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Abstract

Genotype-to-phenotype maps exhibit complexity. This genetic complexity is mentioned frequently in the literature, but a
consistent and quantitative definition is lacking. Here, we derive such a definition and investigate its consequences for
model genetic systems. The definition equates genetic complexity with a surplus of genotypic diversity over phenotypic
diversity. Applying this definition to ensembles of Boolean network models, we found that the in-degree distribution and
the number of periodic attractors produced determine the relative complexity of different topology classes. We found
evidence that networks that are difficult to control, or that exhibit a hierarchical structure, are genetically complex. We
analyzed the complexity of the cell cycle network of Sacchoromyces cerevisiae and pinpointed genes and interactions that
are most important for its high genetic complexity. The rigorous definition of genetic complexity is a tool for unraveling the
structure and properties of genotype-to-phenotype maps by enabling the quantitative comparison of the relative
complexities of different genetic systems. The definition also allows the identification of specific network elements and
subnetworks that have the greatest effects on genetic complexity. Moreover, it suggests ways to engineer biological
systems with desired genetic properties.
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Introduction

Biologists currently enjoy unprecedented access to genotype

and phenotype data, and as the price of DNA sequencing

continues to fall and high-throughput automated experimental

techniques continue to develop, the amount of data will increase

exponentially. The challenge that arises is to extract as much

useful information from these data as possible. Molecular,

cellular, and behavioral phenotypes are amenable to experimen-

tal measurement, but connections to relevant features of the

genotype are often out of reach. Likewise, DNA sequencing

provides quick and inexpensive access to vast amounts of

genotype data, but using the genetic sequence of an organism

to predict its phenotype remains a broadly unfulfilled goal. The

genotype-to-phenotype map (GPM) encodes the relationship

between genetic variations and phenotypes of interest. It is a

mapping which assigns to genotypes their corresponding pheno-

types. An understanding of GPMs is desirable both to facilitate

the prediction of the phenotypic results of genetic perturbations

and to identify underlying genotypic features on the basis of

phenotypic measurements. The elucidation of GPMs is therefore

of primary interest to contemporary genetics.

The properties and construction of GPMs have been the subject

of recent studies (see [1–3] for review). Another property of GPMs

often invoked in the literature is that of ‘genetic complexity’.

However, this term lacks a clear and consistent meaning and has

variously been taken to mean genetic trait influence that is non-

Mendelian, multigenic, additive or epistatic (in the general sense of

any genetic interaction). These uses clearly differ from one another

and can be contradictory. Furthermore, the lack of a quantitative

definition prevents the meaningful comparison of the complexities

of multiple genetic systems. The ability to compare the genetic

complexity of multiple systems enables the identification of those

features and mechanisms that give rise to complexity. Once the

relevant features have been identified, the complexity of systems

can be controlled. On the genotype side, systems can be

engineered to produce greater phenotype resolution and less

complexity. On the phenotype side, experimental design can be

optimized to maximize the amount of information gained via

measurement. A thorough understanding of the genetic complex-

ity of genetic systems is necessary for an understanding of such

systems on the whole, and the first step towards this goal is the

precise definition of complexity. Here, we derive and investigate a

rigorous quantitative definition of the genetic complexity of

GPMs.

Results

Consider the two GPMs depicted in Figure 1. The key feature

differentiating the two mappings is that the first is injective (one-to-

one), whereas the second is not. The non-injective mapping is

associated with a greater complexity. This association is in

agreement with an information theoretic analysis. The injective

mapping has maximal entropy, indicating that much information

is gained about the mapping by performing a single measurement.

On the other hand, the non-injective mapping has lower entropy,
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indicating that less information is gained by making a measure-

ment. It is this lack of information gained via measurement that

gives biologists the intellectual sensation of ‘‘complexity’’. The

lower entropy of the non-injective map also reflects the fact that

such a map has greater order. Complex genetic interactions must

be present in the system to give rise to this order. On the other

hand, an injective map is less ordered, and a genetic system

wherein the genes are acting independently of one another will

typically lead to such a map. This provides further justification for

the association of non-injectivity with complexity.

With this as a guiding principle, a rigorous set-theoretic

definition for the genetic complexity of a GPM is derived in Text

S1. Because a GPM involves a mapping between two sets, set

theory is the appropriate framework with which to formulate a

definition of the genetic complexity. The derivation begins with

the assumptions of 1) an organism with sexual reproduction and a

set of founder genotypes, leading to a set of recombinants, 2) a

GPM in which each genotype maps to one phenotype, and 3) the

association of complexity with non-injectivity of the GPM, as

motivated above. The application of the definition to situations

outside this set of assumptions is discussed at length in Text S1.

