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Abstract: Pure surface materials denoted by endmembers play an important role in 

hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) 

have been proposed to find appropriate endmember sets. Most studies involving the 

automatic extraction of appropriate endmembers without a priori information have focused 

on N-FINDR. Although there are many different versions of N-FINDR algorithms, 

computational complexity issues still remain and these algorithms cannot consider the case 

where spectrally mixed materials are extracted as final endmembers. A sequential 

endmember extraction-based algorithm may be more effective when the number of 

endmembers to be extracted is unknown. In this study, we propose a simple but accurate 

method to automatically determine the optimal endmembers using such a method. The 

proposed method consists of three steps for determining the proper number of endmembers 

and for removing endmembers that are repeated or contain mixed signatures using the Root 

Mean Square Error (RMSE) images obtained from Iterative Error Analysis (IEA) and 

spectral discrimination measurements. A synthetic hyperpsectral image and two different 

airborne images such as Airborne Imaging Spectrometer for Application (AISA) and 
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Compact Airborne Spectrographic Imager (CASI) data were tested using the proposed 

method, and our experimental results indicate that the final endmember set contained all of 

the distinct signatures without redundant endmembers and errors from mixed materials. 

Keywords: endmember extraction; optimal endmembers; hyperspectral; IEA 

 

1. Introduction 

Airborne hyperspectral data of high spatial and spectral resolutions contain many unknown signals. 

Identifying the number of distinct signatures that are present in a scene by visual analysis or a priori 

knowledge is often difficult, but doing so is important [1]. Pure surface materials denoted by 

endmembers need to be known for spectral mixture analysis, which is a popular technique for analysing 

hyperspectral remote sensing data [2]. Endmembers also play an important role in various fields, 

including classification [3–5], target or anomaly detection [6–8] and environmental monitoring and risk 

prevention and response [9–12]. 

Choosing a method of endmember extraction depends on the type of remote sensing data and the 

purpose of the data processing. One common approach is to use previously constructed spectral libraries, 

such as those from the Jet Propulsion Laboratory (JPL), Johns Hopkins University (JHU), and the United 

States Geological Survey (USGS) [13]. However, most existing spectral libraries include laboratory 

sources that were not acquired under the same conditions as one’s collected data. An image endmember 

method that extracts pure endmember pixels from a scene is preferred in many hyperspectral processes 

(e.g., spectral unmixing analysis) because this approach increases the ease of accurately extracting 

endmembers and implementing the extracted endmembers [14]. Over the previous decade, several 

algorithms have been developed for the direct extraction of spectral endmembers from the hyperpsectral 

data. The algorithms can easily find the features in the hyperspectral scene and collect the same scale 

data such as the number of band [15]. The Pixel Purity Index (PPI) extracts endmember pixels by 

iterative processing based on projections of corresponding random dimensional vectors [16].  

Neville et al. [17] proposed an endmember extraction algorithm based on an iterative unmixing process 

and error analysis. In addition, automatic processes that define the simplex based on the maximum 

volume, such as the N-FINDR algorithm, the Vertex Component Analysis (VCA) algorithm and the 

Successive Projection Algorithm (SPA), have been proposed [18–20]. Although these algorithms are 

limited by the assumption of the presence of pure signatures in a scene, these endmember extraction 

algorithms (EEAs) are widely used and developed due to their ease of computation and clear basis [21]. 

Many EEAs involve an iterative process, and it is therefore necessary to determine certain stopping rules 

based on an error threshold, ε, or the desired number of endmembers, p. Because ε depends on the 

properties of the data, it is difficult to pre-determine the threshold without prior analysis of the data in 

many cases [22]. Therefore, it is essential to determine an appropriate value of p for terminating the 

algorithm. However, no corresponding criteria have been established for many EEAs, and this issue 

remains unresolved [23]. If p is set to higher value than the number of pure signatures in a given dataset, 

then mixed or interfering substances may be extracted; conversely, if p is set to too low value, then the 

EEAs may not extract all of the pure pixels as endmembers [22].  
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Various concepts for setting an appropriate value of p have been proposed. Most studies of 

determining the appropriate value of p have focused on N-FINDR; thus, there are many versions of  

N-FINDR algorithms. Plaza and Chang [24] modified the N-FINDR algorithm using an initialisation of 

the endmembers and using Virtual Dimensionality (VD) to determine how many endmembers need to 

be generated by N-FINDR. VD identifies distinct signatures in the hyperspectral data and can identify 

not only pure signatures but also anomalies without a priori knowledge [24,25]. VD is capable of 

determining the appropriate number of distinct signatures; however, the calculation is complex because 

the correlation eigenvalues and covariance eigenvalues of each spectral band must be determined and 

VD does not effectively work with hyperspectral images [26]. Chang et al., [27] proposed the random 

N-FINDR (RN-FINDR) in order to determine p automatically and resolve inconsistent final endmember 

selection problem. RN-FINDR selects intersection set through a random process which conducts two 

consecutive runs of original N-FINDR using the different initial endmember sets, and the method found 

commonly extracted endmembers form the different random initial endmember sets and decided them 

as final endmembers. However, there were possibilities that spectrally mixed or interfering substances 

could be selected as final endmembers in this method if those substances were extracted as repeated 

endmembers from the different initial endmember sets. Also, although RN-FINDR could determine the 

number of final endmembers automatically, it was recommended to use the VD estimates to avoid 

random guess of p, exhaustive search. One major problem of N-FINDR is computational complexity [28] 

and in order to reduce computation cost, a sequential endmember search method was implemented [29]. 

