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Zero dispersion Kerr solitons in optical
microresonators
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Junqiu Liu 1 & Tobias J. Kippenberg 1

Solitons are shape preserving waveforms that are ubiquitous across nonlinear
dynamical systems from BEC to hydrodynamics, and fall into two separate
classes: bright solitons existing in anomalous group velocity dispersion, and
switchingwaves forming ‘dark solitons’ in normal dispersion. Bright solitons in
particular have been relevant to chip-scale microresonator frequency combs,
used in applications across communications, metrology, and spectroscopy.
Both have been studied, yet the existence of a structure between this
dichotomyhas only been theoretically predicted.We report the observation of
dissipative structures embodying a hybrid between switching waves and dis-
sipative solitons, existing in the regime of vanishing group velocity dispersion
where third-order dispersion is dominant, hence termed as ‘zero-dispersion
solitons’. They are observed to arise from the interlocking of two modulated
switching waves, forming a stable solitary structure consisting of a quantized
number of peaks. The switching waves form directly via synchronous pulse-
driving of a Si3N4microresonator. The resulting comb spectrum spans 136 THz
or 97% of an octave, further enhanced by higher-order dispersive wave for-
mation. This dissipative structure expands the domain of Kerr cavity physics to
the regime near to zero-dispersion and could present a superior alternative to
conventional solitons for broadband comb generation.

Currently, the field of research in optically driven Kerr nonlinear
resonators and dissipative structure formation has been largely
focused on the paradigm of the bright dissipative soliton1–3. Bright
dissipative solitons (DS) can be thought of as a particular variety of
localized dissipative structure, solitary pulses that retain their shape
due to the counter-balance between anomalous dispersion and non-
linearity, and who have a fixed amplitude determined by the driven-
dissipative parameters of the Kerr cavity environment4. Bright DS have
been widely studied experimentally in multiple material platforms1,
and have been demonstrated as a desirable candidate for numerous
integrated frequency comb-based applications such as massively par-
allel telecommunications5 and LiDAR6, astro-spectrometer
calibration7,8, dual-comb spectroscopy9, and also for metrology
enabled by self-referencing such as absolute frequency synthesis10 and

towards optical atomic clocks11. Across optical physics, DS have been
observed in nonlinear systems such as mode-locked lasers, and
transverse laser cavities4,12,13, and more widely as basic structures in
nonlinear dynamical systems as diverse as plasma physics, neuron
propagation, and chemical reaction systems14–16.

In opposition to bright DS have been dark dissipative structures,
commonly called “dark pulses”, which conversely exist in Kerr cavities
possessing normal dispersion17–21. These dark pulses (alternatively
termed as “platicons”22) are in fact formed by the interlocking of two
separate switching waves (SW), connecting the high and low stable
states of the bistable Kerr cavity23. Compared to bright dissipative
solitons, they havebeen found topossess an intrinsically higher optical
conversion efficiency between the input pump and the generated light
as normal dispersion allows more comb lines far from the pump to be
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on resonance24. As such, they have been proposed as a superior
alternative to bright DS for applications, which require the generation
of strong comb lines near to the pump center, and have been
demonstrated as a source formassively parallel telecommunications25.
Switching waves have been classed more generally as “domain walls”
connecting two stable homogeneous states in driven-dissipative sys-
tems, seen in χ(2) optical parametric oscillators26,27, semiconductor
lasers28, birefringent optical fibers29,30, and more widely in hydro-
dynamic systems and more31.

In this work, we report the experimental observation of zero-
dispersion dissipative solitons (ZDS), which exist at the crossing point
between conventional dissipative solitons and switching waves, exci-
ted in the region of vanishing second-order dispersion (SOD) giving
way to pure- or dominant- third-order dispersion (TOD)32. The ZDS
appears as a self-stable, multi-peaked pulse structure. In prior theo-
retical and numerical studies, such structures we identify here as ZDS
have been termed as bright solitons existing at zero SOD33,34 (for
instance as a soliton “doublet”35) and, in more recent work more
explicitly described as strongly modulated, bright interlocked
switching waves36–38. Across all of these prior studies, the terms “pla-
ticon”, “bright soliton”, and “locked switching waves” have all been
used together interchangeably to describe precisely the sameentity. In
this work, we seek to draw a concise and practical distinction from the
single-peaked plain soliton on the one hand, and the free-moving
switching waves on the other, in order tomake an unambiguous entity
that exists in the regime near zero dispersion that has a multi-peaked
structure. Hence, the specific term “zero-dispersion soliton” is
presented here.