The association of complexity with non-injectivity leads to a

definition which is proportional to the difference between a metric

of ‘genotype complexity’ and a metric of ‘phenotype complexity’

in the GPM. The bulk of the derivation concerns rigorously

establishing the sets of relevant genotypes and phenotypes for a

given GPM. The end result is

C~
mn{p

p{1
: ð1Þ

The quantity mn is the genotype complexity of the map: n is the

number of phenotypically relevant loci in the system and m is the

geometric mean of the number of phenotypically unique alleles

per informative locus. p is the phenotype complexity and is equal

to the number of measurably distinguishable phenotypes produced

by the system across all relevant genotypes. See Text S1 for

rigorous formulations of these informal definitions. In practice, the

genetic complexity is computed by enumerating the phenotypi-

cally relevant genotypes, subtracting the number of phenotypes

produced, and dividing by the normalization factor. We thus see

that the complexity measures the surplus of genotypic diversity

over phenotypic diversity. Our definition therefore captures the

increasing complexity of non-injective mappings. The denomina-

tor of Equation 1 simply provides a normalization factor that

insures that the complexity doesn’t grow linearly with the size of

the genetic system. In Text S1, we discuss considerations and

approaches for the experimental application of Equation 1. An

example GPM involving a simple diploid system and its

corresponding genetic complexity is shown in Figure 2.

We stress that the genetic complexity is a property a GPM, not

of a single genotype and its corresponding genetic network. Thus,

the genetic complexity of a GPM is specific to a defined set of

genotypes and the experimental protocol and precise parameters

of the phenotypic measurements to be carried out on the

genotypes. Multiple phenotype measurements can be accommo-

dated readily. In order for the complexity to be a meaningful

quantity, the set of genotypes in the GPM should consist of all

possible combinations of the alleles under consideration. We refer

to this theoretical set of genotypes as a ‘Mendelian library’.

The definition also allows for stochastic behavior. If the

phenotype of a particular genotype is measured several times

and it is found that two or more distinct phenotypes are produced,

then each distinct phenotype will contribute to the quantity p. See

Text S1 for details. Note that as a consequence the complexity C

can be negative, indicating that more phenotypes are produced

than the number of genotypes in a mapping. GPMs with negative

complexity are simply GPMs that are less complex than a GPM

with zero complexity. If a single genotype gives rise to multiple

phenotypes in a GPM with negative complexity, then not only will

the underlying genotype be determinable from a phenotype

measurement, but additional information will be gained in the

form of which of the multiple phenotypes was realized in a

particular case. Although in its initial formulation the definition

Figure 1. Genotype-to-phenotype maps. (A) An injective mapping illustrating one-to-one mapping of genotype to phenotype. (B) A non-
injective mapping illustrating greater genetic complexity.
doi:10.1371/journal.pcbi.1002583.g001

Author Summary

‘Genetic complexity’ is an often-discussed property of
genotype-to-phenotype maps, but the term is used
vaguely and inconsistently in the literature. We derived a
definition of genetic complexity that assigns to every
genotype-to-phenotype map a unique quantitative mea-
sure of its genetic complexity. This definition allows the
meaningful comparison of complexity across systems, and
also allows the identification of genetic-network features
that contribute most significantly to genetic complexity.
We applied this definition to ensembles of Boolean
networks. Because all relevant quantities are precisely
defined, Boolean networks provide an ideal arena in which
to study genetic complexity systematically. Using this
approach, we identified relationships between topological
properties of networks and their genetic complexity. We
also identified features specific to the cell-cycle network of
yeast that impart its genetic complexity.

Quantifying and Analyzing Genetic Complexity
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treats a GPM as a weightless bipartite graph, the definition readily

accommodates extensions in which multiple phenotypes arising

from a single genotype are weighted, i.e., occur with different

frequencies. Phenotypic ambiguity could result also from outlier

measurements and from biological (true) noise. Methods for

precluding the impact of outliers while accommodating biological

noise are presented in Text S1.

In [4], Kruglyak discussed complexity in the context of genome-

wide association studies and noted that genetic complexity can be

thought of as fractal, with complexity manifest at more than one

level. Equation 1 captures much of this idea, with both gene

variation and gene combinatorics contributing positively to

complexity. However, by the implications of Equation 1, gene

variation and gene combinatorics are not complexity per se.

Genetic complexity is a surplus of genotype diversity for a given

level of phenotype diversity.

Having considered some general features of the definition of C,

we next wish to investigate its consequences when applied to

genetic systems. Though C can be estimated from real-world data

(Text S1), exact calculation of C requires a complete tabulation of

a GPM for a system in which the variables in the definition are

well-defined. Therefore, as an initial investigation, we applied the

definition to model genetic systems for which the relevant

quantities can be computed easily. We first carried out a

systematic examination of small Boolean network models. We

then turned our attention to various features of the complexity of

the cell-cycle network of yeast.

Genetic Complexity of Boolean Networks
Dynamic Boolean network models (‘‘Boolean networks’’,

henceforth) have long been used to model biological networks

[5–7]. Boolean networks consist of a set of nodes which, at any

moment of time, can either be ‘on’ or ‘off’. For example, the

formalism is often applied to genetic networks, where the two

states correspond to the gene being expressed or not expressed.