Du also showed that a sequential endmember extraction-based algorithm can improve the accuracy of 

extracted endmembers without a computational complexity of determining initial condition [2].  

In this paper, we propose a new optimal endmember determination technique based on sequential 

endmember extraction to consider the spectral similarities of extracted endmembers and reduce the 

computational burden. The proposed method consists of three steps and determines the appropriate 

number of endmembers automatically, and this process removes impure and repeated endmembers using 

the total Root Mean Square Error (RMSE) generated from the Iterative Error Analysis (IEA) and spectral 

discrimination measurements. In order to show the efficiency of our method, we performed a 

comparative performance analysis of the proposed method and RN-FINDR using a synthetic image and 

two different airborne hyperspectral images. 

2. The Proposed Method of Optimal Endmember Extraction 

2.1. Linear Mixture Model in the Hyperspectral Image  

One of the most popular and important methods for analysing hyperspectral data is spectral unmixing. 

A few spectral signatures jointly occupy a single pixel when the spatial resolution of the hyperspectral 

image is too coarse to distinguish between different materials on the ground. The measured spectral 

signature is thus a composite of the individual spectra. Although sub-pixel nonlinear mixing can be 

important in certain types of analyses, the effects of multiple scattering in the majority of applications 

are assumed to be negligible when a linear model is used [15,30]. The key task when using a linear 

mixture model is to find an appropriate set of pure endmembers (spectral signatures). Therefore, it is 
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very important to extract accurate and optimum endmembers for the unmixing and for analysis of the 

hyperspectral data [31,32]. 

Let r = (𝑟1, 𝑟2, … , 𝑟𝑛)𝑇  be a pixel in the hyperspectral image composed of n spectral bands and  

𝐸 = [𝐸1, 𝐸2 … , 𝐸𝑝]  be the spectrally pure constituent endmembers of the p materials, where  

𝐸𝑖 = (𝐸𝑖1, 𝐸𝑖2, … , 𝐸𝑖𝑛)𝑇 means the i-th endmember that has spectral reflectance 𝐸𝑖𝑛 corresponding to the 

n-th bands. To define the linear mixture model in mathematical terms, it is assumed that each acquired 

pixel 𝑟 can be represented as the linear combination of endmembers 𝐸 weighted by an abundance vector 

𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑝)
𝑇
 that represents the proportion of each endmember in the pixel under inspection,  

as follows:  

𝑟 = 𝐸𝑎 + ε (1) 

where ε represents a source of additive noise (e.g., perturbation and modelling errors) [31]. In a given 

pixel, the fractional abundance 𝑎𝑖  represents the fractional area occupied by endmember 𝐸𝑖 . If it is 

assumed that the optimum endmembers are known, then the fractional abundance can be determined 

using the least-square approach [32]. Generally, in Equation (1), an abundance vector corresponding to 

pixel r can be calculated, as in Equation (2): 

𝑎 = (𝐸𝑇𝐸)−1𝐸𝑇𝑟 (2) 

The fractional abundances are subject to two constraints: the abundance non-negativity constraint 

(ANC) and the abundance sum-to-one constraint (ASC). These two constraints are given,  

respectively [33], by these relationships: 

Non − negativity 𝑎𝑖  ≥  0, 𝑖 = 1, … , 𝑝 and (3) 

Sum − to − one ∑ 𝑎𝑖

𝑝

𝑖=1

= 1 (4) 

In addition, the ANC problem can be solved using various methods, including constraint  

least-square-based optimisation techniques and projection-based algorithms [34,35]. 

2.2. IEA for Initial Endmember Set Extraction 

The IEA is one of the popular, sequential, linear constrained endmember extraction algorithms based 

on the linear mixture model. The algorithm identifies endmembers one by one based on previously 

extracted endmembers. The pixels, which minimise the remaining error in the unmixed image, are 

selected as endmembers each time. The IEA method involves a series of linear constrained spectral 

unmixing steps to search for endmembers that minimise the remaining error in an abundance  

map [32,33]. Figure 1 shows the logic flow of the IEA algorithm. 
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Figure 1. Logical flow of the IEA algorithm. 

