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Digital-Analog Quantum 
Simulation of Spin Models  
in Trapped Ions
Iñigo Arrazola1, Julen S. Pedernales1, Lucas Lamata1 & Enrique Solano1,2

We propose a method to simulate spin models in trapped ions using a digital-analog approach, 
consisting in a suitable gate decomposition in terms of analog blocks and digital steps. In this way, we 
show that the quantum dynamics of an enhanced variety of spin models could be implemented with 
substantially less number of gates than a fully digital approach. Typically, analog blocks are built of 
multipartite dynamics providing the complexity of the simulated model, while the digital steps are local 
operations bringing versatility to it. Finally, we describe a possible experimental implementation in 
trapped-ion technologies.

Quantum simulators are devices designed to mimic the dynamics of physical models encoded in quantum sys-
tems, enjoying high controllability and a variety of accessible regimes1. It was shown by Lloyd2 that the dynamics 
of any local Hamiltonian can be efficiently implemented in a universal digital quantum simulator, which employs 
a universal set of gates upon a register of qubits. Recent experimental demonstrations of this concept in systems 
like trapped ions3 or superconducting circuits4–6 promise a bright future to the field. However, the simulation 
of nontrivial dynamics requires a considerable number of gates, threatening the overall accuracy of the simu-
lation when gate fidelities do not allow for quantum error correction. Analog quantum simulators represent an 
alternative approach that is not restricted to a register of qubits, and where the dynamics is not necessarily built 
upon gates7,8. Instead, a map is constructed that transfers the model of interest to the engineered dynamics of the 
quantum simulator. An analog quantum simulator, unlike digital versions, depends continuously on time and 
may not enjoy quantum error correction. In principle, analog quantum simulators provide less flexibility due to 
their lack of universality.

Trapped-ion technologies represent an excellent candidate for the implementation of both, digital and analog 
quantum simulators9. Using electromagnetic fields, a string of ions can be trapped such that their motional modes 
display bosonic degrees of freedom, and two electronic states of each atom serve as qubit systems. Currently, 
trapped-ion techniques offer one of the highest degrees of controllability among quantum technologies, with high 
fidelity single- and two-qubit gates, and high readout precision10,11. A wide variety of proposals for either digital 
or analog quantum simulations exist12–17, and several experiments have demonstrated the efficiency of these tech-
niques in trapped ions, in the digital3,18, and analog cases. Examples of the latter include the quantum simulation 
of spin systems19–26 and relativistic quantum physics27–29.

In this article, we propose a merged approach to quantum simulation that combines digital and analog 
methods. We show that a sequence of analog blocks can be complemented with a sequence of digital steps to 
enhance the capabilities of the simulator. In this way, the larger complexity provided by analog simulations can 
be complemented with local operations providing flexibility to the simulated model. More precisely, we show that 
analog quantum simulations of a restricted number of spin models can be extended to more general cases, as the 
Heisenberg model, by the inclusion of single-qubit gates. Our proposal is exemplified and validated by numerical 
simulations with realistic trapped-ion dynamics. We have named our approach digital-analog quantum simula-
tion (DAQS), a concept that may be cross-linked to other quantum technologies.

The proposed digital-analog quantum simulator is built out of two constitutive elements, namely, analog 
blocks and digital steps (see Fig. 1). Digital steps consist of one- and two-qubit gates, the usual components of a 
universal digital quantum simulator. On the other hand, analog blocks consist in the implementation of a larger 
Hamiltonian dynamics, which typically involve more degrees of freedom than those involved in the digital steps. 
In general, analog blocks will depend on tunable parameters and will be continuous in time.
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Results
To illustrate the digital-analog paradigm, we propose a nontrivial task: the quantum simulation of a generic spin-
1/2 Heisenberg model in trapped ions. Its Hamiltonian reads (ħ =  1)
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strength between spins i and j. To simulate this model, we will consider off-the-shelf interactions of ion chains25,26. 
More specifically, spin Hamiltonians
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can be used as analog blocks, while single-qubit rotations θ θ σ= − ∑R i( ) exp( )x y i i
x y

,
,  perform digital steps.

It is known that if a Hamiltonian can be decomposed into a sum of local terms, = ∑H Hk k, its dynamics 
= −U e iHt can be approximated by discrete stepwise unitaries, according to the Trotter formula

∏=









+−U e O t l( / ),

(3)k

iH t l
l

/ 2k

where l is the number of Trotter steps. Here, the error of the approximation to the second order O(t2/l) is bounded 
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sup 2 sup   Thus, the digital error will decrease for a larger number of Trotter steps l. 
For the specific case of the antiferromagnetic Heisenberg Hamiltonian (Jij >  0), we have that = ∑ <H Ji j

N
i jsup . 