Although this is a great simplification of the actual biological state

of a genetic network and much dynamical information is sacrificed

in this formalism, Boolean networks have proven to be a

surprisingly fruitful class of models for capturing the large-scale

properties and behaviors of genetic networks (see [8] for a review

and further references). Boolean networks are an ideal arena in

which to apply the definition of genetic complexity, as they

provide models of genetic systems wherein all relevant quantities

are well-defined and discrete. In the context of Boolean network

models, a genotype is specified by selecting an update function for

each node, which determines how the node updates as a function

of the network state. Once a genotype is specified, any initial state

will flow into an attractor state, which corresponds to a phenotype.

The attractor can either be a single state which updates to itself (a

fixed attractor) or a series of states through which the network

continuously cycles (a periodic attractor). The Boolean network

framework allows also for asynchronous update rules for different

nodes. In this work, we deal only with synchronous Boolean

networks. Details on our employment of Boolean networks are

given in the Methods section.

As with any mapping, a GPM is not fully specified until the

domain on which the mapping acts is delineated. In the case of a

GPM, this consists of a specification of the genotypes present in the

system. In the abstract arena of Boolean networks, we could

conceivably choose any arbitrary set of genotypes to form

genotype libraries. However, to identify the effects of some

property of the networks on the complexity, we should compare

genotype libraries (in which each genotype takes the form of a

truth table specifying a Boolean network) that differ only in the

property of interest, and that otherwise include all relevant

genotypes. In this section, we compare the complexities of network

libraries as a function of order (number of nodes in the networks),

size (number of edges in the networks) and topology. In all cases, the

library of truth tables is generated by selecting the subset of all

possible truth tables with the desired number of edges and

topology from the set of all truth tables with a given number of

Figure 2. An example genotype-to-phenotype map and the
calculation of its genetic complexity. The mapping describes a
diploid organism with a phenotype that has two relevant loci (‘A’ and ‘B’),
each with two alleles (differentiated by uppercase and lowercase letters).
doi:10.1371/journal.pcbi.1002583.g002
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nodes. The determination of the edge structure of a network from

its truth table is described in the Methods section.

Complexity by order and size. Initial questions to ask are

how the complexity depends on the order and on the size of

networks. The natural expectation is that if all other properties of

networks are held fixed while the number of nodes and edges is

increased the genetic complexity will increase. We obtained results

in accord with this expectation.

To test the dependence of complexity on network order, for

each order we computed the complexity of the library of networks

that comprises all possible genotypes with the appropriate number

of nodes. Calculating the complexity of such libraries is

computationally tractable only for orders of three or less (for

example, there are 1018 possible genotypes with order four). We

therefore calculated the complexity for all libraries with order less

than four. The results are presented in Table S1. The complexity

increases monotonically with the order of the library.

Another question to ask is how the complexity of a map depends

on the size of the networks considered. To address this, for a given

order and size we computed the complexity of the library of

networks that comprises all possible genotypes with the appropri-

ate number of nodes and edges. Our method of counting edges in

a Boolean network is described in the Methods section. The

complexities by size for all order-three libraries are given in Table

S2. We found that the complexity increases monotonically as the

size increases.

Complexity by topology. The topology of a genetic network

encodes much information about the function of the network.

Conserved topological motifs impart similar properties in different

biological systems [9,10]. The importance of network topology to

function suggests that there may be a relationship between

topology and genetic complexity. The final question that we

addressed using small Boolean networks is how complexity

depends on the topology of the genotype libraries. To this end,

we computed the complexity for libraries that comprise all

genotypes within a topology class. A given topology class consists

of all genotypes with the same order and the same set of directed

edges between nodes. The precise formulation is given in the

Methods section.

We found that, for a fixed order and size, the relative

complexity of topology classes is determined by two pieces of

information:

1) The variance of the distribution of in-degrees in the topology

class

2) The number of periodic attractors produced by the topology

class

The in-degree distribution is the set of numbers of incoming

edges incident to each node (see the Methods section for further

details). Topology classes that have a low-variance distribution of

in-degrees (recall that we are comparing classes with equal order

and size, and thus the same number of inputs to distribute among

the nodes) always have a lower complexity than classes with

higher-variance in-degree distributions. This result was found to

hold for every combination of network order and size considered,

which range from 2 nodes and 1 edge up to 7 nodes and 4 edges.

In total, the complexity was computed for 2585 topology classes

containing 109 networks. No exception to the above rule was

found. This strongly suggests that the rule will continue to hold for

yet larger networks. A sample of data supporting this result is given

in Table 1.

The difference in complexity associated with different in-degree

distributions is most pronounced when one topology class has a

node with zero inputs and the second does not. This difference can

be understood heuristically as follows. If a topology class has a

node with zero in-degree, then that node’s update rule does not

depend on the current state of any node. The node is immediately

locked into whatever state it is in at time t = 0. Having one node

locked into an invariant state reduces the total number of

phenotypes that can be realized by the topology class, resulting

in a genotypic surplus. This increases the complexity. Similar

reasoning applies to other cases of differing in-degree distributions.

