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Low-level resistance to camptothecin in a human
small-cell lung cancer cell line without reduction in
DNA topoisomerase I or drug-induced cleavable
complex formation
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Summary To study the evolution of camptothecin (CPT) resistance, we have established two small-cell lung cancer cell lines with low
(3.2-fold, NYH/CAM15) and high (18-fold, NYH/CAM50) resistance to CPT by stepwise drug exposure. NYH/CAM50 cells had reduced
topoisomerase (topo 1) content and activity, and consequently CPT-induced DNA single strand breaks (SSBs) were reduced, as measured
by alkaline elution. In contrast, NYH/CAM15 cells had identical topo content and activity as compared with wild-type (wt) cells. CPT-
mediated SSBs and the rate of their reversal after drug removal were also equal in wt and NYH/CAM15 cells, as were doubling time, the
fraction of cells in S-phase and DNA synthesis rate in response to CPT. As the conversion of DNA SSBs to DNA double strand breaks (DSBs)
is thought to represent a critical event leading to cell death, we measured DNA DSBs by neutral elution. In contrast to DNA SSBs, CPT
induced fewer DNA DSBs in NYH/CAM15 than in wt cells. DNA flow cytometry showed that, in CPT-treated cells, the G, phase was emptied
as cells accumulated in late S- and G2M phase. A Spearman rank correlation showed that depletion of G1 and accumulation in late S and G2M
correlated to CPT sensitivity in these three cell lines. In conclusion, acquired resistance to CPT can occur without a reduction in either topo I
enzyme or CPT-induced cleavable complex formation, while a decrease in the level of CPT-induced DNA DSBs may be of major importance
in the early stages of CPT resistance.
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The camptothecins (CPTs), which poison DNA topoisomerase
(topo) I, are rapidly entering clinical trials (Slichenmyer et al,
1994; Dancey and Eisenhauer, 1996). Topo I relieves the torsional
strain that accumulates as DNA replication and transcription
occur. CPT stabilizes topo I-linked DNA single strand breaks
(SSBs) also designated the cleavable complex (reviewed in Chen
and Liu, 1994). The formation of these DNA SSBs is a prerequi-
site for CPT-induced cytotoxicity. However, DNA SSBs are not by
themselves sufficient to kill cells. Several studies indicate that
other factors downstream from DNA SSBs are crucial to the
induction of cell death, including DNA synthesis (Holm et al,
1989) and repair processes (Nitiss and Wang, 1988). It has been
hypothesized that the collision of cleavable complexes with
advancing replication forks results in the conversion of transient
DNA SSBs into the more lethal double strand breaks (DSBs)
(Ryan et al, 1991) accompanied by replication fork arrest
(Avemann et al, 1988). These DNA DSBs are thought to represent
a critical event in CPT cytotoxicity, as their repair is hampered by
the lack of template.
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Several cell lines with acquired resistance to CPT have been
characterized. To date, acquired resistance to CPT analogues has
been associated with reduced formation of drug-induced DNA
SSBs (reviewed in Pommier et al, 1996). This can be due to (1)
decreased enzyme levels (Eng et al, 1990), (2) resistant forms of
enzyme due to mutations (Andoh et al, 1987; Tamura et al, 1991)
or (3) decreased accumulation of drug in rare cases (Chang et al,
1992). It is still an open question whether these observations trans-
late to the clinical situation. Thus, studies on patients with adult
leukaemia failed to show any relationship between topo I levels
and clinical response to topotecan (Rowinsky al, 1996). Further, in
56 cases of lung cancer including eight patients exposed to CPT
analogues, no topo I mutations were detected and the mean level
of topo I mRNA was the same in those treated with or without
CPT (Ohashi et al, 1996). It therefore remains to be documented
that changes in topo I parameters or topo I mutations confer clin-
ical resistance to CPT. There are several possible explanations for
these disappointing results, one being the limited clinical tumour
material available, severely hampering such studies. However, one
must also consider that CPT-resistant cell lines characterized to
date exhibit resistance indices of 7-300, which are probably well
above what will be reached in the clinical situation. To investigate
the progression of CPT resistance, we have established two CPT-
resistant SCLC cell lines by stepwise exposure to drug: a low-level
resistant line, NYH/CAM15, exhibiting 3.2-fold resistance and
NYH/CAM50 with 18-fold resistance to CPT.
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METHODS AND MATERIALS

Cell lines

The human SCLC cell line OC-NYH (also designated GLC-2) (de
Leij et al, 1985) grows as a loosely attached monolayer in RPMI
1640 medium supplemented with 10% fetal calf serum plus
penicillin, streptomycin and L-glutamine at 37°C in a humidified
atmosphere with 7.5% carbon dioxide. The CPT-resistant subline
NYH/CAM15 was established by exposing OC-NYH cells to
increasing concentrations of drug during 9 months. Resistance was
maintained by culturing cells in the presence of 15 nM CPT in
every third passage. NYH/CAM50 cells were established by
exposing NYH/CAM15 cells to CPT for an additional 8 months
and maintained at 50 nm CPT in every third passage. Cells were

grown without drug for at least two passages before experiments
were performed. In order to avoid genetic drift, the cell lines used
in experiments were re-established from frozen stocks at regular
intervals (maximum of ten passages). Cell lines regularly tested
negative for mycoplasma contamination.