As depicted in Fig. 1, ZDS exist as a family of solutions, for gen-
eralized localized dissipative structures, as one traces a circular path of
dispersion in the SOD/TOD plane. This ZDS family (here obtained
through numerical simulations), is shown to occupy the connection
between the diametrically opposed cases, of conventional dissipative
solitons on the anomalous dispersion regime, and switching waves on
the normal dispersion regime. As one approaches the zero-dispersion
region in the center, in both cases of DS and SW, the dispersive-wave
tail (otherwise known as Cherenkov radiation)39–41 becomes increas-
ingly dominant until it becomes anessential part of the structure33, and
stable quantized multi-peaked pulses become accessible. We define
the two boundaries of this region of ZDS to be where solitons may
become multi-peaked on the anomalous side, and where the two
switching wave fronts become locked together on the normal side.

Experimentally, it has remained an open question how these ZDS
could be generated. In this work, we target the formation of ZDS on
the normal SOD side of this plane. We find that this can be accom-
plished through first generating switching waves efficiently via wave-
breaking using synchronous pulse-driving of the Kerr cavity42

(Fig. 2(a)), initially demonstrated in fiber cavities43,44, and proposed
for microresonators37, and observing how these SWs coalesce into
single ZDS states at high pump-cavity detuning.

Results
Theory
To analyze the optical structures introduced in this work in a simple
and universal fashion, we first consider an optical system described by
the dimensionless Lugiato-Lefever Equation (LLE)45,46, now with a non-
CW driving term f(τ):
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Here, the form takenby thefield solutions are determined solely by the
driving strength F0 and detuning ζ0, as well as three parameters dl
describing the relative contributions of the first three orders of
dispersion33. For simplicity, we set the SOD parameter d2 = 1 through-
out this work, which corresponds to normal dispersion. Thus, d3
describes the contribution of TOD relative to d2, and the first-order
dispersion d1 corresponds to the offset in group-velocity between the
cavity field ψ(τ) and the static frame of the pulse-driving term f(τ).
These key parameters can be converted into real experimental values
for the laser and the resonator by using the transformations given in
the Methods section.

Firstly, it is necessary to investigate direct SW formation by pulse-
driving, in the simplified case of pure SOD (d1 =d3 = 0). We choose a
value of F0 = 10, equivalent to several Watts peak power in our Si3N4

devices, a typical operating point for practical dissipative structure
formation in experiment, and we set a Gaussian pulse as the driving
function f ðτÞ= expð�τ2=τ2pÞ, with pulse duration τp= 100 so as
to ensure any SW is significantly shorter in duration than the envelope
of the driving pulse (which is true also in our experiment), and
so the driving parameter at each SW location can be considered
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Fig. 1 | Localized dissipative structures in the second-/third-order dispersion
(d2=d3) plane. Clockwise from left: conventional dissipative solitons, dissipative
solitons with dispersive-wave tails, zero-dispersion solitons with quantized periods
(orange area), switching waves with dispersive-wave tails, conventional switching

wave. Dashed gray line in outer figures represent the CWhigh-state solution. Thick
bands represent the existence range of structures in the circular path. Further
analysis and extended version of this figure with a video available in Supplemen-
tary Info.
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approximately CW. The detuning is swept linearly from some value
ζ0 <0 up to ζ0 = 10 (5 × the resonator linewidth). Owing to the Kerr
nonlinearity, the cavity resonance becomes tilted as a result of the
additional phase acquired over propagation for higher pump power.
This creates an expanding range of bistability for steady-state CW
solutions, the high-state ψH and low-state ψL (the intermediate state is
inaccessible). These solutions can be found from Eq. (2),(3) (see Meth-
ods). In Fig. 2(b), these bistable solutions are plotted for the different
power levels that exist across the envelope of the driving pulse.