This indicates the growth of the digital error bound with the number of spins in the chain, N, and with the range 
of the interaction between the spins. On the other hand, each particular decomposition of the Hamiltonian will 
show a different truncation error, which will grow linearly with the sum of the commutators of all the Hamiltonian 
terms2. For the Heisenberg Hamiltonian, a suitable decomposition is given by = +H H HXY ZZH . The dynamics 
of the σ σ= ∑ <H JZZ i j i j i

z
j
z term can be generated with the proposed DAQS protocol, by combining the global 

qubit rotation πR ( /4)y  with the Ising-like dynamics HXX. In this case, a Trotter step is given by the 
decomposition
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where π≡R R ( /4)y y . In Fig. 2a,b, we show the circuit representation of the simulation algorithm following such 
a Trotter decomposition, as compared to its equivalent in a purely digital quantum simulator, that is, a simulator 
built only upon one- and two-qubit gates. The latter will need to include in the algorithm a two-qubit gate for each 

Figure 1. Fully Digital vs. Digital-Analog. We depict the circuit representation of the digital and digital-
analog approaches for quantum simulation. The fully digital approach is composed exclusively of single-qubit 
(S) and two-qubit (T) gates, while the digital-analog one significantly reduces the number of gates by including 
analog blocks. The latter, depicted in large boxes (H1 and H2), depend on tunable parameters, represented by an 
analog indicator, and constitute the analog quantum implementation of a given Hamiltonian dynamics.
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two-body interaction contained in the Hamiltonian. Even though these elementary gates can be realized with 
high accuracy, one needs to apply a large number of them, especially when the model has a long interaction range. 
The induced global fidelity loss is given not only by the imperfection of experimental gates, but also by the non-
commutativity of these gates, which increases the Trotterization error. The inclusion of analog blocks like HXY and 
HXX, accessible in trapped ions25,26, can become beneficial for the simulation of many-qubit spin models.

In Fig. 2c, we plot the fidelity of the time evolution of two particular coupling regimes of the Heisenberg 
Hamiltonian for different numbers of Trotter steps, and we compare them to the fidelity of a purely digital algo-
rithm. Numerical results show that the digital-analog approach achieves higher fidelities at all studied times for 
both models. Furthermore, the DAQS method represents a higher advantage with respect to the digital approach 
when the interaction range of the simulated model is longer. In general, a long-range Hamiltonian has more 
noncommuting terms that contribute to a larger digital error. DAQS takes advantage of its versatility in the 
Hamiltonian decompositions, as given by the sum of only two terms in the considered example. These terms 
do not always commute, but the associated commutator happens to be small for long-range spin interactions. 
Actually, for the limiting Jij =  J case, DAQS produces no digital error, i.e., the analog blocks commute. In conse-
quence, we consider this approach to represent a solid alternative for simulating generic long-range Heisenberg 
models.

As we already mentioned, the digital-analog protocol shown in Fig. 2b needs two analog blocks per Trotter 
step, independently of the number of spins N. On the contrary, the number of entangling gates in a fully digital 
protocol grows with N. For generating each two-body interaction, at least a two-qubit gate is needed, and the 
number of two-body interactions will vary depending on the simulated model. This ranges from N −  1, in the case 
of nearest neighbour interactions, to N(N −  1)/2, in the long-range interaction case. Apart from the Trotter error, 
any realistic digital simulation has to deal with errors arising from the imperfection of experimental gates, which 
we quantify by the gate infidelity. In this respect, and in the long-range case, DAQS leads to a better result as long 
as the analog-block gate infidelity fulfills ε ε≤ −

AB
N N

T
( 1)

4
, where εT is the two-qubit-gate infidelity. Consequently, 

Figure 2. Digitization of the Heisenberg model. (a) Scheme of a Trotter step of a purely digital quantum 
simulation for a generic spin dynamics with five sites. (b) Trotter step of a Digital-Analog protocol for the 
simulation of the Heisenberg model with tunable α. (c) Fidelity loss obtained with the application of fully 
digital (solid lines) and digital-analog (dashed lines) protocols for the initial state |↓ ↓ ↑ ↓ ↓ 〉 . Blue (lower), orange 
(middle), and yellow (upper) colours represent one, two, and three Trotter steps, respectively. For the digital 
case, fidelity F decays faster with t for long-range interactions, while F remains similar for the digital-analog 
protocol.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:30534 | DOI: 10.1038/srep30534

a purely digital proposal would need to compensate the larger number of gates with better gate fidelities11. 
However, it is fair to assume that the two-qubit gate fidelity will decrease when we increase the number of ions in 
the trap30. The gate fidelity of the analog block, on the other hand, will also decrease with the size of the system.