mitomycin C (Kyowa) were dissolved in sterile water. Vindesine
(Lilly) was dissolved in isotonic sodium chloride. BCNU (Bristol-
Myers Squibb) was dissolved in 10% (v/v) ethanol. Melphalan
(Welcome) was dissolved in hydrochloric acid with ethanol and
further diluted in propyleneglycol phosphate buffer. m-AMSA
(Parke-Davis) delivered in N,N-dimethylacetamid solution was
further diluted in acid lactose. Etoposide, teniposide, cisplatin (all
from Bristol-Myers Squibb) and mitoxantrone (Lederle) were in
solution for infusion. After 14-21 days, the colonies were counted.
Approximately 3000-4000 colonies were obtained in the control
dishes. The level of resistance was calculated as the ratio between
LD ,, values (the dose reducing the number of colonies to 50% of
controls) for resistant and wild-type cells. The LD50 values used for
calculating resistance indices were derived from experiments with
the use of the same batch of drugs. Survival curves in Figure 1 were
obtained as described above, except cells were exposed to CPT for
24 h in RPMI 1640 supplemented with 10% fetal calf serum. After
drug exposure, cells were washed twice in phosphate-buffered
saline (PBS) and plated as above. Approximately 10 000 colonies
were obtained in the control dishes.

Clonogenic assay

Drug sensitivity was assessed by colony formation in soft agar with
a feeder layer containing sheep red blood cells as previously
described (Roed et al, 1987). Sensitivity patterns depicted in Table
1 were obtained in two or three independent experiments. Solvent
concentrations never exceeded 1% and had no influence on the
plating efficiency. Single-cell suspensions (2 x 104 cells ml-') in
RPMI 1640 supplemented with 10% fetal calf serum were plated in
triplicate in the presence of drugs (continuous incubation). Fresh
drug solutions were used in the clonogenic assay. CPT (Sigma),
taxol (Bristol-Myers Squibb) and taxotere (Rhone-Poulenc Rohrer)
were dissolved in dimethyl sulphoxide (DMSO). Topotecan
(SmithKline Beecham), vincristine, gemcitabine (both from Lilly),
doxorubicin, cytosine arabinoside (both from PharmaciaUpjohn),
bleomycin (Lundbeck), hydroxyurea (Bristol-Myers Squibb) and
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Figure 1 Survival curves of wild-type (NYH), NYH/CAM15 and
NYH/CAM50 cells assessed by a clonogenic assay. After a 24-h treatment
with camptothecin (CPT), cells were washed twice and plated in soft agar.
Bars indicate s.e.m. of triplicate cultures

DNA synthesis

Bulk DNA was labelled by culturing exponentially growing cells
in the presence of 3 nCi ml-' [I4C]thymidine (53 mCi mmol-1,
Amersham, UK). After 3 days, the thymidine label was removed
by washing cells twice in PBS with a subsequent chase in label-
free medium for 24 h. Then, cells were harvested and were treated
with 1 ,UM CPT or 1% DMSO as control for 60 min at 37°C in a

2-ml suspension of 1 x 106 cells ml-'. The drug was removed by
washing cells twice and cells were resuspended in 2 ml of drug-
free medium. At the indicated time, cells were pulse labelled for
15 min with 1 ,tCi ml-' [3H]thymidine (25 Ci mmol-', Amersham,
UK). Precipitation was performed by adding a mixture of 2 ml of
ice-cold PBS and 2 ml of ice-cold 10% trichloroacetic acid
followed by centrifugation at 1200 r.p.m. for 5 min. After repeat-
ing the precipitation step, precipitates were dissolved in 800 l of
0.3 N sodium hydroxide at 70°C for 30 min. H counts were

normalized against 14C counts, and the percentage inhibition was

calculated as the ratio between normalized 3H counts in CPT-
treated cells and that in control cells.

Whole-cell lysates

Exponentially growing cells were harvested and washed once in
phosphate-buffered saline. The cell pellet was lysed in buffer with
50 mM Hepes, pH 7.0, 250 mm sodium chloride, 5 mM EDTA and
0.1% (v/v) NP-40. Buffer volume was approximately ten times the
volume of the pellet. After 30-min incubation on ice, insoluble cell
fragments were spun down at 20 000 g for 20 min at 4°C. The
supematant was recovered and protein concentration was

measured using the method of Bradford (Bradford, 1976)

Crude nuclear extracts

Extracts were prepared as previously described with minor modifi-
cations (Deffie et al, 1989). All steps were performed at 4°C.
Exponentially growing cells were harvested and washed twice in
nucleus buffer (NB), (2 mm potassium dihydrogen phosphate,
5 mm magnesium chloride, 150 mM sodium chloride, 1 mM EGTA
and 0.2 mm DTT, I mM phenylmethylsulphonyl fluoride, pH 6.5).
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Cells were resuspended in I ml of NB and were lysed for 5 min by
gently adding 9 ml of NB supplemented with 0.3% (v/v) Triton X-
100. Nuclear pellets were spun down at 1000 g for 10 min and
washed with NB. Proteins were extracted for 30 min in NB with
350 mM sodium chloride. Insoluble nuclear fragments were spun
down at 17 000 g and the supernatant was collected. Extracts were
diluted in an equal volume of glycerol and stored at -80°C. Protein
concentrations were measured using the Bradford protein assay
(Bradford, 1976).

