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Understanding whether a population will survive or
become extinct is a central question in population
biology. One way of exploring this question is to
study population dynamics using reaction–diffusion
equations, where migration is usually represented as
a linear diffusion term, and birth–death is represented
with a nonlinear source term. While linear diffusion
is most commonly employed to study migration,
there are several limitations of this approach, such
as the inability of linear diffusion-based models to
predict a well-defined population front. One way to
overcome this is to generalize the constant diffusivity,
D, to a nonlinear diffusivity function D(C), where
C > 0 is the population density. While the choice of
D(C) affects long-term survival or extinction of a
bistable population, working solely in a continuum
framework makes it difficult to understand how the
choice of D(C) affects survival or extinction. We
address this question by working with a discrete
simulation model that is easy to interpret. This
approach provides clear insight into how the choice
of D(C) either encourages or suppresses population
extinction relative to the classical linear diffusion
model.

1. Introduction
Predicting whether a population will survive or go
extinct is a key question in population biology [1–5].
For example, predicting whether a species released
into a wild area will survive is crucial in protecting
endangered animals [6]. Similarly, whether cancer
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spreads to a different body part from a primary tumour site depends on the survival of small
numbers of tumour cells growing successfully in new locations [7,8]. A classical continuum model
for studying the survival of biological populations is the strong Allee effect model, based on an
ordinary differential equation (ODE),

dC(t)
dt

= λC(t)
(

1 − C(t)
K

)(
C(t)
A

− 1
)

, (1.1)

where C(t) ≥ 0 is the population density at time t ≥ 0, λ > 0 is the intrinsic growth rate, K > 0 is
the carrying capacity density and 0 < A < K is the Allee threshold density [9–15]. The fate of a
population described by (1.1) depends solely upon the initial density, C(0). Extinction occurs if
C(0) < A, leading to C(t) → 0 as t → ∞. By contrast, the population survives if C(0) > A, leading
to C(t) → K as t → ∞. Such dynamics, leading to either eventual survival or extinction, are
sometimes called bistable population dynamics. The strong Allee effect model belongs to a broader
class of population models, called bistable population dynamics models, and the key feature
of these models is that they involve three equilibrium points: C = 0 and C = K > 0 are stable
equilibrium points, and C = A, where 0 < A < K is unstable. There are many ODE models of this
kind, not just the classical cubic form in (1.1) [8,16–18].

To investigate spatial effects, such as moving invasion fronts, some studies consider
incorporating equation (1.1) into a reaction–diffusion equation, where the population density
depends upon both position and time [19–28]. In reaction–diffusion models, the dynamics of
bistable populations involve a more complicated interaction between the bistable source term
and the diffusion term. Unlike ODE models where the fate of a bistable population is solely
determined by the initial density, many factors influence whether the population will survive or
go extinct in reaction–diffusion models [20,29–32]. For example, on an infinite domain, the initial
area occupied by a bistable population needs to be greater than a threshold, called the critical
initial area, so that the population avoids extinction [20].

Most reaction–diffusion models in population biology consider a constant diffusivity
associated with Fick’s first law of diffusion, which states that the diffusive flux is proportional to
the spatial gradient of density [10,19,21–23,25,33,34]. In one spatial dimension, the diffusive flux is
J = −D∂C(x, t)/∂x, where D > 0 is the constant diffusivity. Linear diffusion is popular in modelling
biological populations, since this model is very simple, and has a straightforward connection with
a range of underlying stochastic models, such as conceptualizing the motion of individuals in the
population as a simple unbiased random walk in the dilute limit, where interactions between
individuals are weak [10,34–36]. However, despite the immense popularity of linear diffusion,
there are well-documented circumstances where population dynamics cannot be described by this
simple model. For example, sharp moving fronts in cell migration assays cannot be represented
by linear diffusion, and so there has been great interest in modelling the motion of well-defined
fronts using degenerate nonlinear diffusion terms [37–41]. Similar to cell biology applications,
mathematical models of insect dispersal with linear diffusion are unable to replicate observations
where well-defined sharp fronts play an important role [34,42]. Therefore, reaction–diffusion
equations with nonlinear diffusion are considered in a variety of applications where, in one
spatial dimension, the flux is J = −D(C(x, t))∂C(x, t)/∂x, with the key difference that the constant
linear diffusivity D is now generalized to a nonlinear function D(C) > 0 [34,37,39–50]. Unlike the
constant diffusivity that can be interpreted as undirected random motion of individuals without
interaction [35,36], identifying the behaviour of individuals corresponding to a given nonlinear
diffusion term is less clear. Therefore, it is not always obvious which nonlinear diffusion term is
appropriate to model a particular situation [34,40,44,51]. Since it is known that nonlinear diffusion
can impact the conditions required for survival of a bistable population [52,53], exploring the
behaviour of individuals is helpful to provide a simple interpretation of how D(C) affects the
fate of bistable populations subject to a nonlinear diffusion migration mechanism. Therefore,
it is valuable to study the connection between the behaviour of individuals and the nonlinear
diffusion term in reaction–diffusion equations.
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To connect continuum models with the behaviour of individuals, we work with a physically
intuitive discrete framework. The discrete model incorporates straightforward crowding effects
into birth, death and movement of individuals on a two-dimensional hexagonal lattice [32]. In
particular, we quantify the influence of crowdedness on the motility of individuals by using
a crowding function G(C) > 0, which explicitly describes how the local crowding affects the
ability of individuals to move. The continuum limit of the discrete model is a reaction–diffusion
equation with a strong Allee effect source term, and a general nonlinear diffusivity function D(C).
This framework allows us to investigate population dynamics through repeated simulation of
the discrete model, as well as solving the associated reaction–diffusion continuum limit model
numerically. Through the mathematical relationship between the nonlinear diffusivity function
D(C) and the underlying crowding function G(C), we develop an intuitive understanding of
how different choices of D(C) affect the extinction or survival of the population. To improve our
understanding, we derive expressions for the density-dependent flux of populations associated
with the discrete model. The expression for the flux can be rewritten as the flux associated with
a linear diffusion mechanism plus a term, which we interpret as a correction that is associated
with the effects of nonlinear diffusion. Writing the flux in this way allows us to directly relate
how different choices of D(C) either encourage or suppress extinction. All interpretations of our
modelling framework are supported by a suite of stochastic simulations and numerical solutions
of the associated continuum limit reaction–diffusion equation. All numerical algorithms required
to replicate our work are available on Github.