This effect is also active across libraries of different sizes, and

accounts for the unexpectedly small difference in Table S2

between the library of size 6 and that of size 7. For an order-three

network, if there are 7 or more edges it is not possible to distribute

the edges such that any node has zero inputs. Therefore no nodes

will be locked into an initial state. Thus, the increase in complexity

when adding the seventh edge is smaller than the general trend

leads one to expect.

If two classes have the same distribution of in-degrees but a

different topology, then the relative complexity is determined by

which class realizes more periodic attractors. The class with more

periodic attractors has a lower complexity. An example of this is

given in Table 2. The relationship between complexity and

number of periodic attractors is proven formally in the Methods

section. It rests on two facts:

1) Any two Boolean-network topology classes with the same in-

degree distribution have the same number of genotypes.

2) Every topology class will realize all fixed point attractors.

Because of fact 1 above, the relative genetic complexity of two

topology classes with the same in-degree distribution is determined

Table 1. The relationship between in-degree distribution and
complexity for all topology classes with three nodes and three
edges.

Topology Class In-degrees C

111 000 000 (3, 0, 0) 78.1818

011 001 000 (2, 1, 0) 4.57143

110 001 000 (2, 1, 0) 2.54545

110 000 100 (2, 0, 1) 2.54545

110 000 010 (2, 0, 1) 2.54545

100 101 000 (1, 2, 0) 2.54545

011 100 000 (2, 1, 0) 1.6

110 100 000 (2, 1, 0) 1.05263

110 000 001 (2, 0, 1) 1.05263

110 010 000 (2, 1, 0) 0.695652

100 100 100 (1, 1, 1) 0

100 100 010 (1, 1, 1) 0

010 100 100 (1, 1, 1) 20.36364

100 100 001 (1, 1, 1) 20.46154

010 001 100 (1, 1, 1) 20.5625

100 001 010 (1, 1, 1) 20.5625

100 010 001 (1, 1, 1) 20.65

Topology classes with a higher variance in-degree distribution have greater
complexity. The same result holds for all orders and sizes considered. Topology
classes are described by three groups of numbers. A ‘1’ in digit b of group a
indicates that the node a has an incoming edge from node b.
doi:10.1371/journal.pcbi.1002583.t001
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solely by the number of attractors each class realizes. Because of

fact 2, the difference in the number of attractors between two such

classes is completely determined by the difference in the number of

periodic attractors. The topology class with more periodic

attractors will have more phenotypes overall, and thus will have

a lower complexity.

The number of periodic attractors realized provides the second

level of structure for the relative genetic complexity of topology

classes. However, calculating the number of periodic attractors

produced is typically just as difficult as calculating the complexity

in the first place. One would like to have a way to predict the

relative complexity of two libraries based solely on topological

features that can be immediately assessed when presented with two

libraries. We found that the number of loops in a topology class

provides a qualitative predictor for the number of periodic

attractors produced, and thus of the relative complexity of

topology classes. An example of the relationship between number

of loops and complexity is shown in Figure 3 and Table 2.

It was proposed by R. Thomas that negative feedback loops are

necessary for the dynamical realization of periodic attractors [11].

Furthermore, it was recently shown that certain types of loop

structures are sufficient to cause dynamical behaviors such as

periodic attractors [12]. The relationship between number of loops

and periodic attractors identified in this work is in line with these

results. The relationship can also be understood heuristically, as a

topology class with many loops has many feedback mechanisms.

Feedback mechanisms are necessary to create the oscillatory

behavior that gives rise to periodic attractors. Though the

relationship between number of loops and number of periodic

attractors produced does not hold strictly in every case, it does

apply in most cases.

Thus, given two topology classes with the same order and the

same size, we can make an informed prediction about their

relative complexity. If the in-degree distributions of the two

topology classes differ, then we know with certainty which will

have lower complexity. If the in-degree distributions are the same,

the topology class with more loops is likely to have lower

complexity. One class of biological networks that exhibit a paucity

of loops are gene-regulation networks employing master regulators

[13,14]. These networks tend to utilize a hierarchical structure,

whereby information flows strictly from one level (the master

regulators) to the next (the regulated target genes). A target of one

master regulator can also be a master regulator in its own right,

leading to a hierarchical structure with multiple levels. Such

networks will feature few loops, and therefore have greater

complexity. These hierarchical network structures frequently drive

developmental processes that must be robust to environmental

fluctuations and that are strongly unidirectional [14]. Our results

on small Boolean networks therefore suggest that genetically

robust networks in general have greater genetic complexity.

Relationship to controllability. In a recent paper [15], Liu

et al. presented an analysis of the controllability of genetic networks

with different topological structures. Though their analysis took

place in the framework of continuous linear systems, and can

therefore not be rigorously applied to the discrete nonlinear

Boolean networks that we have been considering here, their

qualitative results suggest a relationship between genetic complex-

ity and controllability. In this context, controllability measures

how many nodes of a network must be controlled exogenously in

order to be able to realize all possible states in the state space of the

network from any possible initial state. A network where fewer

nodes must be directly controlled is more controllable.

