollow

nanofibers (Figure 8D). The advantage is that the high

concentration of enzyme under mild conditions can effectively

prevent enzyme shedding. The disadvantage is the pH value and

temperature of the polymer solution are strictly controlled (Ji

et al., 2017; Antony et al., 2019; Boselli et al., 2021; Coşkuner Filiz

et al., 2021).

The enzyme immobilization methods andmaterials are listed in

Table 4, together with the solvents. The scaffold materials have good

TABLE 5 Non-enzymatic electrospun NF-based sensors for glucose detections, with analytical characteristics.

Detection
method

Materialsa Linear
range
(mM)

LOD
(µM)

Sensitivity
(µA cm−2·mM−1)

Response
time
(s)

Selectivity
testb

Number
of days

References

Amperometry PVDF-HFP/
Co-Fe

0.001–8 0.65 375.01 <5 AP, DA, U, AA,
K+, UA, Na+, CA

— Saravanan et al. (2022)

Ni/CNFs 0.002–5 0.57 — <2 DA, AA, UA 60 Adabi and adabi (2021)

IrO2 NF-
Nafion/GCE

0–16 2.9 22.22 <0.5 DA, 4-AP,
AA, UA

— Dong et al. (2018)

CuO–CdO NFs/
GCEs

Up to 10 0.0527 18.76 <2 AA, UA ethanol — Liu et al. (2019a)

CuO/PANI 0.001–19.899 0.45 — — AA, UA, DA 10 Liu et al. (2019b)

CuO/PCL@
PPy/ITO

0.002–6 2 — — AA, UA, DA 25 Xu et al. (2018)

Ni (OH)2/ECF 0.005–13.05 0.1 1,342.2 <3 AA, DA, UA,
xylose, mannose,
lactose, Mal

— Chen et al. (2017)

Ni2CoS4-
CNF-GCE

5–70 nM 0.25 nM 6.201 µA nM−1 cm−2 <3 — — Ezhil Vilian et al. (2021)

Ni2CoS4/ECNF 2–10 0.93 nM 536.5 — AA, UA, DA 5 weeks Mohammadpour-Haratbar
et al. (2021)

NiCo2O4/ECF 0.005–19.175 1.5 1947.2 <3 DA, UA, AA,
Mal, lactose,
xylose, mannose

— Liu et al. (2018)

NiCo2S4/EGF 0.0005–3.571 0.167 7,431.96 <5 U, KCl, AA, DA,
UA, lactose,
xylose, mannose

2 weeks Sun et al. (2020)

Cu-Ni/NF 0.001–0.6 2 11.34 mA mM−1 cm−2 <2 UA, DA, AA,
xylose, lactose,
Suc, fructose

28 (H. Wei et al., 2021)

CuFe2O4

nanotubes
0.02–5.5 0.22 1,239 — AA, UA, DA 15 Xia et al. (2018)

DPV PTBA/
CuCo2O4–CNFs

0.01–0.5,
0.5–1.5

0.15 2,932, 708 — AA, UA, DA,
l-lysine, NaCl

16 Ding et al. (2020)

CV AuNP
incorporated
Gr NF

0.5–9 55 1.1437 <1.7 AA, NaCl,
ethanol,
methanol

— Shamsabadi et al. (2020)

PmAPNFs/
AgNPs/GCE

0.1–8 0.062 17.45 >7 s AA, UA, DA,
FA, LA, SU

— Ahmad et al. (2021a)

CuO NFs/GCE 0.1–10.85 0.2 483.10 — Mal, fructose,
Suc, DA, UA,
lactose, AA,
cholesterol

5 weeks Khan et al. (2021)

aβ-CD, β-cyclodextrin; LOD, detection limit.
bAA, ascorbic acid; UA, uric acid; DA, dopamine; CA, citric acid; Trp, tryptophan; Gly, glycine; Gal, galactose; Suc, sucrose; Mal, maltose; U, urea; AP, acetaminophen; AC, acetaminophen;

NaCl, sodium chloride.
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stability and biocompatibility. The functional materials have

excellent electrical conductivity or are suitable for enzyme

immobilization. The solvents are highly volatile, and most

solvents are compatible with the enzyme. In the crosslinking

method, materials are suitable for the immobilization of enzymes,

and enzyme activity reduction make the detection range less than

the physical adsorption method. The materials of physical

adsorption method need good conductivity to improve the

electron transport rate. Free GOx molecules are highly

susceptible to inactivation in the electrolyte solution, so a

desirable immobilization method is essential to reduce the

enzyme leaching rate and ensure the sensor’s reproducibility,

which can achieve the full potential of the glucose biosensor.