Proposal for an experimental implementation. The experimental implementation of the considered 
digital steps, which correspond to local spin rotations, is easily achieved in trapped ions through carrier transi-
tions31. The spin-spin interactions, corresponding to the proposed analog blocks, were first suggested in ref. 19, 
and have been implemented in several experiments20,21,25. To show their derivation, we first consider a set of N 
two-level ions confined in a linear trap, coupled to the 2N radial modes of the string by a pair of non-copropagating 
monochromatic laser beams. These lasers are oriented orthogonally to the ion chain, with a 45 degree angle with 
respect to the x and y radial directions. We work in an interaction picture with respect to the uncoupled 
Hamiltonian σ ν= ∑ + ∑

ω †H a aj j
z

m m m m0 2
0 . Here, ω0 is the frequency of the electronic transition of the two-level 

ion, and vm the frequency of the transverse motional mode m of the ion string, with annihilation(creation) oper-
ator †a a( )m m . The interaction Hamiltonian for the system reads
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where Ωj is the Rabi frequency of the laser for the jth ion, ε =  ωL −  ω0 is the detuning of the laser frequency with 
respect to the electronic transition, φL is the laser phase, and ηj,m is the Lamb-Dicke parameter, which is propor-
tional to the displacement of the jth ion in the mth collective mode32.

To obtain the effective spin-spin interactions, the two pairs of laser beams are tuned off-resonantly to the red 
and blue sidebands of the 2N radial modes with symmetric detunings ε ν= ± + ∆± ( )COM , where ν∆  COM. 
Here, Δ  denotes the detuning of the laser with respect to the first blue sideband of the motional mode with high-
est frequency. This corresponds to the center-of-mass (COM) mode in the radial x-axis, in the case where this axis 
has the highest trapping frequency (ωx >  ωy). The Lamb-Dicke regime, which corresponds to keeping only the 
linear term in the expansion of the sine in Eq. 5, can be considered when η| | 

†a a 1j m m m, . Moreover, we can 
also neglect fast oscillating terms under the so called vibrational rotating-wave approximation (RWA), which 
holds when η ν| Ω | j m j m, . All in all, the resulting Hamiltonian is given by
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where ν ν∆ = ∆ + − > ∆( )m mCOM . If η| Ω | ∆j m j m, , we can perform the adiabatic elimination of the 
motional modes, which are only virtually excited. As a result, a second order effective Hamiltonian with only 
spin-spin interaction terms arises
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with ≡ ∑ − >+J J N/( 1) 0i i i, 1  and tunable 0 ≤  α ≤  323. In Fig. 3a, we plot the spin-spin coupling matrix obtained 
for five 40Ca+ ions, with the values Δ  =  (2π)60 kHz for the detuning, Ω =  (2π)62 kHz for the Rabi frequency, 
ω π= . . .�� (2 )(2 65, 2 63, 0 65) MHz for the trapping frequencies and λ =  729 nm for the laser wavelength. The cou-
pling matrix approximately follows the power-law decay with α ≈  0.6, which essentially can be tuned varying Δ  
and ωz. Here we have assumed Ωj =  Ω, which is safe for the five ion chain that we are considering26. If we were to 
consider longer chains one would need to have into account that the laser intensity profile has a Gaussian shape 
and therefore that the outermost ions may have smaller Rabi frequency than the central ones. This would result in 
a modification of the coupling scaling law. The XY Hamiltonian can be generated introducing a slight asymmetry 
in the detuning of the bichromatic laser ε ν δ= ± + ∆ +± ( )COM , δ ∆ . This introduces in the spin ladder 
operators a time-dependent phase factor, σ σ→ δ+ + −e i t and σ σ→ δ− −ei t, making several terms in the effective 
Hamiltonian negligible under the RWA. The effective Hamiltonian, then, reads
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,
2 . In addition to the XY interaction, terms proportional to σ†a am m j

z 
appear. However, the contribution of these terms is smaller than the spin-spin term by a factor of δ/Δ  and can be 
neglected in the case where a small number of phonons is excited (〈 Bj〉  ~ Jij). The XY Hamiltonian can also be 
implemented using a single monochromatic laser field tuned off-resonantly to the first blue sidebands of the 2N 
modes. As for the bichromatic case, the vibrational modes are only virtually excited and this gives rise to an effec-
tive spin-spin Hamiltonian. Nevertheless, in this case the strength of the terms σ†a am m j

z is of the same order of 
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magnitude as that of the spin-spin coupling term. This makes this last approach more sensitive to the heating of 
the phononic degrees of freedom.