Three input parameters should be determined in advance: 𝑝, R, and θ. The parameter 𝑝 is the desired 

number of endmembers. R is the number of pixels with the largest number of errors, selected from the 

error image, and θ is the spectral angle (SA) between spectral vectors [15]. The SA is widely used in 

remote sensing to calculate the angle between two spectra and is defined as:  

SA(𝒔𝒊, 𝒔𝒋) = 𝑐𝑜𝑠−1 (
〈𝒔𝒊, 𝒔𝒋〉

‖𝒔𝒊‖‖𝒔𝒋‖
) (5) 

where 〈𝒔𝒊, 𝒔𝒋〉  is the inner product between the spectral signatures 𝑠𝑖  and 𝑠𝑗  and ‖𝒔‖  is the vector 

magnitude [36,37]. First, the IEA algorithm is used to calculate the mean of the original image ( X ), and 

this mean is used as the initial vector. Using this initial vector, constrained linear spectral unmixing is 

performed on the original hyperspectral image (𝐼), and an abundance value (i.e., the process output) is 

multiplied by the initial vector to produce the reconstructed image (𝐼(1)). A RMSE(𝐼, 𝐼(1)) can be 

defined as the average of the RMSEs between 𝐼 and 𝐼(1). When it is assumed that the original image is 

composed of n bands and 𝐼𝑘(𝑖, 𝑗) denotes the pixel value at k-th bands with spatial coordinates (𝑖, 𝑗), 

then the RMSE between the original and the reconstructed image can be calculated using the  

following expression: 

RMSE(𝑰, 𝑰̂) = (
1

𝑤 × 𝑐
) ∑ ∑ (

1

𝑛
∑[𝑰𝒌(𝑖, 𝑗) − 𝑰̂𝒌(𝑖, 𝑗)]

2
𝑛

𝑘=1

)

1
2𝑐

𝑗=1

𝑤

𝑖=1

 (6) 

where 𝑤 denotes the number of rows and 𝑐 denotes the number of columns in the original image (𝐼).  

A subset of R consisting of pixels within an angle θ from the maximum error vector is calculated, and 
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these pixels are averaged to generate the new endmember vector. The first endmember, E1 (i = 1) of 

endmember set S, is the mean vector of the largest error pixels in R that are within spectral angle θ and 

farthest from the initial vector. Using the i-th endmember (i = 1, 2, …, 𝑝), the constrained linear spectral 

unmixing is performed again to determine the (i + 1)-th endmember from the (i + 1)-th RMSE image. 

The (i + 1)-th endmember is the mean pixel in 𝑅(θ) among the pixels in (i + 1)-th RMSE image that 

have the largest errors. This process is repeated using the (i + 1)-th endmembers until the stopping rule 

is satisfied; the stopping rule is to obtain a certain predetermined number of endmembers or to reach a 

predetermined error tolerance [33]. In other words, the algorithm is terminated when the number of 

extracted endmembers equals 𝑝 or the unmixing error values decrease below the threshold.  

2.3. Determination of Optimal Endmembers 

The objectives of this study are focused on automatic determination of p and removal of impure and 

mixed endmembers from initial endmember set. The optimal endmembers were identified using the 

following three steps: (1) extracting an initial set of endmembers using the RMSE generated from the 

IEA; (2) eliminating repeated endmembers; and (3) separating impure endmembers that do not 

correspond to a single material but instead consist of two or more signatures. Figure 2 shows the flow 

chart of the proposed method for determination the optimal endmembers. 

 

Figure 2. Flow chart of the proposed method. 

We did not predetermine the desired number of endmembers. Instead, the IEA algorithm was 

continuously applied until the RMSE was approximately equal to zero. Although the two constraint 
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conditions of the linear mixture model were generally not satisfied in the case of real hyperspectral data, 

RMSE values of all pixels generated via constrained linear spectral unmixing (with the abundance  

non-negativity constraint and abundance sum-to-one constraint) are almost close to zero when all of the 

pure signatures are adequately extracted from a given data set. 

The RMSE continuously decreases with the identification of new endmembers by the IEA algorithm. 

For example, the RMSE(𝐼, 𝐼(𝑖)) generated from the i-th endmember set [𝑬𝟏, 𝑬𝟐, … , 𝑬𝒊] is lower than 

RMSE(𝐼, 𝐼(𝑖 − 1)) generated from [𝑬𝟏, 𝑬𝟐, … , 𝑬𝒊−𝟏] because 𝐸𝑖 explains the new component of a pixel 

that cannot be described with the (i − 1)-th endmember set. However, IEA had the possibility of 

extracting repeated materials as a new endmember enven though pure materials still were remained in 

the scene, due to noise and interfering signatures in specific bands. If i-th endmember were very similar 

materials with already extracted endmembers, there were little difference between RMSE(𝐼, 𝐼(𝑖 − 1)) 

and RMSE(𝐼, 𝐼(𝑖)). In other words, if RMSE(𝐼, 𝐼(𝑖)) and RMSE(𝐼, 𝐼(𝑖 − 1)) have similar values, then 𝐸𝑖 

is assumed to be a same material with previously extracted endmembers. Therefore, in this study, if the 

rate of change between RMSE(𝐼, 𝐼(𝑖)) and RMSE(𝐼, 𝐼(𝑖 − 1)) is negative and it is less than the threshold, 

then 𝐸𝑖 is considered as a repeated endmember and was removed from the first set of endmembers. 