5.3 Non-enzymatic glucose sensors

Themost common and serious problemwith enzymatic sensors

is enzyme instability. Enzymatic glucose sensor in thermal or

chemical change, which can occur in temperatures above 40°C

and pH below pH 2 or above pH 8, can cause the enzyme to

inactivate (Hu et al., 2021). High or low humidity and oxygen

concentrations also severely damage the sensor and affect the

sensor’s signal measure deviation in the normal oxygen range

(Tromans et al., 2019). A non-enzymatic glucose sensor can

solve the problem of temperature, pH, humidity, and oxygen

concentrations affecting the sensing. Non-enzymatic glucose

detection involves the direct electrocatalytic oxidation of glucose

on the electrode’s surface, which eliminates the reaction mediators

and enzymes. Most electrocatalytic processes in non-enzymatic

glucose sensors occur through chemisorption, in which glucose is

adsorbed to the active site of the electrode. The chemisorption-based

electrocatalytic process on the electrode’s surface generates reactive

hydroxide species (OHads) (Burke, 1994). The consistency of the

onset potential of the redox reaction with the formation potential of

OHads confirms the effect of reactive OHads on the redox reaction,

in which hydroxide radicals directly oxidize D-glucose (Mondal and

Sharma, 2016). The electrooxidation of the adsorbates (D-glucose) is

D-glucose, which is quickly oxidized into D-glucono-δ-lactone, and
a further reaction into D-gluconic acid. These processes can be

displayed as follows:

D − glucose → D − glucono – δ − lactone (Slow oxidation)
D− glucono – δ− lactone → D−gluconic acid (Fast hydrolysis)

The analytical characteristics (sensitivity, detection limit,

linear range, selectivity, response time, stability) and detection

methods are listed in Table 5, together with the materials used

in enzymatic glucose sensors. Colorimetric detection method

is not suitable for a non-enzymatic glucose sensor, so the

glucose sensing characteristics are analyzed by

electrochemical detection, mainly the amperometry. In the

research, the materials in the non-enzymatic glucose sensor all

contain metals because metal plays an important role in the

redox reaction of glucose in the non-enzymatic glucose

sensor. A non-enzymatic glucose sensor has a low detection

limit and an extremely fast response time, but has a narrow

detection linear range and poor sensitivity. Generally, a non-

enzymatic glucose sensor eliminates the enzyme and

interference of electroactive species influences the

selectivity, but is unaffected by enzyme activity, with good

stability and reproducibility, and can be stored for a long time.

Electrospinning can easily produce nanofiber doped metals,

using post-processing to fix different nanomaterials or change

the fiber structure, and improve the electrocatalytic oxidation

of glucose on the electrode surface with improved sensitivity.

The smooth surfaces of nanofibers, with less adsorption of the

intermediates during the oxidation of glucose, generate the

enlarged detection range. Functional nanofibers can also

effectively avoid interference from electroactive species in

the electrolyte solution and improve the selectivity of

glucose sensors.

Compared with Tables 3, 5, the enzymatic glucose sensors

have wider detection ranges, and higher sensitivity and

selectivity than non-enzymatic glucose sensors, and are

suitable for colorimetric detection. The non-enzymatic

electrospun NF-based glucose sensor, retain the low

detection linear range and detection limit, improve the

sensitivity and selectivity, and are suitable for non-invasive

detection. The gathering of high concentration nanoparticles in

electrospinning solution reduces the catalytic activity and

reproducibility of the glucose sensor. Thus, structurally

stable nanofibers uniformly disperse the nanoparticles onto

the nanofibers by covalent bonding or adsorption. Enzymes

in single-fluid electrospun NFs are leached by environment

influences, and the coaxial (triaxial) nanofiber composite

structure reduces leaching and improves stability.

6 Conclusion and future prospective

In this review, it has been shown that a NF-based glucose

sensor can be conveniently and functionally prepared by

electrospinning for diabetic diagnosis. Electrospinning

technology is a simple and general effective method to

manufacture nanofibers, which greatly reduces the production

cost and optimizes the production procedure. The high specific

surface area and the special structure of NFs that are produced by

electrospinning processes provide more active sites for the redox

reaction of glucose and promote the electrochemical oxidation

reaction of glucose on the electrode, which reduce the electrical

oxidation of other biological species, enhance glucose oxidation,

and eliminate other electrochemical reaction interference to

improve the sensor’s sensitivity and selectivity. NFs are

fabricated by electrospinning conductive polymers to achieve

direct electron transfer between reactants and electrodes, reduce
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response time, and improve sensitivity. Functional NFs loaded

with nanomaterials can be fabricated by in-situ growth and

mixture solution, improving the electron transfer capability,

which expands the detection linear range and improves the

sensitivity of sensors. The good biological activity, high

porosity, and specific surface area of the nanofibers achieve

efficient enzyme immobilization of the nanofiber surface,

improving stability, reproducibility, and reducing the detection

limit. Methods for further modification of more stretchable

nanofibers by doping different nanomaterials may provide

development directions for applications in wearable devices.

Currently, the many different types of glucose sensors have

advantages and disadvantages. However, future activities need in-

depth research to solve the specific problems and should be studied

on different biological fluids, including biocompatibility and real

sample analysis. Most colorimetric sensors use coupled enzymatic

reactions for chromogenic reactions, which requires the active site

to be enhanced and strengthens the coupled enzyme reaction. The

fabrication of electrospun colorimetric sensor is a one-step process,

the chromogenic substrate be oxidized by single enzyme and

catalytic nanomaterials, which makes the future development of

a glucose detection strip feasible. Most polymers have poor

electrical conductivity and need to be collected by a conductive

substrate, which limits their application in electrochemical sensing

and increases manufacturing costs. The electrochemical glucose

sensor by electrospinning molecular imprinted polymer,

conductive polymers, and conductive nanomaterials can be

collected on a non-conductive substrate, which allows these

devices to be developed commercially.
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