In Fig. 2(c) (with spectra in 2(e)) we show the intracavity field
solutions Ψ= ∣ψ∣2 at different values of ζ0 found using the split-step
method47 (seeMethods). For thisdirection in ζ0, thefield initially follows
the high-state solution ψH(τ) of the bistable resonance. As ζ0 crosses 0,
there begin to exist parts of the intracavity field where the local Kerr
resonance-shift at the edges of the pulse-drive F(τ) is insufficient to
sustain the high-stateψH(τ) (an example detuning ofwhich ismarkedby
the red-dashed line in Fig. 2(b)). Here, the field outside this point falls to
the low-state ψL(τ) while the field further inside the pulse background
stays on ψH(τ) creating the SW that connects the two states26.

From here, the two SW locations τSW follow a location within
the pulse-drive envelope F(τ) = Fm, which previous theoretical works
on SW stability have termed as the “Maxwell Point”23,28, until at ζ0 ≈ 7

where there exists no F(τ) > Fm causing the SWs to meet each other
and annihilate, failing to reach their theoretical maximum detuning
at ζ0 = F0 = 10. The stability of the SW fronts within the pulse
envelope after formation is due to the effective “outward pressure”
manifesting on ψH. SWs possess an innate group-velocity offset
depending on the value of F and ζ0

43, where the ψH tends to undergo
expansion, with the SWs moving outward, when the driving term is
larger than a certain value F(τ) > Fm for a fixed detuning ζ0 (see
Fig. 2(d)). When F(τ) < Fm, the ψH contracts and the SWs move
inward. Accepting this, it becomes clear that if any high-state ψH

existed within a pulse-drive envelope, whose peak F0 > Fm, it would
undergo expansion until its SW fronts reached a point where
F(τSW) = Fm and stop.

Considering now a Kerr cavity possessing strong TOD, we choose
d3 = 1. Fig. 2(f, g) presents an analogous scenario to Fig. 2(b–e), now
with TOD enabled. We see in Fig. 2(f) that the leading-edge SW front
(left-hand side) has acquired an upper-state oscillation that corre-
sponds to an enhancement of the spectrum (Fig. 2(g)) on the negative
frequency side. This enhancement is due to the return to zero of the
integrated dispersion function dint = d2Ω2 + d3Ω3 (Ω being the dimen-
sionless angular frequency)41. This asymmetry in the spectral profile
imparts a positive group-velocity shift to the leading-edge SW front,

Fig. 2 | Excitation of switching waves inside pulse-drive envelope. a Principle of
pulse-driven Kerr cavity dissipative structure formation, with image of resonator
with coupling section. b–e SW formation in pure normal dispersion. b Contour of
the bistable intracavity CWsolutions, plotted for increasing local value of the pump
F(τ), with stable (unstable) solution in solid (dashed) line. Red-dashed line marks
detuning after wave-breaking occurs. c Development of intracavity field (red-yel-
low) within the pulse envelope (blue dashed) with increasing detuning ζ0. Red-

dotted lines connect one field slice with the CW solution distribution in b. Maxwell
points on the pulse envelope marked with circles. d Expanding (top) and con-
tracting (bottom)high-state (dashed) underCWdriving. e Spectra of thefields from
c, and integrated dispersion operator. f, g SW formation with strong third-order
dispersion. f Intracavity fieldwithin the pulse envelopewith increasing detuning ζ0.
g Spectra of the fields from f.
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and causes the entire upper-state to collapse at a lower detuning than
in the case of pure SOD.

Overall, the flatness of the dispersion profile on negative fre-
quencies has heavily skewed the generated spectrum to the one side
resulting in a negative shift to the group velocity for the SW structure
as a whole inside F(τ). Naturally, introducing a counter-acting group-
velocity shift in the form of a negative d1 term should help contain the
structure within the center of F(τ) as the detuning increases. This
scenario is presented in Fig. 3. By now setting d1 = − 1.34, the time-
frame of the cavity field continually moves forward in fast time τ (here
to the left), keeping both SWs near to the center of the pulse envelope
F(τ) preventing early collapse. The SW fronts meet together now at
ζ0 = 5.1, where a significant event occurs. Instead of eliminating each
other as in the case of pure SOD, the SWs become locked to each other
based on the bonding of the down-SW to the modulated wave of the
up-SW forming the stable ZDS.