Although the rate of decrease may fall below the threshold, all endmembers do not necessarily 

represent pure signatures. If the set of endmembers (excluding repeated endmembers) is larger than the 

true number of pure materials in the scene, then certain endmembers might be mixed or redundant 

signatures. The RMSE might decrease significantly with the presence of numerous mixed pixels, which 

might be represented by certain endmembers. To separate impure signatures from the endmember set 

after the second step and to extract the final optimum set of endmembers, we used a spectral 

discrimination measure. We assumed that if certain endmembers had a small spectral angle 

approximately equal to those of two or more previously extracted endmembers, then these putative 

endmembers would represent mixed signatures. Most sequential EEAs find different endmember types 

earlier [22]. Therefore, we confined that initial three endmembers represented pure materials to apply 

the assumption.  

As mentioned earlier, the spectral angle was used as the spectral discrimination measure. A smaller 

SA corresponds to a higher similarity. When the j-th (j > 3) endmember had an SA similar to two or 

more previously extracted endmembers, then the endmember was considered to be a mixed endmember 

and was removed. The threshold for estimating similarity is selected from the SA values of initial three 

endmembers. Using the student’s t-distribution, we could estimate confidence interval range of pure 

material’s mean SA. Student’s t distribution estimates an interval of true mean (𝜇) from the sample data 

with significance level (𝛼) and degrees of freedom (m−1), as follows [38]: 

𝑋̅ − 𝑡
(

𝛼
2,𝑚−1)

𝑠

√𝑚
≤ 𝜇 ≤ 𝑋̅ + 𝑡

(
𝛼
2,𝑚−1)

𝑠

√𝑚
 (7) 

X  is the sample mean, s is the sample standard deviation and m is the number of sample data. In this 

study, the minimum value from the estimated mean range of SA was the threshold which determined the 

similarity about the whole scene and it is dependent on material's types located on a scene. 

In the proposed method, we were able to automatically determine the optimum number of 

endmembers (𝑝) and the optimum endmember set, excluding mixed and impure signatures and including 

only pure signatures. 
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3. Study Area and Data 

3.1. Synthetic Hyperspectral Image 

In order to evaluate the efficiency of the proposed method and verify our threshold values, a synthetic 

hyperspectral image was used. The synthetic image had a size of 120 × 120 pixels and 437 bands with 

wavelength of 351~2592 nm. It consisted of four reflectance signatures such as water, two mineral 

(alunite, kaolinite), and one vegetation (blackbrush leaves) obtained from the USGS digital library 

(Figure 3a). To make the scene more realistic, the white Gaussian noise was added and SNR was set to 

30 dB [39]. The synthetic image contains twelve region, and each area had different endmembers and 

abundance values (Figure 3b) [14]. 

  

(a) (b) 

Figure 3. (a) Spectra of four materials obtained from USGS spectral library. (b) Synthetic 

hyperspectral image with SNR 30 dB. 

3.2. Real Hyperspectral Image 

The proposed method also was applied in real hyeprsepctral data collected from the Airborne Imaging 

Spectroradiometer for Application (AISA) and the Compact Airborne Spectrographic Imager (CASI) 

datasets. The AISA data were acquired on 1 December 2012 in Yeongam, South Korea (Longitude 

126°42′21.5″, Latitude 33°48′23″) (Figure 4a). The spatial resolution of the AISA data was 1 m, and the 

data contained 128 bands in the spectral range of 400 nm to 970 nm. A test bed was constructed in a 

scene covered by the AISA data. This test bed consisted of plots of various sizes containing various 

substances, such as grass, tartan turf, green fabric, slate, white gravel, and native soil. The test bed 

included four plots of pure material and one plot of mixed material, each measuring 4 m × 4 m, and one 

plot of pure white gravel and one plot of mixed material, each measuring 2 m × 2 m; thus, two plots of 

mixed materials were included (Figure 4b). A subset image of the test bed was used to enable the use of 

reference data. 

The CASI airborne hyperspectral image was acquired on 26 October 2010 in Cheonan, South Korea 

(Longitude 127°13′30″, Latitude 36°47′5″) (Figure 4c). The spatial resolution of the CASI data was  

0.5 m, and the data contained 36 bands in the spectral range of 365 nm to 1050 nm. The scene contained 
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artificial materials such as roads and buildings and natural materials such as water and various types of 

vegetation (Figure 4d).  

 

Figure 4. (a) AISA image featuring the test bed in the UTM (WGS 84, 52S zone) coordinate 

system: red is band 97 (845–849 nm), green is band 65 (688–693 nm), and blue is band 33 

(539–544 nm); (b) Non-geometrically calibrated AISA subset image; (c) CASI image in the 

UTM (WGS 84, 52S zone) coordinate system: red is band 27 (809–847 nm), green is band 

16 (599–618 nm), and blue is band 10 (484–504 nm); (d) Non-geometrically calibrated CASI 

subset image. 

The AISA and CASI hyperspectral data were calibrated using the vicarious radiometric calibration 

method for conversion into the spectral reflectance values because the raw data were digital numbers 

(DNs) or the radiance of the sensors. The empirical line calibration (ELM) method was adopted based 

on the field data measured using a spectroradiometer. The linear relational equation was evaluated by 

comparing the radiance value in the scene with the ground spectral reflectance value [40]. Each pixel in 

the hyperspectral image was converted using the linear equation. The AISA data included 4 types of 

tarps (3.5%, 23%, 35%, and 53%), and the CASI data included eight types of materials on the ground. 