DNA topoisomerase I activity

Topoisomerase I activity was determined by relaxation of super-
coiled BR322 plasmid DNA. The reaction mixtures consisted of
35 mM Tris-HCI, pH 8.0, 72 mm potasium chloride, 5 mM magne-
sium chloride, 5 mm DTT, 5 mm spermidine, 0.01% bovine serum
albumin (BSA), 225 ng of supercoiled DNA and nuclear extracts
with the indicated amount of protein in a total volume of 20,l.
Incubation was performed at 37°C for 30 min and terminated by
adding S pi of stop buffer containing 5% sarkosyl, 0.125%
bromophenol blue and 25% glycerol. Samples were applied onto
1% agarose gels. After electrophoresis, gels were stained in
ethidium bromide and photographed in UV light.

Immunodetection of topoisomerase I and lIkx

Equal amounts of protein were loaded on a 7.5% SDS-PAGE gel and
electrophoresed. The proteins were transferred to a nitrocellulose
membrane in a tank blotter. Membranes were blocked in 10% non-fat
milk in PBS buffer with 0.05% Tween 20 for 1 h, probed overnight
with a mouse monoclonal topo I antibody (1:1000), a generous gift
from Dr Y-C Cheng, Yale University (Chang et al, 1992), or for 1 h
using a polyclonal antibody against the carboxy terminus (residues
1513-30) of topo IIox (1:1000) from CRB Diagnostics (Cambridge,
UK). For detection of topo I, horseradish peroxidase-linked sheep
anti-mouse antibodies (Amersham, UK) were used as secondary
antibodies (topo I). Membranes were incubated in a mixture of
luminol and peroxide (Pierce, Rockford, IL, USA) for 5 min, with a
subsequent exposure to a film. For detection of topo IIx, alkaline
phosphatase-conjugated swine anti-rabbit secondary antibodies
(Dako, Copenhagen, Denmark) were used. The blots were developed
using Nitroblue tetrazolium and 5-bromo-4-chloro-3-indolylphos-
phate (both from Sigma Chemical, St Louis, MO, USA). All steps
were performed at room temperature. Quantitation of immunoreac-
tive bands was performed by densitometric scanning. In each blot, a
molecular weight standard was included.

Measurement of DNA single strand breaks (SSBs)

DNA damage was quantitated by the alkaline elution filter
method, as described in detail by Kohn (1991). Internal standard
L1210 cells labelled with [3H]thymidine (25 Ci mmol-1,
Amersham, UK) were exposed to 100 tM hydrogen peroxide for
60 min on ice, corresponding to an irradiation dose of 300 rad, as
described by Szmigiero and Studzian (1988). Experimental cells
labelled with ['4C]thymidine (53 mCi mmol-', Amersham, UK)
were treated with varying doses of CPT at 37°C for 60 min.
Mixing of standard and experimental cells was performed immedi-
ately before lysis. DNA was eluted at pH 12.1 under deprotein-
izing conditions using a Nucleopore filter (2.0 gM pore size).
Fractions were collected at 20-min intervals for 2 h with an elution

rate of 0.125 ml min-'. DNA SSB frequencies were expressed in
rad-equivalents and calculated as described by Kohn et al (1981).

Measurement of DNA elongation
DNA elongation was assessed by performing alkaline elution on
pulse-labelled cells as described by Covey et al (1986). Cells were
pulse labelled for 15 min with 2 tCi ml-' [3H]thymidine (25 Ci
mmol-', Amersham), and subsequently non-incorporated label was
removed by washing cells twice. Cells were exposed to 1 ,UM CPT
or 1% DMSO for 1 h. Alkaline elution was either performed imme-
diately after drug treatment (no wash) or after cells were left for
DNA elongation in drug-free medium at the indicated time periods.
The drug was removed by washing cells twice. Alkaline elution
was performed as described above, except internal standard cells
were labelled with 0.02 ,uCi ml-' ['4C]thymidine for 24 h.

Measurement of DNA double strand breaks (DSBs)
DNA DBSs were measured by neutral elution (pH 9.6). No
internal standard cells were used. As virtually no CPT-induced
DSBs were detectable after 1 hr of drug treatment, the incubation
time was increased to 24 h. To measure DSBs in newly synthe-
sized DNA, cells were labelled with 0.17 ,uCi ml-' [3H]thymidine
(25 Ci mmol-', Amersham) during the 24-h drug treatment period.
CPT-induced decrease in incorporation of [3H]thymidine
compared with control cells did not differ significantly in wild-
type and resistant cells. Thus, 100 nm CPT reduced thymidine
incorporation to 81% (range 74-96%), 80% (range 72-85%) and
90% (range 78-100%) compared with solvent-treated cells in
NYH, NYH/CAM15 and NYH/CAM5O cells respectively. After
washing the cells twice, they were loaded on the filters and
processed as described for DNA SSBs, with the exception that
elution was performed at pH 9.6. Filter retention of [3H]thymidine-
labelled DNA was plotted against fraction number. The per cent of
DNA eluted through the filters was corrected by subtracting the
per cent eluted DNA in solvent-treated cells.