This structure, forming based on interlocking switching waves, is
similar but different to the formation of previously researched “dark
pulses”20. Such dark pulses form from the locking of the modulations
of the low-stateψL and can form in the caseof pure SOD,whereas these
bright ZDS necessarily require strong TOD so that a sufficiently pow-
erful modulation exists on the high-state ψH. These ZDS further dis-
tinguish themselves from the SW state, which exists here at lower
detunings for ζ0 < 5.1, in that the SW is bound overall by the left and
rightMaxwell points of the pulse-drive envelope F(τ), whereas the ZDS
is self-stable akin to a DS, and can freely exist across the broad back-
ground of the pulse-drive. As with pulse-driven conventional DS, the
ZDS moves itself towards a single trapping position on one edge of
F(τ)42,48,49. In this example, the trapping position is on the left edge.

We term the complete structure as a ZDS(n), with n individual
peaks. As the detuning here increases past ζ0 > 5.1, the structure
(plotted specifically on levels 3–6 of Fig. 3(b)) undergoes progressive
collapses reducing its multi-peaked periodicity initially from n = 5,

down to 2. In the frequency domain (correspondingly in Fig. 3(c)), we
can determine the value n by the number of spectral periods between
the pump and what was initially the SW dispersive wave, here on the
left end of the spectrum. It must be pointed out that the bulk of the
soliton component of the spectrum continues to exist in the anom-
alous dispersion region on the left, due to the “recoil” induced by the
new powerful dispersive-wave component on the right33,39. This is one
important explanation as to howa soliton can still exist, allowed by the
counter-acting balance of dispersion and nonlinearity, while still being
pumped from the normal dispersion region.

Figure 3(d) shows how varying the group-velocity shift d1 (or
desynchronization in terms of pulse-driving) gives rise to a varying
maximum detuning for ZDS(n) existence, and with different preferred
n. Here (with particular attention to Fig. 3(d-iii)), the ZDS(3) follows its
trapping position on the left-hand slope until it crosses the center line
where a trapping position no longer exists and decays, following an
asymmetrical trajectory reminiscent of recent studies on conventional
dissipative solitons48. The cavity energy trace, plotted in Fig. 3(e) for all
values of d1 in the vicinity, shows the asymmetrical unfolding of the
characteristic “step” feature we should expect to see in experiment.

Experimental results
Thepulse-drive source (as shown in Fig. 4(a)) is provided in the formof
an electro-optic comb (EO-comb)42,50, providing pulses with a mini-
mum duration of 1 ps (see Methods for details), and whose repetition
rate is finely controlled by an RF-synthesized signal feo. The cavity
platform of choice for the experiment is the chip-based Si3N4 micro-
resonator, in this case having a native FSR of 27.88GHz. The EO-comb
repetition rate is set to exactly half this at feo = 13.944GHz due to RF
transmission limitations. Other than a factor-2 reduction on conver-
sion efficiency due to only half the lines being coupled to the cavity,
the experiment behaves the same as one that is fully synchronous and
we can disregard the excess comb lines. Two microresonators

Fig. 3 | Simulation: zero-dispersion soliton formation via desynchronized
pulse-driving. F0 = 10,d2 = 1, d3 = 1 a Intracavity field as detuning ζ0 is increased.
d1 = − 1.34 b Individual time domain and c frequency domain of the fields in a (red
arrows). Pulse-drive envelope F(τ) marked by dashed line, and zero-dispersion
frequency marked by dotted line, with normal dispersion on the righthand side.

d Alternative field formation with (i) d1 = − 1.20 (ii) d1 = − 1.29 (iii) d1 = − 1.36 (iv)
d1 = − 1.37. White-dashed line marks the pulse-drive center. e (left) Total intracavity
energy from a (right) Zoom of the “step” feature, plotted for different values of
desynchronization d1. The black line corresponds to the field given in a.
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(referred to as MR1 and MR2) in particular are used to generate ZDS,
having two slightly different dispersion profiles causing the formation
of ZDS(n) of different n. Their measured dispersion parameters are
given in result figures further below.