The authors of [15] found that the minimal number of nodes

that need to be controlled in order to fully control the network is

equal to the number of ‘unmatched’ nodes. Unmatched nodes

are nodes that either have no inputs from other nodes in the

network (in-degree of zero), or have inputs only from nodes that

have multiple outputs, and thus cannot be individually controlled

by any other node in the network. It was shown that the degree

distribution plays a primary role in determining the controlla-

bility of a network, and that the difficulty of control increases

monotonically with degree heterogeneity. These results are

highly reminiscent of the relationship between complexity and

in-degree distribution that we identified above. We also found

that the in-degree distribution plays the primary role in

determining genetic complexity, and that an increase in

heterogeneity (an increase in in-degree variance) leads to greater

complexity. These observations strongly suggest that more

genetically complex topologies are also more refractory to

exogenous control.

Complexity and the Cell Cycle Network
Having studied the complexity of libraries of generic Boolean

networks, we examined the complexity of a specific biological

system. The cell cycle network (CCN) of S. cerevisiae has been

studied extensively as a model network and is well understood.

Furthermore, there exists for the CCN a Boolean network

formulation [16], allowing the straightforward computation of its

genetic complexity. The CCN Boolean network formulation of Li

et al. [16] uses a threshold network framework. The network is

shown in Figure 4 and the details of the threshold network

formalism are discussed in the Methods section.

Genetic complexity characterizes a library of networks, not a

single network, so in order to analyze the complexity of the CCN

we must first construct a library which the yeast CCN determines.

In the following analysis, for any given threshold network, its

corresponding library consists of all threshold networks that have

the same topology as the base network and where each node can

exist in one of three states: 1) the wild type allele, where the update

rule for the node is given by its inputs as defined by Li et al.; 2) the

null allele, where the node always updates to ‘off’; and 3) a

constitutively active allele, where the node always updates to ‘on’.

This choice of library is natural, given its biological and

experimental relevance, and its symmetry between null and

constitutively active states. In this section, when we mention the

complexity of a network, we are referring to the complexity of the

library generated from the network in the manner described

Table 2. The relationship between complexity and the
number of loops for all topology classes with in-degrees (1, 1,
1).

C No. periodic attractors No. edges in loops No. loops

0 0 1 1

0 0 1 1

20.36 4 2 1

20.46 6 2 2

20.56 9 3 1

20.56 9 3 2

20.65 13 3 3

Topology classes with fewer edges in loops are more complex. If two classes
have the same number of edges in loops, the class with fewer loops is more
complex. A pictorial representation of these topology classes, with the same
ordering, is given in Figure 2.
doi:10.1371/journal.pcbi.1002583.t002
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above. For the yeast CCN, which has 11 nodes, this leads to a

library of 3‘11 = 177147 genotypes.

We found that for the library generated by the yeast CCN,

when all 177147 genotypes were allowed to update from all 2048

initial states, no periodic attractors were produced. Because all

fixed attractors were guaranteed to be produced by our

construction of the CCN library, the lack of periodic attractors

indicates that the complexity of the yeast CCN is maximal. It

might seem surprising that a model of a cyclic process gives rise to

no periodic attractors. However, this is consistent within the

framework of the model, where the G1 phase of the cell cycle is a

steady state of the system and initiation of the cell cycle

corresponds to an external perturbation. This reflects the

biological reality that, at any given time, most cells are not

actively progressing through the cell cycle. We then systematically

perturbed a number of features of the yeast CCN in order to

identify which aspects of the network were most crucial to

maintaining its maximal complexity.

First, we calculated the complexity of the 29 networks created

by removing a single edge from the network. We found two edges

Figure 3. All topology classes with in-degrees (1,1,1), listed in order of decreasing complexity. Topology classes with more loop
structures have less complexity. This behavior is summarized in Table 2.
doi:10.1371/journal.pcbi.1002583.g003
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which when removed resulted in a network with lower complexity

than the CCN. One of these edges is a positive edge from Clb1,2

to Cdc20, and the other is a negative edge from Clb5,6 to Sic1.

Both edges relay information from B-type cyclins, which govern

the transition from the G2 phase to the M phase, suggesting that

this process contributes significantly to the complexity of the CCN.

It is known that the G2/M transition is a key checkpoint of the cell

cycle, and that the B-type cyclins play a crucial role in this process

[17,18].

We next systematically perturbed the inputs to each node. For

each node, we considered all possible reassignments of its inputs,

holding all other features of the network fixed. We then calculated

how often the complexity is decreased by perturbing the inputs to

each node. We found that there is a clear separation between nodes

whose inputs are more or less important to maintaining maximal

complexity, as shown in Table 3. The core set of nodes that have the

greatest impact on the complexity of the network are highlighted in

Figure 4. We found that the nodes whose inputs are more important

for complexity are precisely those nodes with out-degree greater

than two. This can be understood intuitively, as those nodes with

greater out-degree play a larger role in determining the states of

other nodes in the network. Perturbing their inputs will therefore

have a larger effect on the dynamics of the network as a whole.