Flow cytometric analysis of cell cycle distribution

Cells were treated at various concentrations of CPT for 24 h. Cells
were harvested by trypsinization and spun down, suspended in a
citrate buffer, snap frozen in liquid nitrogen and stored at -80°C
until further analysis. The samples were prepared for DNA flow
cytometry according to the method described by Vindelov and
Christensen (1990). Chicken red blood cells and trout red blood
cells were added as internal standards. Propidium iodide-stained
cells were analysed on a Becton Dickinson Facs Vantage, and
deconvolution of the observed histogram was performed by
maximum likelihood. The parameters estimated were the phase
fractions, the DNA index and the coefficient of variation (CV).
The distribution of the S-phase was fitted using second- or sixth-
degree polynomials, and tertiles of the S-phase were calculated.
Spearman rank correlation coefficients were calculated for cell
survival (Figure 1) and cell cycle distribution (Figure 8) in
response to 24-h CPT.

Apoptosis

Cells were treated for 24 h with 1-10ItM CPT in culture flasks
at a density of approximately 1 x 106 cells ml-'. Cells were either
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Table 1 Sensitivity pattern of NYH/CAM15 cells compared with wild-type (OC-NYH) cells

OC-NYH NYH/CAM15

Drug LD50 Range LD50 Range Resistance
index

Camptothecin 1.4 1.30-1.44 4.5 4.06-4.88 3.2
Topotecana 4.0 3.86-4.12 18.5 16.4-20.5 4.6

Doxorubicina 33 27.4-38.3 14 13.8-13.8 0.42
Etoposide 76 70.7-80.9 56 50.8-61.7 0.74
Teniposidea 13 10-15 6.7 0.53
m-AMSA 37 34.6-39.0 29 26.8-31.7 0.79
Mitoxantronea 12.7 12.4-13.1 9.4 6.8-12.2 0.74

Melphalana 581 555-608 1190 1170-1200 2.0
BCNUa 16.4 16.1-16.7 12.0 10.3-13.6 0.73
Cisplatin 505 486-524 1430 1320-1540 2.8
Mitomycina 20.4 18.5-21.6 16.8 15.9-17.7 0.82

Gemcitabinea 3.1 3.06-3.13 4.8 4.3-5.3 1.5
Hydroxyureaa 145 136-153 54 0.37
Ara-Ca 45.6 45.3-46.0 40.2 36.9-43.4 0.88

Taxola 1.65 1.65-1.65 1.31 1.22-1.41 0.80
Taxoterea 0.31 0.30-0.32 0.28 0.27-0.29 0.92
Vincristine 1.3 1.1-1.5 1.1 0.92-1.25 0.85
Vindesinea 1.6 1.6-1.7 1.3 1.32-1.34 0.82

Bleomycina 56 27-85 54 49-59 0.96

Cells were continuously exposed to drug. Values are based on two or three independent experiments. LD50 values are defined as the drug concentration
reducing the number of colonies to 50% of controls. All values are indicated in nm, except for BCNU and hydroxyurea, which are in ItM. Resistance indices were
calculated as the ratio of LDSO values in resistant and wild-type cells. Each resistance index was based on LD50 values derived from experiments using the same
batch of drugs. aindicates that results are derived from previously published data in Jensen et al (1997).

analysed after the 24-h drug treatment period or after additional
24 h of drug-free culture. Nucleosomal DNA fragmentation was
detected by gel electrophoresis. DNA was extracted using a
salting-out procedure described by Miller et al (1988). DNA from
0.5 x 106 cells was electrophoresed on a 1.2% agarose gel and
visualized by staining with ethidium bromide. Apoptotic
morphology was evaluated by fluorescent microscopy. Fixation
was performed in 1% ice-cold paraformaldehyde for 15 min. After
a wash in PBS, 1 ml of 70% ice-cold ethanol was added to the cell
pellet while vortexing. Cells were stained at 37°C for 30 min with
2 tg ml-' ethidium bromide and acridine orange (both from Sigma
Chemical) in PBS. After a wash, cells were resuspended in 100 ,ul
of PBS. A 10-gl sample was suspended in a drop of glycerol
placed on a slide (Knittel, Braunschweig, Germany) with a
0.5-mm deep concavity and observed in a fluorescence micro-
scope. L1210 cells were used as positive control.