StartingwithMR1, in order to ensure that a full range of formation
behavior is observed, and spectral extent maximized, the average
pulse-power coupled to the resonator is set to Pav = 350mW (12 pJ
pulse energy at 28GHz), approximately 20 times higher than the
observed minimum comb generation threshold. The experiment pro-
ceeds in a similar way as in the theory section, typical for localized
dissipative structure generation in Kerr cavities and particularly in
pulse-driven soliton generation42,49,51. The exact native FSR of the
microresonator is first found by varying the input repetition-rate feo

until the expected unfolding of the ZDS “step” is observed (Fig. 4(b)).
Here, we see an asymmetrical extension of the step vs. the relative
desynchronization δfeo = feo−D1/2π, as expected based on Fig. 3(e),
although with slightly different precise form due to unaccounted for
higher-order effects (the absence of a step at δfeo = 0 is a coincidence
based on shot-to-shot statistical variation of formation probability).
Based on this measurement, we find an optimum feo = 27.88888GHz,
with a locking range for ZDS on the order of ± 10 kHz.

For this value of feo, the EO-comb seed laser frequencyωp is tuned
slowly across a resonance frequencyω0 from the blue-detuned side to
the red-detuned side (such that δω =ω0 −ωp >0 by convention2)
towards the region of Kerr bistability. Fig. 4(c) plots the output light
from themicroresonator during this scan, and at the same time the RF

Fig. 4 | Experimental pulse-driven switching wave and zero-dispersion soliton
formation, MR1. a Setup, featuring the EO-comb as a pulsed-source. MZM:
Mach-Zehnder modulator, EOM: electro-optic modulator, EDFA: erbium-
doped fiber amplifier, ESA: electronic spectrum analyzer, OSA: optical spec-
trum analyzer, OSC: oscilloscope. The input pulse train is coupled into and out
of themicroresonator chip via lensed fibers. Left-inset: Spectrum of the 14 GHz
EO-comb before amplification. b Spectrogram of the step feature for different

desynchronization about 27.888880 GHz. c Microresonator transmission
(with DC value subtracted), with detunings from (f) marked with dashed lines.
d Spectrogram of the repetition-rate beatnote during the laser scan in c.
e Long-term beatnote measurement of the final comb state. f Stages of comb/
spectrum formation in descending order of detuning (40 dB vertical offsets).
Red block marks spectral filter for beatnote measurement.
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repetition-rate beatnote of the ZDS is recorded (Fig. 4(d)). From this
we are able to see that throughout this scan over resonance, the RF
repetition-rate beatnote shows low noise. We pause the scan of the
laser at four example locations here in order to observe the steady-
state solution of the SW and ZDS states. Here the comb spectra mea-
sured at theOSA areplotted in Fig. 4(f) at four detunings in descending
order, after the SW is formed. Qualitatively, the results behave as the
simulations in Fig. 3(c) predict. Firstly, over the first two rows, we see
the spectrum grow wider and with a sharper dispersive-wave (DW1)
located from 182 to 179 THz. Importantly, we see the spectral inter-
ference fringes either side of the pump (spaced by ≈ 1 THz on the first
spectrum) increase theirperiod asdetuning is increased, indicating the
two SW fronts aremoving together within the pulse-drive envelope. In
the last two rows, we see the SWs have coalesced into the ZDS(5), a
5-period structure, then reducing to a ZDS(4), each time moving the
location ofDW1 further to low frequencies. Stationary states existing in
between the 2nd and 3rd rows were not able to be accessed due to
thembeing thermally unstable. In 100%of experimental generations of
ZDS in this way, only a single ZDS structure was ever formed. This is
naturally as a result of the fact that just two SW fronts are generated at
the wave-breaking stage with pulse-driving, which go on to lock
together forming a single ZDS.

The long-term beatnote measured at this final state, plotted in
Fig. 4(e), is highly stable, inheriting the low-offset phase noiseof the feo
as supplied by the RF synthesizer. This confirms that the ZDS has

temporally locked to the driving pulse over the long-term, just as a
conventional bright dissipative soliton would42,49. The ZDS state was
able to exist in the microresonator for tens of minutes, eventually
collapsing due to uncontrolled thermal drift of the cavity resonance
mode away from the laser center frequency.