2. The discrete model and the continuum limit
In this section, we introduce a lattice-based discrete model and the corresponding continuum
limit model description that is closely related to our previous work [32]. Unlike the work in [32],
which only considers examples where the motility of individuals is given by a linear diffusion
mechanism, here we focus on a more broad range of motility mechanisms that include a range of
choices of nonlinear diffusivity functions.

In the discrete model individuals are represented as agents on a two-dimensional hexagonal
lattice with spacing � > 0. A lattice site s, indexed by (i, j) with a unique Cartesian coordinate
(x, y), is either occupied Cs = 1, or vacant Cs = 0. Stochastic simulations include birth, death and
movement events, and we will now explain the details of these mechanisms.

If there are Q(t) agents on the lattice, we use a random sequential updating method to evolve
the discrete model from time t to time t + τ . To achieve this we select Q(t) agents at random,
with replacement, and give those agents an opportunity to undergo a movement event. We then
select another Q(t) agents, at random, with replacement, and give those agents an opportunity to
undergo a birth/death event. Once these two sets of events have been assessed, we advance time
from t to t + τ and repeat until the desired output time is reached [54].

For a potential motility event, if the agent in question is at site s, that agent will move with
probability M̂ = MG(Ks), where M is the probability that an isolated agent will attempt to move
during a time interval of duration τ , and G(Ks) ∈ [0, 1] is a movement crowding function which
quantifies how crowding in a small neighbourhood of s influences motility. We interpret G(Ks)
to be a measure of the influence of the local density upon movement since Ks is a simple measure
of density around site s, given by

Ks = 1
|Nr|

∑
s′∈Nr{s}

Cs′ ∈ [0, 1], (2.1)

where Nr{s} denotes the set of neighbouring sites surrounding site s. Since the local density can be
measured with different-sized spatial templates, we use r to represent the diameter of concentric
rings surrounding site s, so that the number of neighbouring sites of any site is |Nr|= 3r(r + 1), as
shown in figure 1a.

https://github.com/oneflyli/YifeiNonliearDiffusion2021
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Figure 1. Movement and growth mechanisms. (a) Different-sized spatial templates Nr , where r is the diameter of the
concentric rings surrounding site s. (b) Movement mechanismwith r = 1. (c) Growthmechanismwith r = 1. In (b,c), there are
twoneighbouring agents (blue) surrounding the agent at site s (grey) at time t. The agent at site sundergoes amovement event
with probability M̂= MG(Ks), where Ks = 1/3, as shown in (b). As there are four vacant neighbouring sites, the probability of
moving to one of the vacant sites is M̂/4. Similarly, the agent undergoes a growth event with probability P̂= P|F(Ks)|, where
Ks = 1/3, as shown in (c). If F(Ks)> 0, the potential growth event is a birth event. As there are four vacant neighbouring sites,
the probability of placing a new agent in one of the vacant sites is P̂/4. If F(Ks)< 0, the potential growth event is a death event.
That is, the agent will be removed out of the lattice with probability P̂.
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If a movement event occurs, the agent at site s will move into a randomly chosen vacant site
in Nr{s}. Therefore, the probability for the agent at site s moving to one of the vacant sites is
M̂/(|Nr|(1 − Ks)). We show the movement mechanism with r = 1 leading to |Nr|= 6 in figure 1b.
In this particular configuration the agent at site s has two neighbouring agents, giving Ks = 1/3.
The probability of undergoing a movement event is M̂ = MG(1/3). As there are four vacant sites
in N1{s}, the probability of moving to one of the vacant sites is M̂/4. Note that we require G(1) = 0
as individuals have no space to move if their neighbouring sites are all occupied.