RESULTS

Sensitivity pattern
The patterns of sensitivity/resistance towards different anti-cancer
agents were tested on OC-NYH and NYH/CAM 15. Results
derived from these data have, in part, been published previously
(Jensen et al, 1997). Resistant cells were 3.2- (continous incuba-
tion, Table 1) or 3.0- to 3.8 (24 h-incubation, Figure 1)-fold resis-
tant to CPT. As expected cross-resistance was seen to topotecan by
a factor of 4.6 (Table 1). In accordance with previous reports on
other cell lines (Eng et al, 1990; Sugimoto et al, 1990; Sorensen et

al, 1995), NYH/CAM15 cells were hypersensitive to all topo II
poisons tested, ranging from resistance indices of 0.42 for doxoru-
bicin to 0.79 for m-AMSA. A lack of cross-resistance was found
towards tublin-targeting agents, indicating that the resistant cells
are phenotypically different from what is found in multidrug-resis-
tant cells. Varying degrees of cross-resistance or hypersensitivity
were observed towards alkylating agents as well as towards
antimetabolites. The sensitivity pattern of NYH/CAM50 cells has
been evaluated against fewer drugs. Resistant cells displayed an
18-fold resistance towards CPT. The sensitivity pattern resembled
that of NYH/CAM 15 cells (not shown).

Cell growth
As it is a well-known fact that CPT analogues primarily exert their
cytotoxic effect during S-phase, we measured cell doubling times
and cell cycle phases by flow cytometry. The wild-type and both
resistant sublines grew at the same rate, as the mean cell doubling
times of cells in exponential growth in two independent experi-
ments were 19, 20 and 19 h in OC-NYH, NYH/CAM15 and
NYH/CAM50 respectively (Table 2). Cell cycle distributions,
including S-phase fractions of exponentially growing cells, were
also essentially the same in wild-type and NYH/CAM15 cells as
seen in Table 2. The more resistant subline NYH/CAM50 had a
reduced fraction of cells in G, and a corresponding increase in the
G2M phase. Thus, differences in growth kinetics apparently can
not explain the observed resistance. However, it appears that both
resistant cell lines have lost significant amounts of DNA during
their development, as indicated by the reduction in DNA index.
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Table 2 Cell doubling time and cell cycle distributions

Doubling Cell cycle phases DNA
Cell line time (h) index

G, S G2M

OC-NYH 17.1 20.4 47.7 ± 3.0 43.0 ± 2.6 9.3 ± 0.6 1.33 ± 0.01
NYH/CAM15 18.5 21.0 47.5 ± 1.9 42.8 + 2.1 9.8 + 1.9 1.16 + 0.01
NYH/CAM50 16.1 21.4 40.8 ± 2.8 41.3 + 2.2 18.0 + 1.4 1.18 ± 0.01

Doubling times of exponentially growing cells were measured in two
independent experiments. Cell cycle phases and DNA index were assessed
using flow cytometry. Standard deviations are indicated.

Table 3 Inhibition of [3H]-thymidine incorporation by CPT

Time (h) after drug removal

0 1 2 3

OC-NYH (% of control)a 32 24 25 21
NYH/CAM15 (% of control)a 31 20 21 23

Cells with 14C-thymidine-labelled DNA were treated for 1 h with 1 lM
camptothecin. After the drug was removed, a 1 5-min pulse labelling was
performed with [3H]thymidine at the indicated time. 3H counts were
normalized against 14C counts. Percentage inhibition was calculated as the
ratio between normalized 3H counts in CPT-treated cells and in control cells.
alncorporation of [3H]thymidine in controls was slightly increased by a factor
of 1.3 in NYH/CAM1 5 cells compared with wild-type.

DNA synthesis rate and DNA elongation

Incorporation of labelled thymidine over three to four doubling
times revealed that DNA synthesis rates were identical in wild-
type and NYH/CAM15 (not shown). DNA synthesis compared
with untreated controls was inhibited equally in wild-type and
NYH/CAM15 cells after 1-h CPT incubation, as seen in Table 3.
Recently, it was reported that an increased ability to complete
elongation of replicating DNA after CPT treatment is correlated to
intrinsic resistance to CPT in unselected colon cancer cell lines
(Goldwasser et al, 1996). However, a 1-h CPT exposure followed
by drug-free culture for 1, 2, 4 (not shown) and 6 h resulted in
similar rates of DNA elongation in wild-type and NYH/CAM15
cells using the alkaline elution technique on pulse-labelled cells.
The faster the DNA elongation rate, the longer the DNA fragments
that are produced, and thus a higher fraction of DNA will remain
on the filter. As seen in Figure 2, the DNA elongation rate in both
wild-type and NYH/CAM15 cells had almost reached the level of
solvent-treated controls 6 h after CPT removal. In addition it
appears from Figure 2 that CPT induces similar levels of DNA
SSBs in newly replicated DNA.

Drug uptake

Accumulation of 5 1M [3H] CPT after a 1-h incubation period
was equal in wild-type and NYH/CAM 15 cells (not shown). No
P-glycoprotein expression in Western blots using C219 antibody
was detected (not shown). Thus, no evidence was found
suggesting that differences in drug uptake are involved in the
mechanism of resistance.