Figure 5 analyses this final structure in greater detail. We char-
acterize the broadband dispersion profile of the MR1 using a cascaded
three-laser swept spectroscopy technique52. In Fig. 5(a) we plot the
measured integrated dispersion profile Dint =ωμ −ω0 − μD1, repre-
senting the frequency deviation of each resonator mode μ from the
uniform FSR grid spaced byD1 (where the pumpmode corresponds to
μ =0). This data is fitted to a fourth-order polynomial centered at
ω0 = 2π × 192.3 THz where Dint≈ μ2D2/2 + μ3D3/6 + μ4D4/24 (D2/
2π = − 3.17 kHz, D3/2π = 13.8 Hz, D4/2π = − 15.9 mHz, all ± 5%). In
dimensionless parameters (see Methods), for a fixed d2 = 1 we have a
value d3 = 0.38. The pump frequency detuning − δω/2π = − 1.2GHz,
which we obtain from live cavity phase-response measurements53, is
alsomarked. In Fig. 5(b) the entire spectrumof the ZDS(4) is plotted and
features several dispersive waves (DW), the spectral locations of which
can be predicted based on where Dint(μ) = − δω. The predicted DW
locations do not match perfectly with experiment however, but this
can be explained by the bandwidth-limited dispersion measurement
with unknown higher-order values for D5,D6 and so forth.

The first, DW1 at 176 THz, will always occur for ZDS formation
due to the requirement for powerful TOD. The second, DW2 at

Fig. 5 | Octave spanning zero-dispersion soliton spectrum,MR1. a Experimental
measurement of the resonator integrated dispersion Dint, along with the spectrally
extended fitted solution, and solution shifted by +D1. Pump frequency (and pump
detuning) marked by the vertical red line (horizontal dashed line). Phase-matched
locations of dispersive waves marked by circles, with momentum mismatch in
dotted red arrow. b Measured spectrum of ZDS(4), with dispersive waves marked

with arrows corresponding to the circles in a. Insets show individual comb lines.
The left-most trace is in gray to indicate it is the second-order diffraction spectrum
of DW2, and not genuine. c Frequency domain and d time domain simulation of
ZDS(4) with dispersive-wave tails marked. The close agreement of the central
spectral fringes between the experiment and simulation gives us confidence that
we are observing a four-peak, 80 fs pulse (showed in linear scale inset).
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280 THz, has occurred due to the overall normal fourth-order dis-
persion of the waveguide54, but is not required for ZDS formation.
The additional dispersive wave, termed DWq, occurs where the
optical comb modes have wrapped by D1 so that Dint(μ) +D1 =
Dint(μ − 1) = − δω or that, by shifting by one FSR, the linear wave at
DWq has accrued a 2π phase shift relative to the pump wave. This
phase-wrapping is commonly known to allow the formation of so
called “Kelly” sidebands in soliton fiber lasers55. Owing to the long-
itudinal momentum mismatch δμ = + 1 between the coupled linear
wave and the ZDS comb lines, quasi-phase matching is required to
bridge this gap56. This particular microresonator features a brief
“mode-stripping” section where the waveguide width rapidly tapers
down to a narrow width in order to stop any higher-order spatial
modes from propagating57, where the waveguide dispersion chan-
ges sharply. This intra-roundtrip disturbance provides phase mod-
ulation to the linear wave at DWq, and is more than sufficient to
enable quasi-phase matching to stimulate resonant radiation. This
effect has been observed in microresonators with a similar intra-
roundtrip modulation of the waveguide width58, and has long been
observed in fiber-based Kerr resonators with longitudinally varying
dispersion44,59. Figure 5(c, d) shows numerical LLE simulations using
the real experimental parameters of MR1 (see Methods), demon-
strating close agreement with the form taken by the spectrum
corresponding to a ZDS(4) as shown in Fig. 5(d). In Fig. 5(c), both
simulation results taking into account either a constant or an
oscillating intra-roundtrip dispersion Dint(z), with DWq appearing
only in the latter case. Further simulations and analysis of DWq is
presented in the supplementary info.