For a potential growth event, if the agent in question is at site s, that agent will undergo a
growth event with probability P̂ = PF(Ks), where P is the probability that an isolated agent will
attempt to undergo a growth event during a time interval of duration τ , and F(Ks) ∈ [−1, 1] is the
growth crowding function which quantifies how crowding in a small neighbourhood of s influences
the propensity of agents to proliferate or die. Since the growth mechanism includes both
proliferation and death as potential outcomes, we define F(Ks) ∈ [−1, 1] such that a proliferation
event takes place when F(Ks) > 0 and a death event takes place when F(Ks) < 0. In the case of
a proliferation event, a new daughter agent will be placed on a randomly chosen vacant site in
Nr(s), whereas if a death event takes place the agent at site s will be removed from the simulation.
After Q(t) potential growth events have been assessed, the value of Q(t) is updated accordingly.

We show the growth mechanism with r = 1 in figure 1c. As the agent at site s has two
neighbouring agents, we have Ks = 1/3. Therefore, the probability of undergoing a growth event
is P̂ = P|F(1/3)|. If F(1/3) > 0, as there are four vacant sites in N1{s}, the agent will place a new
agent on one of the vacant sites with probability P̂/4. If F(1/3) < 0, the agent will be removed
from the lattice with probability P̂.

A key feature of the discrete model is that we use G(Ks) to explicitly describe the influence
of crowding effects on the movement of individuals. We provide several examples of G(Ks)
and show how they influence the movement of agents on the spatial template with r = 1 in
figure 2. We first consider G(Ks) = 1 − Ks, which has a constant slope, as shown in figure 2a.
The probability of a movement event with Ks = 0, Ks = 1/3 and Ks = 2/3 is given in figure 2b–
d, respectively. With this simple movement crowding function, the probability of the agent at
site s moving to one of its neighbouring vacant sites is always M/6, which is independent of
the local density, Ks. We then consider a concave down function, G(Ks) = (1 − Ks)(1 + Ks/2) in
figure 2e. The probability of a movement event with Ks = 0, Ks = 1/3 and Ks = 2/3 is given in
figure 2f –h, respectively. Compared with the simplest crowding function G(Ks) = 1 − Ks, the agent
has a larger net movement probability for Ks ∈ (0, 1). Finally, we consider a concave up function,
G(Ks) = (1 − Ks)(1 − Ks/2) in figure 2i. The probability of a movement event with Ks = 0, Ks = 1/3
and Ks = 2/3 is shown in figure 2j–l, respectively. In this case, the agent has a reduced probability
of movement for Ks ∈ (0, 1), relative to the simplest case G(Ks) = 1 − Ks. The growth mechanism
of agents applies a similar way of incorporating the influence of crowding effects into the discrete
model [32]. We present the pseudo-code for implementing a single realization of the discrete
model in the electronic supplementary material.

If we consider the spatial template with r = 1 for the movement mechanism and r ≥ 1 for the
growth mechanism of agents, the continuum limit of the discrete model is

∂C(x, y, t)
∂t

= ∇ · (D(C(x, y, t))∇C(x, y, t)) + R(C), (2.2)

with nonlinear diffusivity function

D(C) = D0

[
C

dG(C)
dC

+ 1 + C
1 − C

G(C)
]

, (2.3)

and a source term R(C) = λCF(C), where

D0 = lim
�,τ→0

M�2

4τ
and λ = lim

τ→0

P
τ

. (2.4)
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Figure 2. Movement mechanism with different movement crowding functions on a spatial template with r = 1. In each
subfigure we represent the agent at site s with grey, the neighbouring agents with blue, and the vacant neighbouring sites
with white. (a) G(Ks)= 1 − Ks. The red dots represent the values of G(Ks) that can be measured from the discrete model.
(b–d) Probabilities of undergoing a movement event for the agent at site s associated with the G(Ks) in (a). (e) G(Ks)=
(1 − Ks)(1 + Ks/2). (f –h) Probabilities of undergoing a movement event for the agent at site s associated with the G(Ks)
in (e). (i) G(Ks)= (1 − Ks)(1 − Ks/2). (j–l) Probabilities of undergoing a movement event for the agent at site s associated
with the G(Ks) in (i). (Online version in colour.)

Here, D0 > 0 is a constant in the limit that � → 0 and τ → 0 with the ratio �2/τ held constant, and
λ > 0 is constant when P =O(τ ), which implies that the continuum limit is valid when P � M.
Note that in the discrete model we have K as the argument of the crowding function, and that in
the continuum limit the argument of the crowding function is C. This difference can be reconciled
through carrying out the full details of the discrete-to-continuum averaging arguments. Full
algebraic details of the intermediate steps required to derive the continuum limit are given
in the electronic supplementary material. Throughout this study we work with dimensionless
simulations by setting � = τ = 1 in the discrete model, which leads to D0 = M/4 and λ = P in the
continuum limit. In cell biology, experimental observations imply that cell motility is reasonably
well approximated by a nearest neighbour random walk whereas cell proliferation involves the
disposition of daughter agents at some distance from the mother agent [54]. Therefore, throughout
this work we set r = 1 for the motility mechanism and r = 4 for the proliferation mechanism, which
is consistent with previous modelling [32,54]. Moreover, as we are interested in the survival and
extinction of populations, we choose a growth crowding function F(C) = 2.5(1 − C)(C − A) with
A = 0.4, which leads to a cubic source term, R(C), associated with the strong Allee effect. With this
choice of growth crowding function, we have F(0) = −1 indicating that isolated agents have the
largest probability of dying.