In addition, the hyperspectral AISA and CASI data used in this study were not calibrated geometrically 

because errors in the spectral data may be caused by interpolation, which is one of several types of 

processing errors in the geometric calibration. 
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4. Results and Discussion 

4.1. Synthetic Image Experiment 

The proposed method extracted optimal endmembers from the synthetic hyperspectral image. We set 

the IEA algorithm parameters to values of 𝑅 = 1  and θ = 0  to extract a representative pixel and 

unchanged value of a real target in the hyperspectral data and to avoid spectral averaging to increase the 

spectral purity of the obtained endmembers [33].  

Table 1 showed the RMSE and rate of change of extracted endmembers. The RMSE decreased with 

new endmembers and gathered almost zero. The RMSE did not reach zero because the real data 

contained noise. Therefore, IEA continuously extracted endmembers until the RMSE(𝐼, 𝐼(𝑖)) was less 

than under 1.0 × 10−2 (first threshold). After first steps, first endmember set contained seven endmembers 

(Figure 5a). 

Table 1. RMSEs and rates of change of extracted endmembers. The values shown in bold 

italics are those of endmembers for which the rate of decrease is less than 0.1. 

Endmember 
RMSE 

(𝐑𝐌𝐒𝐄(𝑰, 𝑰̂(𝒊)) 

Rate of Decrease 

(
(𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊−𝟏))−𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊))

𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊−𝟏))
) 

𝑬𝟏𝒑 111.378  - 

𝑬𝟐𝒑 3.116  0.972  

𝑬𝟑𝒑 1.478  0.526  

𝑬𝟒𝒑 0.034  0.977  

𝑬𝟓𝒑 0.031  0.074  

𝑬𝟔𝒑 0.010  0.667  

𝑬𝟕𝒑 0.009  0.058  

The endmembers having same spectral properties with previous endmembers had significantly small 

rate of decrease. If the rate of decrease were less than 0.1 (second threshold), the proposed method 

eliminated the endmembers as repeated materials. In this case, 𝐸5𝑝 (5-th endmember obtained using the 

proposed algorithm) and 𝐸7𝑝 were eliminated as repeated endmembers (Figure 5b).  

After removing repeated endmembers, SAs were calculated between remained endmembers in order 

to separate the mixed endmembers (Table 2). The mean confidence interval range was generated from 

t-distribution with confidence level 80% and degree of freedom 2. The mean and standard deviation of 

initial endmembers’s SA were 0.632 and 0.2743, respectively. The minimum value from the estimated 

mean range of SA was 0.334 (third threshold). The endmembers having SA less than threshold 3 such 

as 𝐸6𝑝 were eliminated as a mixed signatures.  

After the whole process, final endmember set contained four endmembers and the spectra of final 

endmembers represented initial four spectral signatures of pure materials (water, alunite, kaolinite, 

blackbrush leaves) (Figure 5c). 
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(a) (b) 

 

(c) 

Figure 5. The spectra of the endmember set for the synthetic hyperspectral image.  

(a) After the first step; (b) After the second step; (c) After the final steps. 

Table 2. SA values of endmember set after the second processing step. The values shown in 

bold italics are those less than the threshold 0.334. 

 𝑬𝟏𝒑 𝑬𝟐𝒑 𝑬𝟑𝒑 𝑬𝟒𝒑 𝑬𝟔𝒑 

𝑬𝟏𝒑 0.000  0.353  0.901  0.388  0.374  

𝑬𝟐𝒑  0.000  0.642  0.208  0.031  

𝑬𝟑𝒑   0.000  0.727  0.626  

𝑬𝟒𝒑    0.000  0.232  

𝑬𝟔𝒑     0.000  

4.2. Real Image Experiment  

Optimal endmembers were extracted from the two airborne hyperspectral datasets. To compare the 

effectiveness of the proposed method, we compared our results with those from RN-FINDR, which 

determines final endmembers without the prior information of p and resolves inconsistent selection of 

final endmembers from randomly selected initial endmembers [27].  

One simple method of evaluation has been to compare the endmembers with available ground-truth 

spectra. The quality of endmember set can be evaluated by analysing the spatial distribution of 

abundance map [15]. Abundance map can represent relative fraction of the endmembers as well as spatial 

distribution. These abundances are estimated using a fully constrained linear spectral unmixing 

approach, and they are usually used to assess the distribution of each material, which allows for 

evaluation of the endmembers from a spatial viewpoint. Therefore the quality of a suite of endmembers 

can be evaluated by looking at the spatial distribution of abundance map. 

The ground-truth data were obtained from the scenes by visual analysis based on prior information 

regarding the scenes. In the AISA data, we defined the six materials comprising the test bed: grass, tartan 
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turf, green fabric, slate, white gravel, and native soil. Abundance maps of the six ground-truth materials 

are shown in Figure 6. In the CASI data set, we defined four components comprising the ground-truth 

data: water, roads, buildings, and vegetation. Figure 7 shows the abundances of these four ground-truth 

materials. Each abundance map is the result of the specific properties of a certain material. The tile roof 

in Figure 7a exhibited relatively high values of the water component because this dark-coloured roof had 

spectral properties similar to those of water. 