We saw evidence in the previous section that networks with

more loops tend to give rise to more periodic attractors.

Investigations of the CCN also support this conclusion. This can

be seen in two ways. In one analysis, we have added all possible

single edges to the network and calculated the complexity. When

adding an edge, we can also compute how many loops are created,

and of what size. We found that those edge additions which lead to

the creation of several small loops or very many large loops are

more likely to produce periodic attractors (and thereby decrease

the complexity) than a random edge addition.

We can also make a connection between the large-scale loop

structure and information flow in the CCN and the number of

periodic attractors produced. The dominant modes of information

flow in the CCN are as shown in Figure S1. The flow of

information reflects that fact that the majority of interactions

present in the CCN relay information in the pattern indicated.

86% of the edges in the network account for information flowing

as indicated. Initial input flows from the top of the network, down

either side, and up into the center. There are few edges that

connect the bottom of the network to the top, thereby completing

the loops in the large-scale information flow. We have found that

the addition of edges from the bottom nodes to the top nodes is

more likely to decrease complexity than a random edge addition,

once again confirming that topologies with more loop structure

give rise to lower GPM complexity.

Discussion

We have formulated a rigorous, quantitative definition of the

genetic complexity of a GPM. This definition provides a tool to

unravel the properties of GPMs by providing a consistent means of

comparing the relative complexities of genetic networks and

identifying features of networks that lead to greater or lesser

complexity. Genetic complexity is a surplus of genotypic diversity

for a given level of phenotypic diversity. Conversely, it is a dearth

of phenotypic diversity. It is this dearth that results in the

intellectual sensation of surprise when a complex phenotype arises.

In biomedicine, such surprises are often unwelcome, for example

when the complex phenotype is an adverse reaction to a drug or

treatment. With an increased understanding of the quantitative

basis of genetic complexity, such surprises can be more predict-

able, detrimental surprises can be avoided, and the likelihood of

salubrious surprises can be increased. Potential applications of the

rigorous definition of complexity include evaluating different

strategies for collecting data and designing experiments, evaluating

the usefulness of statistical methods to determine relevant genes in

genome-wide association studies (GWAS) or alternatives to

GWAS, and investigating how genetic complexity arises evolu-

tionarily.

We found that the genetic complexity of libraries of Boolean

networks increases monotonically as a function of size and order,

fulfilling a basic expectation of genetic complexity. We also found

Figure 4. The threshold network formulation of the cell-cycle
network of S. cerevisiae. The nodes that make the greatest
contribution to the complexity of the system are blue.
doi:10.1371/journal.pcbi.1002583.g004

Table 3. The average effect of perturbations of the incoming
interactions for each node in the CCN of S. cerevisiae.

Node
Ave. No. of Periodic Attractors per
Perturbation Out-degree

MBF 9 2

SBF 1 2

Cln1,2 3 2

Cdh1 3 2

Swi5 2 1

Cdc20,14 32 5

Clb5,6 40 5

Sic1 24 3

Clb1,2 49 8

Mcm1/SFF 55 3

Those nodes with out-degree greater than 2 make the greatest contribution to
the complexity of the system.
doi:10.1371/journal.pcbi.1002583.t003
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that the key determinants of the relative complexity of different

topologies are the in-degree distribution and the number of

periodic attractors produced by the class (which is qualitatively

related to the number of loops in the topology). The central role

played by the in-degree distribution in determining the genetic

complexity also suggests that those topology classes that are more

difficult to control are additionally more genetically complex.

We found that the cell-cycle network of yeast has maximal

genetic complexity. In [16], it was shown that the CCN

demonstrates a substantial robustness to perturbation. This result

therefore also suggests a connection between robustness and

genetic complexity. A connection between complexity and

robustness was also identified when considering networks with

hierarchical structure. The precise nature of the relationship

between robustness and complexity should be investigated further.

By perturbing the CCN, we identified a core group of nodes which

are most responsible for the maximal complexity, and found that

interactions involving B-type cyclins make a crucial contribution.

Additionally, we reinforced the picture that more loops in a

topology leads to lower complexity, in agreement with the

association of hierarchical and scale-free structures with complex-

ity.

The definition of complexity should continue to produce other

such insights, when applied both to other computational models

and to experimental results. The definition allows the identifica-

tion of those features of genetic interaction networks that lead to

more or less complexity and thus leads to a greater understanding

of the structure of GPMs in general. Such insights can provide

guidance to engineer genetic systems of desired complexity and to

design experiments optimally so as to maximize the information

gained by performing measurements.

Methods

Boolean Networks
In the Boolean network framework, the interacting entities

(genes, proteins, complexes, etc.) are represented as binary nodes

which can be either active (‘1’) or inactive (‘0’). The current state of

the network is then completely specified by stating whether each

node is 1 or 0. The network evolves dynamically in discrete time

steps. The update rule at time t for each node depends on the

states of all nodes at time t,

Si(tz1)~fi(S1(t),S2(t),:::Sn(t)), ð2Þ

where Si(t) is the state of node i at time t. The function f can be

represented as a truth table (see Figure S2).