3. Relationship between D(C) and G(C)
Based on equation (2.3), we are now in a unique position where we can specify an intuitive
crowding function for the discrete model, G(C), and use the discrete-to-continuum framework
to understand how this translates into a population-level nonlinear diffusivity function, D(C).
This approach is very different to the more usual approach of simply specifying some
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Figure 3. Twoapproaches of connecting themovement crowding function and the diffusivity function. (a)Movement crowding
functions G(C)= 1 − C (green), G(C)= (1 − C)(1 + C/2) (red) and G(C)= (1 − C)(1 − C/2) (black). (b) Diffusivity
functions associated with the movement crowding functions in (a) with D0 = 1. (c) Diffusivity functions D(C)= D0C (green),
D(C)= D0C2 (red) and D(C)= D0C3 (black) with D0 = 1. (d) Movement crowding functions associated with the nonlinear
diffusivity functions in (c). (Online version in colour.)

phenomenological D(C) function, without any detailed understanding of how a particular choice
of nonlinear diffusivity impacts the underlying discrete mechanism [37–39,41,51].

There are two ways of taking advantage of (2.3) to study population dynamics. First, for a
given movement mechanism of individuals described by G(C), we can simply substitute into this
expression to give the corresponding D(C). To demonstrate this first approach, we present three
examples of G(C), which were examined in figure 2, and study the corresponding D(C),

G(C) = 1 − C and D(C) = D0, (3.1)

G(C) = (1 − C)
(

1 + C
2

)
and D(C) = D0

[
1 + C

(
1 − C

2

)]
, (3.2)

G(C) = (1 − C)
(

1 − C
2

)
and D(C) = D0

[
1 − C

(
1 − C

2

)]
, (3.3)

see figure 3a,b. In each of these three crowding functions, we always have G(0) = 1, which is
reasonable since this condition implies that isolated agents are unaffected by crowding [33].
We first consider G(C) = 1 − C, which has a constant slope and leads to a constant diffusivity
D(C) = D0. As we mentioned in §2, the probability of an agent moving to one of its neighbouring
vacant sites is always M/6, which is independent of density. This is consistent with the continuum
model where the standard linear diffusion mechanism means that the diffusivity is independent
of density. Next, we consider the concave down crowding function G(C) = (1 − C)(1 + C/2), which
has the property that G(C) > 1 − C for all C ∈ (0, 1). For this crowding function we obtain an
increasing nonlinear diffusivity function D(C) > D0, which is reasonable since the motility of
individuals is reduced less by crowding than in the case where G(C) = 1 − C, corresponding
to linear diffusion. Similarly, the concave up crowding function G(C) = (1 − C)(1 − C/2), which
has the property that G(C) < 1 − C for all C ∈ (0, 1). For this crowding function we obtain a
decreasing nonlinear diffusivity function D(C) < D0, which again is reasonable since the motility
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of individuals is reduced more by crowding than in the case where G(C) = 1 − C, corresponding
to linear diffusion.

The first approach to use (2.3) involves specifying a physically reasonable crowding
function, G(C), and using the discrete-to-continuum conservation argument to understand the
corresponding population-level nonlinear diffusivity function, D(C). Of course, we can also
view (2.3) as allowing us to specify a particular nonlinear diffusivity function D(C), and to
understand which particular crowding function is associated with that choice of D(C). One
of the challenges associated with this second approach is that a given D(C) may not lead to
a physically realistic crowding function, as we will now explore. One of the most standard
choices of nonlinear diffusivity is a power-law diffusivity, D(C) = D0Cm, where m is some constant
exponent. This model has played a very important role in population biology models [41,55], since
combining this nonlinear diffusivity term with a logistic source term gives rise to the well-studied
Porous–Fisher model [34,40,51,56,57]. If we consider m ≥ 0 and G(C) ∈ [0, 1] we can solve (2.3) to
give

G(C) = (Cm+2 − 2Cm+1 + Cm) 2F1(2, m + 1; m + 2; C)
m + 1

, (3.4)

where 2F1(2, m + 1; m + 2; C) is the hypergeometric function [58]. We present three examples with
m = 1, 2 and 3, given by

D(C) = D0C and G(C) = (1 − C)
(

1 + 1 − C
C

ln (1 − C)
)

, (3.5)

D(C) = D0C2 and G(C) = (1 − C)
(

2 − C + 2(1 − C)
C

ln (1 − C)
)

, (3.6)

D(C) = D0C3 and G(C) = (1 − C)