100

a)CD

c
0

z

a)
0~

101|I
10010100 Per cent 14-C DNA on filter

Figure 2 DNA elongation measured by alkaline elution. Cells were pulse
labelled for 15 min with [3H]thymidine and subsequently exposed to 1 gM
camptothecin (CPT) or DMSO for 1 h. OC-NYH and NYH/CAM15 are
indicated by solid and broken lines respectively. Alkaline elution was
performed immediately after CPT (-) or DMSO (1) or after a 6-h drug-free
incubation preceded by 1-h CPT (A) or DMSO (0). Internal standard cells
were labelled with [14C]-thymidine. Per cent of 3H- and '4C-labelled DNA
remaining on the filters are plotted logarithmically on the y- and x-axis
respectively

1 2 3

100 kDa

Figure 3 DNA topoisomerase content in whole-cell lysates assessed by
Western blotting. Equal amounts of proteins were loaded on each lane. Lane
1, wild-type OC-NYH; lane 2, NYH/CAM15; lane 3, NYH/CAM50O Position of
100 kDa is indicated at the left

Content and activity of DNA topoisomerase
Whole-cell lysates were analysed for topo I content by
immunoblotting (Figure 3). Whereas topo I content was greatly
reduced in NYH/CAM50 to 10-20% of the level in wild-type
cells, no such reduction was found in NYHICAM15. Similar
results were found when using 350 mM nuclear extracts. To deter-
mine whether the reduction in topo I content was accompanied by
a decrease in enzymatic activity, we measured topo I activity using
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---------NYH ---- NYH/CAM15 NYH/CAM50 ------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Rel

SC

Figure 4 Catalytic activity of topo in whole-cell lysates assessed by relaxation of BR322 plasmid DNA. Upper bands represent relaxed DNA (Rel). Lower
bands represent supercoiled DNA (SC). A 50% reduction was seen in NYH/CAM50 (lanes 15-21) lysates, and no reduction was seen in NYH/CAM15 (lanes
8-14) lysates compared with wild-type OC-NYH cells (lanes 1-7). Amount of proteins in reactions were 300 ng in lanes 1, 8 and 15; 150 ng in lanes 2, 9 and 16;
75 ng in lanes 3, 10 and 17; 37.5 ng in lanes 4, 11 and 18; 18.8 ng in lanes 5, 12 and 19; 9.4 ng in lanes 6, 13 and 20; and no lysate in lanes 7, 14 and 21

0

a relaxation assay (figure 4). These data confirmed that topo I
activities in NYH/CAM 15 in whole-cell lysates and nuclear
extracts were unaltered compared with wild-type cells The reduc-
tion in topo I activity in NYH/CAM50 cells was 25-50% of the
wild-type level. Topo IIcx levels were increased by a factor of
1.3-1.8 and 1.3-1.7 in NYH/CAM15 and NYH/CAM50 cells
respectively (figure 5).

DNA damage

As the level of cleavable complex formation has been found to be
correlated to cytotoxicity, we measured DNA SSBs by alkaline
elution. As shown in Figure 6, increasing concentrations of CPT
induced DNA SSBs in a dose-dependent manner until a plateau
was reached at a concentration of 1 ,UM. Interestingly, CPT
induced equal levels of DNA SSBs in wild-type as well as in
NYH/CAM15. In contrast, the level of CPT-induced DNA SSBs in
NYH/CAM50 was eightfold less compared with wild-type cells.
In accordance with the observed hypersensitivity towards VP-16
in the clonogenic assay, VP-16 induced 1.6- and 2.4-fold more
DNA SSBs in NYH/CAM15 and NYH/CAM50, respectively,
compared with wild-type cells (not shown). We studied the
kinetics of the disappearance of CPT-induced SSBs after the drug
was removed. Reversal of CPT-induced DNA SSBs was almost
complete within 5 min at 37°C. No breaks could be detected after
10 min without drug. In order to decrease the rate of reversal, we
lowered the temperature to 10°C and found that the DNA SSBs
disappeared at virtually the same rate in wild-type and
NYH/CAM15 cells (not shown).

These data indicate that the critical events for resistance in
NYH/CAM15 cells are operating downstream from the formation
of cleavable complexes. The conversion of SSBs into more stable
or irrepairable double strand breaks has been proposed to represent
one such critical event (Avemann et al, 1988). We therefore
measured DSBs by use of neutral (pH 9.6) elution. CPT only
induces a limited amount of DSBs when cells are treated for a
short period, probably because ongoing DNA synthesis is needed
for the conversion of SSBs to DSBs. Accordingly, we measured
DSBs after 24 h of incubation as shown in Figure 7. CPT induced
DNA DSBs in a dose-dependent manner in all three cell lines. In
contrast to DNA SSBs, CPT induced fewer DNA DSBs in
NYH/CAM 15 when treated at 25 and 100 nM compared with wild-
type cells. However, at the extremely high dose of 500 nM CPT,
the difference in the level of DNA DBSs between wild-type and
NYH/CAM15 cells levelled off. CPT-induced DNA DSBs in

/

/

'/.