    

(a) (b) (c) (d) 

  

(e) (f) 

Figure 6. Abundance maps of ground-truth materials in the AISA data. (a) Grass; (b) Tartan 

turf; (c) Green fabric; (d) Slate; (e) White gravel; (f) Soil. 

    

(a) (b) (c) (d) 

Figure 7. Abundance maps of ground-truth materials in the CASI data. (a) Water;  

(b) Vegetation; (c) Roads; (d) Buildings. 

To evaluate the accuracy of the extracted endmembers, they were matched to the available  

ground-truth signatures based on similarities in their spectral values. In this case, we used SAs between 

those of the endmember and the ground-truth data. Then, we calculated the RMSE between the 

abundance maps. The use of these RMSE values is a simple method of evaluating the similarities 

between reference values and estimated values. 
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Optimal Endmember Extraction 

Initially, seven endmembers were extracted from the AISA data. The spectra of these initial 

endmembers are shown in Figure 8a. Among the initial endmember set, those endmembers for which 

the change from the previous endmember was small (≤0.1), such as 𝐸6𝑝 was eliminated as repeated 

endmembers (Table 3). Actually, 𝐸4𝑝  and 𝐸6𝑝  had very similar spectral signatures (Figure 8a).  

The minimum value from the estimated mean range of SA was 0.213. Since there were no endmembers 

which had a small SA to those of two or more previously extracted endmember, any endmember did not 

be removed in the third process (Table 4). 

  

(a) (b) 

Figure 8. The spectra of the endmember set for the AISA data. (a) After the first step;  

(b) After the final step. 

Table 3. RMSEs and rates of change of extracted endmembers. The values shown in bold 

italics are those of endmembers for which the rate of decrease is less than 0.1. 

Endmember 
Total RMSE 

(𝐑𝐌𝐒𝐄(𝑰, 𝑰̂(𝒊)) 

Rate of Decrease 

(
(𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊−𝟏))−𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊))

𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊−𝟏))
) 

𝑬𝟏𝒑 4.959  - 

𝑬𝟐𝒑 0.200  0.960  

𝑬𝟑𝒑 0.037  0.815  

𝑬𝟒𝒑 0.024  0.360  

𝑬𝟓𝒑 0.020  0.174  

𝑬𝟔𝒑 0.019  0.007  

𝑬𝟕𝒑 0.009  0.524  

Table 4. SA values of endmember set after the second processing step. The values shown in 

bold italics are those less than the threshold 0.213. 

 𝑬𝟏𝒑 𝑬𝟐𝒑 𝑬𝟑𝒑 𝑬𝟒𝒑 𝑬𝟓𝒑 𝑬𝟕𝒑 

𝑬𝟏𝒑 0.000 0.218 0.508 0.524 0.621 0.131 

𝑬𝟐𝒑  0.000 0.693 0.672 0.742 0.308 

𝑬𝟑𝒑   0.000 0.301 0.494 0.444 

𝑬𝟒𝒑    0.000 0.302 0.478 

𝑬𝟓𝒑     0.000 0.576 

𝑬𝟕𝒑      0.000 
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The final endmember set contained six materials (Figure 8b), and the abundance maps of the final 

endmembers are shown in Figure 9. All six materials comprising the test bed were effectively extracted. 

Each endmember was matched with a specific ground-truth material based on their similar values. 

Although 𝑬𝟏𝒑 and 𝑬𝟐𝒑 corresponded to, respectively, the white gravel and slate in the ground-truth data, 

these endmembers also displayed relatively high abundance values in the area of native soil (Figures 9e 

and d). Because of the small size of the white gravel plot (2 × 2 m), the spectral pattern of this plot was 

affected by the surrounding soil. In addition, 𝑬𝟏𝒑  had a spectral pattern similar to that of the soil  

(Figure 8b). The slate’s spectral properties were similar to those of the soil in terms of its low brightness. 

Therefore, the abundance values of 𝑬𝟏𝒑 and 𝑬𝟐𝒑 were relatively high in the area of soil. 𝑬𝟑𝒑, 𝑬𝟒𝒑, and 

𝑬𝟓𝒑 were matched with the grass, green fabric and tartan turf of the ground-truth data. 𝑬𝟒𝒑 and 𝑬𝟓𝒑 

displayed high abundance values in the same areas. The corresponding areas were composed of tartan 

turf and green fabric in the same proportions. Therefore, these two endmembers exhibited high 

abundance values. 𝑬𝟕𝒑 was matched with the soil and represented the background of the test bed. 

    

(a) (b) (c) (d) 

  

(e) (f) 

Figure 9. Abundance maps of the final endmembers in the AISA dataset obtained using the 

proposed method. (a) 𝐸3𝑝, (b) 𝐸5𝑝, (c) 𝐸4𝑝, (d) 𝐸2𝑝, (e) 𝐸1𝑝, and (f) 𝐸7𝑝. 