(
−C2 − 3C + 6

2
+ 3(1 − C)

C
ln (1 − C)

)
. (3.7)

Figure 3c,d compares the specified D(C) with the associated G(C). Here, we see that each D(C) is
associated with some particular crowding function, but some of the properties of these crowding
functions are not as physically reasonable as those in figure 3a,b. One attractive property of the
crowding function in figure 3d is that G(1) = 0 for each case, and this is reasonable since we expect
motility to cease when the lattice is packed to maximum density. One less appealing feature of
the crowding function in figure 3d is that each case has G(0) = 0, which means that isolated agents
do not move, and this is at odds with our intuition, and experimental evidence, that crowding
reduces motility [59,60]. However, while we refer to, and interpret G(C) as a crowding function, it
is possible to interpret G(C) more broadly. For example, if G(C) represents the effect of intraspecific
competition in population dispersal, the modelling framework in this work allows us to explain
how isolated individuals die due to a lack of competition [61]. Above all, it is insightful and
interesting that we are able to take canonical choices of nonlinear diffusivity function D(C), and
to explore what choice of crowding function G(C) leads to those nonlinear diffusivities.

4. Nonlinear diffusion influences population dynamics
In this section, we quantify various population dynamics using both the discrete and associated
continuum models. In all simulations, we consider an L × L domain where L = 100, and we
impose periodic boundary conditions along all boundaries. Agents are initially located in a central
vertical strip of width w, which may represent a species along a river [62] or a population of cells in
a scratch assay [40]. For the continuum model, since the initial distribution is independent of the
vertical location and evolves with periodic boundary conditions, the population density remains
independent of the vertical position for all t > 0 [63]. Therefore, equation (2.2) simplifies to

∂C(x, t)
∂t

= ∂

∂x

(
D(C(x, t))

∂C(x, t)
∂x

)
+ R(C(x, t)), (4.1)
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where C(x, t) represents the average column density of population [54,63]. We numerically solve
equation (4.1) and compute

C(t) = 1
L

∫L

0
C(x, t) dx, (4.2)

which is the total population density across the whole domain. We apply the method of lines
to solve (4.1) numerically and full details of the numerical method are given in the electronic
supplementary material.

To quantify results from the discrete model we always consider performing V identically
prepared realizations, and use this data to calculate the average occupancy of site s,

C̄s = 1
V

V∑
v=1

C(v)
s (t), (4.3)

where C(v)
s (t) ∈ {0, 1} is the occupancy of site s at time t in the vth identically prepared realization.

As the initial occupancy is independent of the vertical position, we can denote the average column
density at time t = nτ as

〈C(x, t)〉 = 1
VJ

V∑
v=1

J∑
j=1

C(v)(i, j, n), (4.4)

which corresponds to C(x, t) in the continuum model, where indexes i and j, indicating the
position of site s, relate to position (x, y). We also compute the total population density across
the whole domain at time t = nτ as

〈C(t)〉 = 1
VIJ

V∑
v=1

J∑
j=1

I∑
i=1

C(v)(i, j, n), (4.5)

which corresponds to C(t) in the continuum model.
Figure 4a,b shows results from both the discrete and continuum models with G(C) = 1 − C

and D(C) = D0, corresponding to linear diffusion. Discrete simulations are performed with M = 1
and P = 6/1000, leading to D0 = 1/4 and λ = 6/1000 in the continuum model. For the discrete
model, we initially locate agents in the central vertical strip with width w = 10, which means that
the initial condition for (4.1) is C(x, 0) = 1 for x ∈ [45, 55] and C(x, 0) = 0 elsewhere. Comparing
C(x, t) and 〈C(x, t)〉 shows that the match between the discrete and continuum results is excellent.
Moreover, the density eventually reaches zero everywhere, which suggests that the population
goes extinct. We then consider a larger width w = 30, and compare 〈C(x, t)〉 with C(x, t) at t =
800, 1600, 2400 in figure 4b. The solutions of (4.2) also match well with the averaged data from
discrete simulations. In this case, the column density eventually reaches the carrying capacity
everywhere, which suggests that the population survives.

Next, we consider the same initial conditions except that we use G(C) = (1 − C)(1 + C/2) in
the discrete model and the increasing D(C), given by (3.2), in the continuum model. Results in
figure 4c,d correspond to w = 10 and w = 30, respectively. Again, the continuum and discrete
results match well. The population goes extinct with w = 10, but survives with w = 30. Comparing
results in figure 4a,b with those in figure 4c,d shows that the evolution of C(x, t) is different, and
this difference is due to the role of nonlinear diffusion. Traditionally, if we were working with
the continuum model alone, it would be difficult to provide a physical interpretation of these
differences, but in our framework we can explain these differences through our simple crowding
function, G(C). We then use G(C) = (1 − C)(1 − C/2) in the discrete model and the decreasing D(C)
given by (3.3) in the continuum model in figure 4e,f. In this case the continuum and discrete results
reasonably match. Again, the population goes extinct with w = 10, but survives with w = 30.