In order to observe ZDS(n) of lower nwemove toMR2, which has
its zero-dispersion wavelength closer to the pump wavelength at
1560 nm. Here, the dispersion parameters (Fig. 6(a)) are fitted to be
D2/2π = − 848 Hz, D3/2π = 12.8 Hz, D4/2π = − 15.9 mHz, ± 5%, corre-
sponding to dimensionless parameters d2 = 1 and d3 = 2.11, further
into the zero-dispersion regime (Fig. 1). According to Fig. 1 and
predictions given by Parra-Rivas et al.36, the existence range for
ZDS(n) of lower n is greater in this regime, and so are more likely to

form within typical driving parameters. In this microresonator, with
the same generation method as above in MR1, we generate ZDS(3)

and ZDS(2) in Fig. 6(a) and (b), respectively. In this microresonator,
we do not observe the sameDW2 or DWq as inmicroresonator 1. For
ZDS(2), we present spectral measurements taken using three
increasing input pump powers, each enabling an increased max-
imum detuning δω. As shown, as available power is increased, the
overall spectral profile expands, with both DW1 on the left and the
anti-dispersive wave on the right moving outwards, in a similar
manor as for conventional dissipative solitons60.

Discussion
In this work, we have experimentally synthesized a class of localized
dissipative structures, that we term the zero-dispersion soliton. In
terms of figures of merit, the generated ZDS(2−5)-based combs pre-
sented here are extremely substantial in terms of the product of their
total bandwidth and their total line-countwhich, as far aswe are aware,
is a record for a single-structure in amicroresonator. The central body
of the ZDS(4) comb in MR1 spans over 76 THz (1830 and 1260nm),
accounting for more than 2700 comb teeth, spaced by a detectable
28GHz repetition rate. When including the DW features, the final
bandwidth becomes 136 THzor 97%of anoctave. As the repetition rate
is directly detectable on photodiode, a future work with fine-tuning of
the microresonator dispersion may enable f-2f self-referencing with a
single microcomb10. We have further demonstrated the direct gen-
eration of switching waves via pulse-driving, creating a highly smooth
ultra-broadband microcomb under normal dispersion conditions.
Such normal dispersion-based microcombs have thus far only been
formed in Si3N4 via modulation instability enabled by spatial mode-
coupling20, necessitating an extra coupled-microresonator ring with
integrated heaters in order to be deterministic61.

The formation of ZDS-based microcombs more generally has
expanded the domain of microcomb generation towards the region of
both normal dispersion and zero-dispersion, previously not often
considered ideal. This lifting of strict requirements for anomalous
dispersion may give greater flexibility in the Si3N4 fabrication process
going forward. The result also demonstrates not only that microcomb
generation can be achieved in a straight-forward fashion in such
waveguide resonators with normal-to-zero dispersion, but that it may
be most preferable for highly broadband comb generation due to the
superior flatness of the comb in the SW regime, as well as the lack of a
high-noise chaotic phase and multi-soliton formation as compared to
its anomalous dispersion-based counterpart.

In terms of physics, the zero-dispersion soliton can be seen as a
bright pulse-like structure, which constitutes a link between SW-
based and soliton-based localized dissipative structure. Such a
structure, the zero-dispersion soliton, defines itself in the regime
where third-order dispersion becomes a dominant influence rela-
tive to second-order or conventional group-velocity dispersion, and
where the dispersive-wave components become an essential part of
the structure rather than a perturbation. The fact that the ZDS may
exist in either anomalous or normal dispersion38 (referring to Fig. 1)
presents an ambiguity in explanation for the structure’s existence,
between being two interlocked switching waves in normal disper-
sion, or being a multi-peaked dissipative soliton in anomalous dis-
persion. Further investigation and analysis of ZDS existence will be
needed to gain full understanding on this. More widely, this
experimental observation may trigger further fundamental
research on the nature of dissipative Kerr solitons and switching
waves under one umbrella.

Note: we would like to acknowledge a parallel work by Li et al.
completed during preparation for this manuscript, which observed
the same ZDS structure in fiber-based Kerr cavities, including the
single-peak soliton in both anomalous and normal second-order
dispersion62.