RN-FINDR used VD estimates as an initial value of p to avoid exhaustive process. And then, final 

endmembers were determined through automatic process, final endmembers obtained from RN-FINDR 

were different according to the threshold which determines whether the endmembers at different runs 

belong to same class or not, and the threshold value was defined empirically [27].  

The final six endmembers, which were selected by RN-FINDR, contained a mixed substance instead 

of pure one. In order to extract all of pure materials and compare to identical with ground-truth, the 

threshold was reset to higher value than previous process and the seven endmembers were extracted as 

final endmember set. Figure 10 shows the abundance maps of the seven endmembers using the RN-FINDR 

algorithm. The seven endmembers mainly represent grass (𝑬𝟔𝒓𝒏), tartan turf (𝑬𝟓𝒓𝒏), green fabric (𝑬𝟒𝒓𝒏), 

slate (𝑬𝟑𝒓𝒏), white gravel (𝑬𝟏𝒓𝒏), mixed material (𝑬𝟐𝒓𝒏) and soil (𝑬𝟕𝒏𝒓). 𝑬𝟐𝒓𝒏 was composed of tartan 
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turf and green fabric. Since 𝑬𝟐𝒓𝒏 was extracted by RN-FINDR, mixed area consisting of tartan turf and 

green fabric could not be explained by the components of 𝑬𝟓𝒓𝒏 and 𝑬𝟒𝒓𝒏 (Figure 10b,c).  

    

(a) (b) (c) (d) 

   

(e) (f) (g) 

Figure 10. Abundance maps of the final endmembers in the AISA dataset obtained using 

RN-FINDR. (a) 𝐸6𝑟𝑛, (b) 𝐸5𝑟𝑛, (c) 𝐸4𝑟𝑛, (d) 𝐸3𝑟𝑛, (e) 𝐸1𝑟𝑛, (f) 𝐸2𝑟𝑛 and (g) 𝐸7𝑟𝑛. 

To check the similarities between these results and the ground-truth data, the RMSEs between the 

abundance maps obtained using the two algorithms and the ground-truth data were calculated (Table 5). 

The endmembers extracted using the proposed method had lower RMSEs. Therefore, we conclude that 

our methodology efficiently determined the number and signatures of optimal endmembers.  

An additional CASI image was also tested using the proposed method. The initial endmember set 

contained ten materials. Repeated endmembers (i.e., 𝐸5𝑝, 𝐸7𝑝, 𝐸9𝑝) and impure endmembers (i.e., 𝐸6𝑝, 

𝐸8𝑝, 𝐸10𝑝) were effectively eliminated within three steps (Tables 6 and 7). The threshold value of first 

and second step were equal to those of AISA, while the threshold of SA value in third step was 0.693.  

The spectra of the endmembers at each step are shown in Figure 11. After the three steps, six 

endmembers were eliminated, and the final four endmembers corresponded to buildings, vegetation, 

roads, and water.  

Table 5. RMSE values between ground-truth data and extracted endmembers using the 

proposed method and the RN-FINDR method on the AISA data. 

 

Ground-truth Material  

Grass 
Tartan 

Turf 

Green 

Fabric 
Slate 

White 

Gravel 
Soil Average 

Standard 

Deviation 

Proposed method 0.009 0.006 0.004 0.094 0.029 0.128 0.045 0.048 

RN-FINDR 0.010 0.018 0.022 0.099 0.030 0.132 0.052 0.046 
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Table 6. RMSEs and rates of change of extracted endmembers. The values shown in bold 

italics are those of endmembers for which the rate of decrease is less than 0.1. 

Endmember 
Total RMSE 

(𝐑𝐌𝐒𝐄(𝑰, 𝑰̂(𝒊)) 

Rate of decrease 

(
(𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊−𝟏))−𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊))

𝑹𝑴𝑺𝑬(𝑰,𝑰̂(𝒊−𝟏))
) 

𝑬𝟏𝒑 1.612  - 

𝑬𝟐𝒑 0.518  0.679 

𝑬𝟑𝒑 0.048  0.908 

𝑬𝟒𝒑 0.021  0.560 

𝑬𝟓𝒑 0.020  0.064  

𝑬𝟔𝒑 0.014  0.272  

𝑬𝟕𝒑 0.013  0.079  

𝑬𝟖𝒑 0.010  0.214 

𝑬𝟗𝒑 0.010  0.034  

𝑬𝟏𝟎𝒑 0.009  0.113  

Table 7. SA values of endmember set after the second processing step. The values shown in 

bold italics are those less than the threshold 0.693. 

 𝑬𝟏𝒑 𝑬𝟐𝒑 𝑬𝟑𝒑 𝑬𝟒𝒑 𝑬𝟔𝒑 𝑬𝟖𝒑 𝑬𝟏𝟎𝒑 

𝑬𝟏𝒑 0.000  0.792  0.699  0.211  0.314  0.461  0.145  

𝑬𝟐𝒑  0.000  0.873  0.862  0.957  0.944  0.784  

𝑬𝟑𝒑   0.000  0.804  0.972  0.988  0.613  

𝑬𝟒𝒑    0.000  0.283  0.257  0.299  

𝑬𝟔𝒑     0.000  0.409  0.413  

𝑬𝟖𝒑      0.000  0.537  

𝑬𝟏𝟎𝒑       0.000 

Figure 12 shows the abundance values of the final endmembers obtained using the proposed method. 