Results in figure 4a–f indicate the continuum limit of our discrete model provides an
accurate approximation of the stochastic population dynamics for these three choices of crowding
functions. In the electronic supplementary material we show that the discrete and continuum
results also match well when we consider the power-law diffusivity. A natural question that
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Figure 4. Comparisons of discrete and continuum results. (a–f ) 〈C(x, t)〉 (red) and C(x, t) (blue). We use the linear diffusion
given by (3.1) in (a,b), the increasing D(C) given by (3.2) in (c,d), and the decreasing D(C) given by (3.3) in (e,f ). The solid black
lines in (a,c,e) indicate that we consider an initial vertical strip withw = 10. Similarly, the solid black lines in (b), (d,f ) indicate
that we consider an initial vertical strip with w = 30. We show the column density at t = 200, 400, 600 in (a,c) and (e), at
t = 800, 1600, 2400 in (b,d), and at t = 1600, 3200, 4800 in (f ). The arrows in (a–f ) show the direction of increasing time.
(g) The total population density obtained from the continuum model, C(t), at t = 104 with the linear diffusion (green), the
increasing D(C) (red) and the decreasing D(C) (black). (Online version in colour.)

arises when confronted with these results is the following: introducing a nonlinear diffusivity
function changes the rate at which the population spreads across the domain, and we wish
to understand how these differences affect the long-term survival or extinction of the bistable
population. To begin to explore this question we now vary the initial width of the vertical strip
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w ∈ [10, 30], and show the total population density of the continuum model after a long period of
time t = 104, with the three D(C) functions, given by (3.1)–(3.3) in figure 4g. Results in figure 4g
show that solutions of the continuum model with these three D(C) functions lead to different
critical values of w that separate long-term survival from long-term extinction. This numerical
exploration demonstrates that the fate of bistable populations depends upon the choice of D(C).
We will now take advantage of our discrete-to-continuum framework to interpret how different
choices of D(C) either enhance or suppress population extinction.

5. Interpretation of how D(C) affects extinction
To understand how different choices of D(C) affect long-term survival or extinction, we now
derive mathematical expressions for the average flux of agents in the discrete model in a general
setting. We consider an agent at site s, at location (x, y), where the occupancy is C(x, y, t). Assuming
that the density is sufficiently smooth, the densities at the neighbouring sites can be obtained by
expanding C(x, y, t) in a truncated Taylor series,

C1,2 = C ∓ �
∂C
∂x

+ O(�2),

C3,5 = C − �

2
∂C
∂x

+ O(�2)

and C4,6 = C + �

2
∂C
∂x

+ O(�2),

where, for convenience, we denote C(x, y, t) as C and index the densities at neighbouring sites with
subscripts as shown in figure 5. Note that here we are treating the density as being independent
of vertical position, which is consistent with the situation in figure 4, and we will generalize
this assumption later. The transition probability of an agent moving out of site s to one of its
neighbouring sites si, for i = 1, 2, 3, . . . , 6, is

P−
i = MCG(K)

6(1 − K)
(1 − Ci).

Similarly, the transition probability of an agent moving from site si into site s is

P+
i = MCiG(Ki)

6(1 − Ki)
(1 − C).

Therefore, combining these expressions for the transition probabilities with the geometry of the
lattice in figure 4, allows us to write down an expression for the horizontal component of the net
flux of agents at site s,

Jx = �

2τ
[(2P−

2 + P−
4 + P−

6 ) + (2P+
1 + P+

3 + P+
5 )]

− �

2τ
[(2P+

2 + P+
4 + P+

6 ) + (2P−
1 + P−

3 + P−
5 )]. (5.1)

Substituting the expressions for the transition probabilities into (5.1) and then expanding the
resulting terms in a truncated Taylor series about site s gives

Jx = −M�2

4τ

[
C

dG(C)
dC

+ 1 + C
1 − C

G(C)
]

∂C
∂x

+ O(�3). (5.2)

We note that (5.2) can be written as

Jx = −D(C)
∂C
∂x

, (5.3)

where D(C) is the same as (2.3). Following a similar conservation argument, the flux of agents in
the vertical direction can be written as

Jy = −D(C)
∂C
∂y

. (5.4)
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Figure 5. Schematic diagram showing the six neighbouring sites surrounding site s. The blue arrows indicate potential
movement events that could change the occupancy of site s. The spacing between site s and its neighbouring sites is�. (Online
version in colour.)
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D(C) given by (3.2) (red) and decreasing D(C) given by (3.3) (black). (b) Solutions of equation (4.1) at t = 200 with these three
D(C) functions. The dashed line is the initial distribution where C(x, 0)= 1 for x ∈ [40, 60] and C(x, 0)= 0 elsewhere. (c) The
evolution of C(t) with these three D(C) functions. We set M= 1 and P = 6/1000 leading to D0 = 1/4 and λ = 6/1000 in
(b,c). (d) H(C) associated with D(C)= D0C (green), D(C)= D0C2 (red) and D(C)= D0C3 (black). (e) Solutions of equation (4.1)
at t = 2000 with these three D(C) functions. The dashed line is the initial distribution where C(x, 0)= 1 for x ∈ [40, 60] and
C(x, 0)= 0 elsewhere. (f ) The evolution of C(t) with these three D(C) functions. We set M= 1 and P = 1/1000 leading to
D0 = 1/4 andλ = 1/1000 in (e,f ). (Online version in colour.)