Figure 5 DNA topoisomerase IlIa content in 350 mm sodium chloride
nuclear extracts assessed by Western blotting. Equal amounts of proteins
were loaded on each lane. Lane 1, wild-type 00 NYH; lane 2, NYH/CAM15;
lane 3, NYH/CAM5O. Numbers at the left indicate position and size of
molecule weight markers in kDa
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Figure 6 DNA single strand breaks (SSBs) induced after 1 -h exposure to
camptothecin (OPT) in wild-type OC-NYH (NYH, 0), NYH/CAM15 (U) and
NYH/CAM50 (A) cells measured by alkaline elution. DNA SSBs frequencies
are expressed in rad-equivalents

NYH/CAM50 cells were reduced at all concentrations tested
compared with wild-type cells.

Apoptosis
Neither nucleosomal DNA fragmentation nor apoptotic
morphology were detectable in response to 24 h of CPT treatment
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Figure 7 DNA double strand breaks (DSBs) after 24-h incubation with
camptothecin in wild-type OC-NYH (NYH), NYH/CAM15 (/CAM15) and
NYH/CAM50 (/CAM50) cells measured by neutral elution (pH 9.6). DNA
DSBs are expressed as per cent of total DNA eluted through the filter.
Horizontal lines represent the medians of four independent experiments, with
the range indicated by the vertical bars

at 1-10 gM in either wild-type or NYH/CAM15 cells. Cells were
analysed immediately after drug treatment or after 24-, 48- or 72-h
drug-free periods (not shown). In contrast, L1210 cells treated as
above showed typical features of apoptosis. Furthermore, flow
cytometry analysis did not reveal any accumulation of nuclear
fragments in the region corresponding to a DNA index less than GI
in response to CPT (not shown).

Cell cycle distribution

The genotoxic effects of exposure to CPT leads to the accumulation
of cells in the G2M phase of the cell cycle (Tobey, 1972; Tsao et al,
1992). Perturbations of cell cycle distributions after 24 h of CPT
treatment and after an additional 24 h of drug-free culture were
measured by flow cytometry. The G, phase was emptied as cells
accumulated in late S- and G,M phases. As it is well known that the
S-G,M transition is intrinsically unstable, the last tertiles of the
S-phase and the G,M region were combined for data analysis,
yielding very precise estimates. As seen in Figure 8A, NYH/
CAM50 cells had a reduced tendency to accumulate in late S- and
G,M compared with wild-type cells. The NYH/CAM 15 subline
had an intermediate tendency to accumulate in late S- and G,M.
After an additional 24 h of incubation in the absence of drug, cell
cycle distributions also reflected the degree of resistance. At low
doses, cells were partly able to leave late S- and G2M and enter G,
dependent on resistance level. At high doses, cells were completely
halted in late S- and G,M, except for NYH/CAM50 cells (Figure
8B). Accumulation in late S- and G2M (r = - 0.74, P < 0.008) and
depletion of G, (r = 0.92, P < 0.00 1) after 24 h of drug incubation
correlated negatively to cell survival, whereas in the case of early
S-phase no correlation was found. Thus, accumulation in late
S- and G,M as well as depletion of G, seem to reflect the degree of
sensitivity in these CPT-resistant cell lines.

DISCUSSION

With the rapid introduction of CPT analogues in the clinic, it

is important to elucidate the critical events on the pathway to

CPT-induced cell death. In order to design rational clinical trials, it

is of equal importance to unveil the possible mechanisms by which

resistant cancer cells avoid getting killed by this new group of

promising anti-cancer agents. In cell lines, the most frequent event

leading to CPT resistance appears to be a reduction in CPT-induced

cleavable complexes (reviewed in Pommier et al, 1996). This event

is often associated with a down-regulation of cellular topo I protein
content (Eng et al, 1990) or with mutated forms of topo I rendering
the enzyme itself resistant to CPT-induced DNA damage (Andoh et

al, 1987; Tamura et al, 1991). Efforts to correlate topo I parameters
to clinical resistance have not been successful (Ohashi et al, 1996;
Rowinsky et al, 1996). Many explanations could account for this

discrepancy between clinical and preclinical data. Indeed, the wide

use of combination chemotherapy creates a more complex situation

impairing the possibility of relating biochemical changes to resis-

tance towards a particular drug. Furthermore, one has to take into

account that cell lines isolated for CPT resistance exhibit resistance

indices that probably exceed what would be necessary in the clinic.

Although such cell lines are suitable as a model for mechanistic

studies, it is an open question whether these data have any bearing
on the clinical situation. We have established two small-cell lung
cancer cell lines with 3.2- and 18-fold resistance towards CPT in an

effort to characterize low-level progression of resistance. We found

that the two resistant cell lines differed profoundly with respect to

topo I parameters. NYH/CAM 15 cells had equal levels of topo I

content and activity as well as CPT-induced DNA SSBs compared
with wild-type cells, whereas NYH/CAM50 cells had the classical

CPT resistance phenotype with reduction in topo I and CPT-

induced DNA SSBs. Thus, NYH/CAM15 cells offer an opportunity
to study events critical for cell death downstream from the cleav-

able complex formation. DNA DSBs measured by neutral elution

after 24 h ofCPT incubation were reduced in NYH/CAM 15 cells at

concentrations killing up to 2 and 3 logs of resistant and wild-type
cells respectively. This difference levelled off at an extremely high
dose of 500 nM CPT, as did differences in cell survival after 24 h of

drug treatment (Figure 1). One possible interpretation of these find-

ings is that CPT-induced DNA SSBs in NYH/CAM15 cells are

qualitatively different from those in wild-type cells. Thus, the same
level of DNA SSBs convert into fewer DNA DSBs in

NYH/CAM15 compared with wild-type cells, although the DNA

synthesis rates after CPT treatment were identical in the two cell
lines. This proposed qualitative difference could be caused by
changes in the replication complex of NYH/CAM15 cells.