In the context of Boolean representations of genetic interaction

networks, specification of a truth table for a node corresponds to

specifying how a gene interacts with all other genes. We therefore

equate specifying a truth table for a node with specifying an allele

for the corresponding gene. In order to fully specify a genotype,

then, we must assign a truth table to each node.

Because there is a finite number of states available to a Boolean

network of a given size, and because the update rules of the

network are fully deterministic, if allowed to evolve in time a

Boolean network will necessarily reach an attractor. The attractor

can consist of a single state in which the network is forever stuck (a

fixed attractor), or it can consist of a series of states that the

network continuously visits in the same order (a periodic attractor).

For a network with given genotype and initial state, we associate

the resulting attractor with a phenotype.

With definitions of genotype and phenotype in hand, we

construct a library of Boolean networks according to some

unifying principle. We then allow each network in this library to

evolve from each possible initial state and record the resulting

phenotype. We count the number of unique phenotypes reached

and calculate the complexity according to our definition Equation

1. These computations were carried out on a desktop PC, using

programs written in C++.

Topological Features of Boolean Networks
A network can be characterized by its order (number of nodes),

size (number of edges) and topology (how those edges are arranged).

For a given genotype, the edges of the network can be worked out

from the set of truth tables. An edge exists pointing from node j to

node i if there exists at least one state such that the update result

for i will change if the bit for node j is flipped. Symbolically, an

edge from j to i exists if, for some set of Si,

fi(S1,S2,:::Sj ,:::Sn)=fi(S1,S2,:::Sjz1,:::Sn) ð3Þ

where addition is done modulo 2. Another way to say this is that

an edge exists from node j to node i if there is any one case where

the update rule of i depends on the state of node j. An example of

determining the edge structure from a truth table is given in Figure

S2. Our definition of a topology class is then all genotypes (all sets

of truth tables) of order n with precisely the same set of edges.

A set of nodes and edges constitutes a topology. Two ways to

characterize a topology are by its in-degree distribution and by its

out-degree distribution. For an order n network, the in-degree

distribution is a set of n numbers describing how many incoming

edges each node has. Likewise, the out-degree distribution is a set

of n numbers describing how many outgoing edges each node has.

Formal Proofs
In order to prove that the second level of structure of the genetic

complexity of topology classes is determined by the number of

periodic attractors produced, we relied on two facts:

1) Two topology classes with the same in-degree distribution

have the same genotypic diversity.

2) Every topology class will realize all fixed point attractors.

We prove these two facts now.

First, we show that all topology classes realize all fixed point

attractors. Consider any network belonging to a given topology

class. This network is fully described by its truth table. For an n-

node network, the truth table will have 2n rows and n columns.

Each column is the update rule of the nth node, specifying how

that node will update for each of the 2n possible states of the

network. If we flip the bits of the nth column of the truth table, the

nth node will still have inputs from the same set of nodes. Its

dependence on these nodes will simply be reversed. Thus, we can

flip the bits of any column of the truth table and produce another

network in the same topology class. Suppose that we are given any

single network representing any topology class. We can construct a

member of the same topology class that will realize any state of the

network, S = (S1, S2, … Sn), as a fixed point attractor, as follows.

From the truth table, (S1, S2, … Sn) updates to the state (S91, S92,

… S9n). In order for S to be a fixed point attractor, we must find a

truth table in the same topology class such that Si = S9i for all i.

Such a truth table can be generated by flipping the bits for each

column i in which Si?S9i. As shown above, the resulting network

will reside in the same topology class, and the state S will be a fixed

point attractor of the network. Thus, every topology class will

realize all fixed point attractors.
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Next, we prove that any two topology classes with the same in-

degree distribution have the same genotypic diversity. We consider

two topology classes with order n and the same in-degree

distribution. The number of genotypes in either library is equal

to the product of the number of truth tables with the appropriate

set of edges for each node. If a given node has in-degree j, there is a

one-to-one mapping between the sets of all truth tables containing

edges from any set of j nodes that can be constructed by permuting

the node labels. Thus, the number of truth tables accessible to each

node depends only on the in-degree of the node and not on the

identities of the nodes from which the incoming edges are coming.

Therefore, for any two topology classes with the same in-degree

distribution, the number of genotypes |G| in both classes will be

the product of the same n numbers.

In order to show that any two topology classes with the same in-

degree distribution also have the same genotypic diversity, mn, we

prove that there are no commutative alleles and, therefore, that

mn = |G|. To prove this, it suffices to show that for any two non-

identical Boolean-network alleles, there exists a genetic back-

ground for which those two alleles give rise to different

phenotypes. Consider two alleles, A and a, of gene g. In the

Boolean network framework, this means that there exists at least

one state, s, for which A and a have different update rules.