For all simulations in this work our initial condition is independent of vertical position so we
have Jy = 0 throughout. It is useful to compare the nonlinear diffusive flux term with the classical
linear diffusion flux. Thus, we rewrite (5.3) as

Jx = −D0(1 + H(C))
∂C
∂x

, (5.5)

where H(C) can be regarded as a correction that is associated with the effects of nonlinear
diffusion. For example, setting H(C) = 0 means that our nonlinear diffusion term simplifies to
the classical linear diffusion term, whereas setting H(C) > 0 means that the nonlinear diffusion
term is larger than the associated linear diffusion term.

To explore how different choices of D(C) affect the long-term fate of bistable populations, we
repeat the kinds of simulations we considered in figure 4, and summarize the results in figure 6
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Figure 7. Phase diagram for the survival and extinction of populations. The phase space (w, P/M) is uniformly discretized into
a rectangular mesh with 41 × 40 nodes, where w ∈ [0, 40] and P/M ∈ [1/1000, 4/100]. Three curves are the thresholds for
the survival and extinction of populations in the continuum model with the linear diffusion given by (3.1) (green), increasing
D(C) given by (3.2) (red) and decreasing D(C) given by (3.3) (black). Two cyan dots indicate the parameters P/M= 6/1000 and
w = 10 orw = 30 considered in figure 4. The brown dot indicates the parameters P/M= 6/1000 andw = 20 considered in
figure 6. (Online version in colour.)

where we consider the linear diffusion, increasing D(C) and decreasing D(C) functions given by
(3.1)–(3.3), respectively. For each diffusivity function we plot H(C) in figure 6a. The increasing
D(C) leads to H(C) ≥ 0 showing that the nonlinear flux is greater than the flux associated with
the linear diffusion model for C ∈ (0, 1]. By contrast, the decreasing D(C) leads to H(C) ≤ 0,
showing that the nonlinear flux is less than the flux associated with the linear diffusion model for
C ∈ (0, 1]. We consider an initial condition with width w = 20 together with M = 1 and P = 6/1000,
which corresponds to D0 = 1/4 and λ = 6/1000 in the continuum model. Profiles in figure 6b
show the solution of the continuum model at t = 200, where we see that the density profile
associated with the increasing D(C) spreads further than the linear diffusion model. Similarly, the
profile associated with the decreasing D(C) spreads less than the linear diffusion model. These
differences in spatial spreading mean that the maximum density for the increasing D(C) model is
less than the maximum density for the linear diffusion model, which encourages extinction since
the bistable source term becomes negative across a larger area of the domain. This is consistent
with the results in figure 6c showing the long-term evolution of C(t), where we see that the
population with increasing D(C) goes extinct whereas the populations with linear diffusion and
decreasing D(C) lead to long-term survival.

Next, we investigate the population dynamics with the nonlinear diffusivity functions D(C) =
D0Cm for m = 1, 2 and 3, with the associated H(C) functions in figure 6d. With the same initial
conditions and discrete parameters in figure 6b,c except that we use P = 1/1000 instead of P =
6/1000, we show various solutions of (4.1) at time t = 2000 in figure 6e, and C(t) in figure 6f. The
results in figure 6d–f for this class of power law D(C) are consistent with the results in figure 6a–
c. Results for m = 1, 2 and 3 lead to a reduction in flux relative to linear diffusion, but setting
m = 1 still leads to sufficient spreading that a larger proportion of the domain has C < A leading
to extinction, whereas setting m > 1 reduces the spreading so that a smaller proportion of the
domain has C < A leading to survival.
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Results in figure 6 show that the change of flux influences the speed at which the population
spreads in space. Due to the change of spreading speed, the initial width of the vertical strip
needed for a population to survive changes as well. This suggests that the nonlinear diffusivity
function affects the fate of bistable populations through influencing the flux of populations.
However, in figure 6, we fix the ratio of growth and movement, P/M, while P/M also influences
the fate of bistable populations. Next, we are going to vary P/M and study the influence of
nonlinear diffusion on the fate of a broader range of populations.