Certainly, these results are in agreement with the replication fork
collision model that hypothesizes that the critical event for CPT-
induced cell death is the conversion of cleavable complexes to the
more lethal DNA DSBs. As apoptotic pathways might be involved
in events downstream from the cleavable complex formation
(Bertrand et al, 1993; Kataoka et al, 1994; Shimizu et al, 1995), we
analysed CPT-treated cells for features characteristic of apoptosis.
We could not detect less than G, nuclear fragments by flow cytom-
etry; nor could we detect nucleosomal DNA fragmentation or apop-
totic morphology in cells stained with ethidium bromide and
acridine orange (see Material and methods) in either wild-type
or resistant cells. This argues strongly against apoptotic
pathways operating in these cells on the pathway to CPT-induced
death. Analysis of cell cycle distribution in response to CPT
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Figure 8 Flow cytometric analysis of cell cycle distribution in wild-type OC-NYH,NYH/CAM15 and NYH/CAM50. Cells were harvested for analysis
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exposure showed a depletion of G, with a concomitant accumula-
tion in late S and G2M. These perturbations in cell cycle distribu-
tion are less pronounced the more resistant the cells are. Spearman
rank correlation between CPT sensitivity and accumulation in
late S and G2M reached an r value of 0.74, indicating that flow
cytometry analysis could serve as an assay to predict CPT
sensitivity/resistance.

Interestingly, topo Ilot levels and sensitivity to topo II-targeting
drugs were increased even in NYH/CAM15 with unaltered topo I
levels. Previously, we have observed a similar increase in topo
level as an early event in the evolution of topotecan resistance
preceding the down-regulation of topo I (Sorensen et al, 1995).
The reason for this is not clear, however it could be due to defi-
cient topo I functions, presumably caused by CPT selection.

This type of resistance to CPT, i.e. with unchanged cleavable
complexes, has recently been observed in a breast cancer cell line
MCF-7/C4, selected for CPT resistance after mutagenic treatment
(Fujimori et al, 1996). As cross-resistance was seen towards UV
light and cisplatin, the authors speculated that increased repair
capacity was involved in the mechanism of resistance. This was

confirmed by measuring the ability of cells to reactivate a UV-
damaged pSV-CAT plasmid. However, repair of CPT-induced
damage in genomic DNA was not measured. In the present study,
we exclusively measured steady-state levels of DNA DSBs, as

repair studies were not feasible because of differences in cell
survival after 24 h of drug treatment followed by a 24-h incubation
in drug-free medium. However, we do not find it likely that
increased repair is a part of the resistant phenotype in
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NYH/CAM15, as both hypersensitivity and cross-resistance were
seen towards alkylating drugs. In another study by Beidler et al
(1996), the classical CPT resistant phenotype, i.e reduction in
CPT-induced protein-linked DNA breaks, was observed in CPT-
resistant human nasopharyngeal cell lines and their partial rever-
tants. Interestingly, the levels of protein-linked DNA breaks were
the same in resistant and revertant cells, despite a marked differ-
ence in sensitivity to CPT. However, resistant cells had a profound
reduction in DNA DSBs measured by pulse field electrophoresis
compared with partial revertants, indicating that part of the resis-
tance mechanism in these cells operates independently of the level
of cleavable complexes. Recently, Goldwasser et al (1995) found
that CPT-induced cleavable complexes and not topo I levels corre-
lated to CPT cytotoxicity in a panel of unselected colon carcinoma
cell lines with intrinsic differences in CPT cytotoxicity. However,
in a pair of cells with an equal level of cleavable complexes, the
more resistant cell line was more efficient in elongating DNA after
CPT treatment and consequently could overcome an S-phase
block (Goldwasser et al, 1996). Increased ability to elongate CPT-
damaged replicons does not appear to play a role in the resistant
phenotype ofNYH/CAM 15 cells, as the capacity for DNA elonga-
tion was similar in response to CPT. This could reflect differences
between intrinsic and acquired resistance.

This study contributes to the emerging data that the level of
cleavable complexes are not invariably correlated to sensitivity to
CPT and that other factors, such as the level of DNA DSBs, may
be of greater relevance for CPT resistance. The factors responsible
for conversion of DNA SSBs to DSBs are largely unknown, but
are thought to be at least partly due to the DNA replication
process. Use of OC-NYH and NYH/CAM15 cells, which only
differ in their conversion rate, may help to elucidate which replica-
tion components are responsible for this lethal event.
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