Fig. 6 | Experimental zero-dispersion soliton formation, MR2. a Experimental
measurement of the resonator integrated dispersion Dint, and spectrally extended
fitted solution. b ZDS(3) comb. c ZDS(2) combs, measured at maximum detuning
using three pump powers, noted as effective average power coupled to ring (total
power towards chip).
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Methods
Theory and simulation
The homogeneous solutions to the intracavity field ΨCW = ∣ψCW∣2,
graphed in Fig. 2(b) for different local pump strength F(τ) = F0f2(τ), is
first obtained from the real roots of the cubic polynomial derived from
Eq. (1) at equilibrium and with all dispersion dl = 046, and subsequently
the complex field solution from the resonance condition,

Ψ3 � 2ζ0Ψ
2 + ðζ 20 + 1ÞΨ� FðτÞ=0 ð2Þ

ψCW =
i
ffiffiffiffiffiffiffiffiffi
FðτÞ

p
ΨCW � ζ0 + i

ð3Þ

with ΨH and ΨL being the top and bottom solution, respectively. The
simulation presented in Fig. 2 was calculated via the split-step method
with a change in detuning rate dζ0=dt

0 =0:01, far slower than the
cavity photon lifetime, to ensure SWs reached equilibrium at each
stage. In Fig. 3, dζ0=dt

0 =0:000625 to allow the ZDS to remain at their
trapping/equilibrium position during he detuning increase. The pulse-
drive width τp = 50.

Experiment
The EO-comb is comprised of a CW laser, followed by an intensity
modulator and three phase modulators, driven by an RF signal gen-
erator (Rhode & Schwarz SMB100A), generating 50 spectral lines
spaced by feo = 13.944GHz. The waveform is compressed in time
through linear dispersion made from 300 m of standard SMF-28 and
5m of dispersion-compensating fiber, yielding pulses of minimum
duration 1 ps as confirmed by frequency-resolved optical gating
(FROG). The Si3N4 microresonators MR1 and MR2 used in this experi-
ment have been fabricated with the photonic Damascene process63

with a 2350× 770nm2 cross-section, and possess a peak probable
cavity linewidth of κ/2π = (κ0 + κex)/2π = 208MHz and 150MHz (with
external coupling rate κex/2π = 155 MHz and 120 MHz) for MR1 and
MR2, respectively. Their measured dispersion Dint is expanded in the
main text. Effective power coupled to resonator as quoted above
exclude chip insertion loss of 1.6 dB and half of the 14GHz comb lines
not coupled to the resonator modes at 28GHz. The RF beatnote
measurement in Fig. 4(d, e) derives from approximately 11 filtered
comb lines outside of the EO-comb spectrum.

Full system model
The experimental microresonator results are described by the full LLE
with real parameters

∂Aðt,TÞ
∂t

=F i δω+μ � 2πδ f eo +Dintðz,μÞ
� �

~Aμ

h i

� κ
2
A+ ig0∣A∣

2A+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κexP0

_ω0

s
f pðTÞ

ð4Þ

acting on photon field A(t, T) over slow/laboratory time t and fast time
T in the co-moving frame of the intracavity field circulating at D1, with
frequency domain counterpart ~Aμ at discrete comb line indices μ.
Included with the linear phase operators Dint and δω is the input pulse
desynchronization δfeo. The nonlinear coupling parameter g0/
2π =0.056Hz (see supp. info for further on this).

For the simulation presented in Fig. 5(c, d), we set δω/2π = 900

MHz, and the input pulse profile f pðTÞ= expð�T2=T2
pÞ with Tp = 0.85

ps, P0 = 1.8W, and static desynchronization δfeo = 150kHz. In order to
stimulate the quasi-phase-matched wave at DWq, we set
Dintðz,μÞ=Dint0ðμÞð1 + 0:2 cosðδμ � 2πz=LÞÞ, with δμ = 1 representing a
single longitudinal-mode modulation in the dispersion operator for
the resonator of length L. All of the real parameters are related to the

dimensionless parameters by the following: t0 = κ
2 t, τ =D1

ffiffiffiffi
κ
D2

q
T ,

ψ=
ffiffiffiffiffiffi
2g0
κ

q
A, dl =

2
κ
Dl
l!

κ
D2

� � l
2
for l = 1–4, ζ0 =

2δω
κ , F0 =

8κexg0
κ3_ω0

P0.

Data availability
The data that support the plots within this paper are available at
https://doi.org/10.5281/zenodo.675978864. Anyotherdata andfindings
of this study are available from the corresponding author upon rea-
sonable request.

Code availability
The simulation code used to produce the plots within this paper are
available at https://doi.org/10.5281/zenodo.675978864.
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