Our results so far show that the long-term survival of the population involves a complicated
relationship between the width of the initial condition w, the time scale of migration M, the
time scale of growth P, as well as the particular nonlinear diffusivity function D(C). We now
systematically explore this relationship by taking the (w, P/M) phase space and discretizing it
uniformly for w ∈ [0, 40] and P/M ∈ [1/1000, 40, 1000], as shown in figure 7. We vary P and fix
M = 1 leading to λ = P and D0 = 1/4 in the continuum model. As we are interested in the long-
term outcomes of bistable populations, we solve (4.1) and calculate C(T) for a sufficiently long
period of time T, so that the outcome is either C(T) = 1 or C(T) = 0. With these simulation outcomes
we identify the boundaries that separate survival and extinction on the phase diagram. Overall,
results in figure 7 show that large w encourages survival, and that for each value of w there is
a threshold value of P/M that determines the eventual survival or extinction of populations. In
the electronic supplementary material we show that the boundaries generated from the discrete
model are consistent with the boundaries identified using the continuum model. The main result
in figure 7 is that the curves that delineate the survival/extinction boundary depend upon the
choice of D(C), and we plot three curves for the linear diffusion model, the increasing D(C)
given by (3.2) and the decreasing D(C) given by (3.3). The horizontal dashed line at P/M = 0.006
highlights results shown previously in figures 4 and 6, but this phase diagram summarizes the
long-term survival/extinction patterns for a much wider choice of parameters than we explored
in these previous cases.

6. Conclusion and future work
In this work, we consider the question of population survival or extinction, with a focus on
understanding how various migration mechanisms either encourage or suppress extinction. In
the population biology modelling literature, the most common way to study bistable population
dynamics with spatial effects is to use a reaction–diffusion model with a linear diffusion term
to represent migration and a bistable source term to represent birth–death processes. While
most studies employ a linear diffusion mechanism for simplicity, there are many cases where
linear diffusion is inadequate. For example, mathematical models based on a linear diffusion
mechanism do not predict a well-defined front that is often observed experimentally or in the
field [37]. This limitation of linear diffusion is typically overcome by generalizing the constant
diffusivity, D, to a nonlinear diffusivity function D(C). One of the main challenges of working
with a nonlinear diffusion framework is the important question of how to choose the functional
form of D(C), and there are conflicting results in the literature. For example, in the cell migration
modelling literature some studies have found that using a power-law diffusivity function D(C) =
D0Cm, with m ≥ 1 can lead to a good match to experimental data [39,40,51]. One of the features
of these models it that this nonlinear diffusivity is an increasing function of density. Curiously,
other researchers working in precisely the same field have suggested that a decreasing nonlinear
diffusivity function is appropriate, D(C) = 1/(α + C), with α > 0 [44]. This highlights the fact that
choosing an appropriate nonlinear diffusivity function is not always straightforward.

In addition to understanding how to choose an appropriate nonlinear diffusivity function, a
related challenge is to understand how different forms of D(C) affect the long-term survival or
extinction of bistable populations. While it has been established that different choices of D(C)
impact the long-term survival of populations [53], an intuitive understanding of why different
choices of D(C) encourage or suppress extinction has been lacking. In this work, we address this
question by working with a very simple discrete modelling framework on a two-dimensional
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Figure 8. Schematic profile of the spreading population (blue) superimposed on the Allee threshold C = A (dashed cyan) and
the initial density distribution C(x, 0) (dashed black). Spatial spreading of the population is controlled by the diffusive flux, Jx ,
that is proportional to the nonlinear diffusivity function, D(C), and the direction of the flux is indicated (green arrows). This flux
affects: (i) the proportion of the domain where C < A giving rise to a negative source term (downward red arrows), and (ii) the
proportion of the domain where C > A, giving rise to a positive source term (upward red arrows). (Online version in colour.)

hexagonal lattice, where migration and birth/death events are controlled through relatively
simple, easy-to-interpret crowding functions. In particular, we work with a migration crowding
function G(C), which provides a very simple measure of how the ability of an individual agent
to move is reduced as a function of density, C. Our discrete-to-continuum averaging arguments
provide a mathematical relationship that allows us to either: (i) specify G(C) and determine the
associated nonlinear diffusivity function D(C); or (ii) specify D(C) and determine the associated
crowding function G(C). This new relationship allows us to explore how the averaged population-
level flux of agents varies relative to the classical linear diffusion model for a particular crowding
function, G(C). We find that choices of G(C) that increase the flux encourage population extinction
relative to the classical linear diffusion model, whereas choices of G(C) that decrease the flux
suppress population extinction. These results are summarized in the conceptual diagram in
figure 8 showing that, for the initial conditions considered, increasing the flux of agents tends
to reduce the density across the domain as the population spreads, meaning that a greater
proportion of the domain has C < A, where the bistable source term acts to reduce the population
and encourage extinction.

There are many ways that our work can be extended. For example, all the simulation results
presented here consider a very simple one-dimensional vertical strip initial condition. These
results can be generalized to other initial shapes, such as circular, square or more complicated
initial populations and the mathematical and computational tools presented in this work can
be applied directly to this generalization. We show that nonlinear diffusion plays the same role
as linear diffusion on the fate of populations when we consider a simple well-mixed initial
distribution in the electronic supplementary material. There are also many ways that the current
modelling framework can be extended. For example, the discrete model can be extended to
consider multiple interacting subpopulations, and the same discrete-to-continuum averaging
approach could be used to construct a continuum limit model, which would take the form of
a system of coupled partial differential equation models [43,64–68]. We leave this extension for
future consideration.

Data accessibility. The code used to generate the results presented here can be found on Github. Additional
material is provided in the electronic supplementary material [69].
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