𝑬𝟏𝒑 was matched with the building component of the ground-truth data and corresponded to buildings 

and white paint (e.g., car park markings) (Figure 12d). This endmember corresponded to high-reflectance 

objects, and thus concrete road pavements also displayed high abundance values of this endmember. 

  
(a) (b) 

Figure 11. Cont. 
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(c) 

Figure 11. The spectra of the endmember sets for the CASI data. (a) After the first step;  

(b) After the second step; (c) After the final steps. 

    

(a) (b) (c) (d) 

Figure 12. Abundance maps of the final endmembers in the CASI data obtained using the 

proposed method. (a) 𝑬𝟐𝒑, (b) 𝑬𝟑𝒑, (c) 𝑬𝟒𝒑, and (d) 𝑬𝟏𝒑. 

𝑬𝟐𝒑 was matched with water in the ground-truth data and indicated water bodies in the scene. The 

step-sided square area in the middle of Figure 12a represents fountains, and the area below the fountains 

in the image represents small ponds. Because 𝑬𝟐𝒑  corresponded to dark objects, certain types of 

pavements and the low-reflectance tile roof also displayed relatively high abundance values of this 

endmember. 𝑬𝟑𝒑 corresponded to vegetation (Figure 12b). Finally, 𝑬𝟒𝒑 was matched with the roadway 

component of the ground-truth data and primarily corresponded to roadways and roofs with low 

reflectance values. 𝑬𝟒𝒑 corresponded to brighter objects than did 𝑬𝟐𝒑 (Figure 12c). Figure 13 shows the 

abundance maps obtained using the RN-FINDR algorithm. The abundance maps of RN-FINDR were 

only matched with few components comparing to those of the proposed method although there were 

various artificial materials such as roof, road, and pavement in the hyperspectral image. It implies that 

the proposed method could extract more accurate and purer endmembers. Based on the visual analysis, 

the endmembers obtained using the proposed method were represented in the abundance maps to a 

similar degree as in the ground-truth data and produced lower RMSEs than did those obtained using the 

RN-FINDR algorithm (Table 8).  

Three endmembers among the four materials had lower RMSEs. The endmember obtained using  

RN-FINDR and matched with the building component in the ground-truth data, 𝑬𝟐𝒓𝒏, produced lower 

RMSE than did that obtained using the proposed method. The abundance map of 𝑬𝟐𝒓𝒏 on Figure 13d 

showed high values on the boundaries of buildings and ground surfaces besides the roofs. 𝑬𝟏𝒓𝒏 and 𝑬𝟒𝒓𝒏 

were matched with water and roadway components, respectively. They also displayed relatively high 
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abundance values in the vegetation area (Figure 13a,c). On the other hand, 𝑬𝟑𝒓𝒏 could explain only some 

portion of vegetation area with high reflectance although it was matched with vegetation component. 

    

(a) (b) (c) (d) 

Figure 13. Abundance maps of the final endmembers in the CASI data obtained using  

RN-FINDR. (a) 𝑬𝟏𝒓𝒏, (b) 𝑬𝟑𝒓𝒏, (c) 𝑬𝟒𝒓𝒏, and (d) 𝑬𝟐𝒓𝒏. 

Table 8. RMSEs between ground-truth data and extracted endmembers in the CASI data 

obtained using the proposed method and RN-FINDR. 

 

Ground-truth Material  

Water Vegetation Roads Buildings Average 
Standard 

Deviation 

Proposed Method 0.256 0.126 0.303 0.208 0.223 0.066 

RN-FINDR 0.289 0.417 0.358 0.180 0.311 0.088 

5. Conclusions 

This paper presents a simple but accurate method of extracting optimal endmembers without prior 

knowledge the number of endmembers by adding two steps of processing after extracting endmember 

by IEA. First, we determined the number of initial endmember, p, automatically and extracted an initial 

set of endmembers using the RMSEs generated from the IEA. Then, we eliminated repeated endmembers 

and finally separated mixed endmembers that correspond not to single materials but consist of two or 

more signatures. 

To demonstrate the efficiency of our methodology, the experiments were conducted using a synthetic 

data and two types of airborne hyperspectral images. The parameters were determined by using the 

synthetic data generated from USGS’s spectral library and statistical method. The optimal endmembers 

were extracted from two airborne datasets with the reasonable threshold. The experimental results 

indicated that impure and repeated endmembers were effectively eliminated by the proposed method. 

We compared the results of our proposed method with those of RN-FINDR algorithm, which is the 

improved version of N-FINDR algorithm and determines endmembers without the prior information of 

p value and inconsistent final endmember set. The accuracy was assessed using the RMSEs between the 

estimated abundance maps and ground-truth fractional maps. Generally, our method produced lower 

RMSEs than RN-FINDR, which indicates that the proposed method effectively extracts optimal 

endmembers from hyperspectral data. 
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