Numerical simulations. In Fig. 3b, we depict the fidelity of an HXY analog block for five ions as a function of 
time. For numerical feasibility, instead of considering the ten radial modes present in the five ion case, we have 
considered a single COM mode with an effective Lamb-Dicke parameter η ≡ Ω ∆− J /2eff 1  that represents the 
effect of all radial modes. This can be done as long as the chosen effective Lamb-Dicke parameter results in a 
coupling strength of the same order of magnitude of the one under study. This is true because the infidelity of the 
adiabatic approximation depends directly on the coupling strength J. Moreover, we choose the COM mode 
because it is the most unfavorable one for the approximation in terms of its detuning Δ . In this manner we are 
able to give a safe fidelity estimate, overcoming the computationally demanding task of simulating the model with 
the ten motional modes. The analog blocks result from an effective second-order Hamiltonian, and their fidelity 
is subject to the degree of accuracy of the involved approximations. In the case of the HXX interaction, the greater 
the Δ , the better the approximation and the gate fidelity. However, the simulation time is longer because Jij is 
inversely related to Δ . The same is true for the HXY interaction, but the latter involves additional approximations 
that require δ ≪  Δ  and J ≪  δ. For Δ  =  (2π)60 kHz and δ =  (2π)3 kHz, the HXY gate infidelity can go up to 
ε ≈ .0 02AB , as we can observe in Fig. 3b. Obviously, the HXX analog block gives better results, since it is subject to 
fewer approximations. We have also plotted the time evolution for the Hamiltonian in Eq. (6), in which the vibra-
tional RWA has been applied, and the Lamb-Dicke regime has been considered. It can be observed that there is no 
appreciable difference between both plots, which validates the vibrational RWA in the considered parameter 
regimes.

A numerical simulation of the dynamics produced by the digital-analog protocol in Fig. 2b is presented in 
Fig. 3c. More precisely, we plot the magnetization of the first (orange, lower curve) and third (green, upper curve) 

Figure 3. Numerical simulations. (a) Long-range (α ≈  0.6) spin-spin coupling matrix Jij for N =  5 spins. (b) 
Fidelity of the HXY analog block for the state |↓ ↓ ↑ ↓ ↓ 〉 , with (lower plot) and without (upper plot) applying the 
vibrational RWA. The fidelity is periodic in time and thus we just plot one period. The numerical simulation 
assumes only the Lamb-Dicke regime, therefore accounting for the main sources of error that are the RWA and 
the adiabatic elimination. (c) Magnetization of the first (orange, lower curve) and third (green, upper curve) 
spins σ z

1,3  (upper plot) and the state fidelity of the digital-analog protocol (lower plot) versus time, for the 
protocol in Fig. 2b with initial state as in (b). Solid curves correspond to the ideal state produced by the 
Heisenberg Hamiltonian in Eq. (1), while dots correspond to the state produced by the DAQS approach. We 
divide the time interval into regions and simulate each time region using optimized numbers of Trotter steps, in 
order to maximize the state fidelity produced by our protocol.
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spins, σ t( )z
1  and σ t( )z

3  (upper plot), and the fidelity associated with the digital-analog protocol (lower plot) as 
a function of time, in a five-ion chain. In order to maximize the fidelity of the quantum simulation, we need to 
reach a compromise between the number of Trotter steps, which increases the fidelity by reducing the digital 
error, and the total number of gates, which lowers the total fidelity by increasing the accumulated gate error. For 
that, we divide the time interval in regions, and we numerically simulate each region with the optimal number of 
Trotter steps. The fidelity of single-qubit gates is in general high10, so we treat them as perfect in our calculation. 
As can be seen in Fig. 3c, we reach times of Jt =  2π/3 with a state fidelity of approximately 70%, assuming 
Δ  =  (2π)60 kHz and δ =  (2π)3 kHz. As we discussed, we could lower the error coming from the analog block by 
taking a larger value for Δ  and, thus, improve the fidelity of the quantum simulation. However, this would 
increase the experimental time, which is limited by the coherence time of the system. For our analysis, we have 
considered real time dynamics of up to 13 ms, which is below coherence times in trapped ion chains25.

Discussion
We introduce the digital-analog approach to quantum simulations, which represents a solid alternative to uni-
versal digital quantum simulation, whenever gate fidelities are not high enough to allow for quantum error cor-
rection. We have shown that the DAQS approach is advantageous for the simulation of the Heisenberg model in 
trapped ions. Also, we have validated through numerical simulations that an implementation of our protocol is 
within experimental reach. With the proposed DAQS approach, we expect that a larger number of ions can be 
employed when compared with purely digital methods, reaching the size of analog quantum simulators25,26. The 
natural continuation of this research line is to explore how other models could benefit from the DAQS technique. 
Under the general argument that analog blocks concentrate the complexity of the model in high fidelity analog 
simulations, it is reasonable to expect that plenty of models will profit from such a simulation procedure. The 
central concepts of this novel approach are platform independent and, thus, can be exported to other quantum 
technologies. We consider the introduced DAQS techniques to be an important ingredient enhancing the toolbox 
of quantum simulations.
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