Consider state s in which the allele A updates to 1 and the allele a

updates to 0. The proof of the converse follows immediately. If

gene g is 1 in state s, then according to the proof of point 2 above,

we know there exists a genotype (A1, A2,…A,…An) in the topology

class containing allele A for which state s is a fixed point. But then

the genotype (A1, A2,…a,…An), which is also a member of the

topology class, does not realize s as a fixed point, because gene g

will update to 0 in this genotype. Therefore, there exists a genetic

background (A1, A2,…An) in which A and a give different

phenotypes, and A and a are not functionally equivalent. The

proof for the case where gene g is 0 in the state s is analogous, with

the roles of A and a switched. Thus, all alleles are functionally

unique and mn = |G| is the same for all topology classes with the

same in-degree distribution.

Threshold Network Formalism
The CCN as constructed by Li et al. utilizes the threshold

network formalism. In this formalism, rather than represent

update rules by a set of truth tables, which become unwieldy for a

large number of nodes, the update rules are specified by a set of

arrows. Each arrow points from one node to another, and the

arrows must be either positive or negative (represented as green

and red arrows, respectively). At each time step, an arrow from

node A to node B is active only if node A is on. The update rule for

B is determined by looking at all active inputs to B. If more active

inputs are positive, then node B turns on. If more active inputs are

negative, node B turns off. If there are equal numbers of active

positive and negative inputs, then B either remains in its current

state, or turns off if it is self-regulating (represented by an arrow

pointing from a node to itself). These update rules are summarized

mathematically as

Si(tz1)~

1,
P

j

IijSj(t)w0

0,
P

j

IijSj(t)v0

Si(t) or 0,
P

j

IijSj(t)~0

8>>>>><
>>>>>:

ð4Þ

where Iij is 1 if there is a positive edge from j to i, 21 if there is a

negative edge from j to i, and zero if there is no edge between j and

i. For more flexibility, one can also allow the weights Iij to take on

values other than 1 and 21, although we will not consider such

cases in this paper.

A network given in the threshold formalism can always be

converted to one in the truth table formalism. One potential

stumbling block involves a small difference in topological notation

between our earlier truth table framework and the threshold

network framework. In the threshold network formalism, a self-

regulation is represented by an arrow pointing from a node to itself.

However, when translated into the truth table formalism, such a

node will actually not have an edge pointing from it to itself. Nodes

in the threshold network formalism without self-regulation will have

edges pointing from them to themselves in the truth table formalism,

because when their inputs sum to zero they remain in their current

state; thus, their update rule depends on their own state.

Complexity of the CCN
As mentioned in the Results section, for networks in the

threshold formalism, we construct libraries of networks by allowing

each node one of three possibilities:

1) Update according to the threshold rules given above

2) Update always to off

3) Update always to on

Since there are 11 nodes in the CCN, there are 3‘11 = 177147

genotypes in the CCN library. For each of these genotypes, we

cycle through all possible 2048 initial states and find the resulting

attractor state. We count the number of unique attractors as the

number of phenotypes and calculate the complexity C. Once

again, the computations are carried out on a desktop PC with

programs written in C++. Note that, due to options 2) and 3)

above, we are guaranteed to realize all 2048 fixed states, because

for each state there exists a network that updates to that state

regardless of the current state. For the CCN, only the 2048 fixed

attractors are realized, leading to a maximal complexity of 85.54.

For perturbations of the CCN, the calculation is carried out in

an analogous manner. We start with the perturbed threshold

network, construct the library as above, and count the number of

unique phenotypes that result. The 2048 fixed states are always

guaranteed to appear and the complexity is fully determined by

the number of periodic attractors that are realized.

Supporting Information

Figure S1 The general flow of information in the CCN of
S. cerevisiae. Information flows from the upper nodes (colored

dark blue) to the lower nodes (colored brown).

(TIF)

Figure S2 An example truth-table representation of the
update rules for a three-node network. Nodes A, B and C

update to A9, B9 and C9 at the subsequent time step. Below is a

pictorial depiction of the topology of the particular update rules

shown.

(TIF)

Figure S3 The discretization of continuous phenotype
measurements. Separation along the vertical axis is solely for

the purpose of visual clarity. The phenotypes of 8 genotypes, A

through H, are plotted on a continuous phenotype measurement

axis. Using the method for estimating p given in Text S1, the 8

genotypes A–H exhibit p = 6 different phenotypes, where B and C

share a phenotype, and G and H share a phenotype.

(TIF)
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Figure S4 Two GPMs with equivalent genetic complex-
ity but significantly different structures. In panel A, each

genotype is mapped onto two phenotypes. In panel B, most

genotypes are mapped onto a single phenotype, with one

exception. The two mappings have equivalent genetic complexity.

(TIF)

Table S1 The complexity of Boolean networks as a
function of order.
(XLSX)

Table S2 The complexity of order-three Boolean net-
works as a function of size.
(XLSX)

Text S1 Supplementary info. Contains the derivation of the

definition of genetic complexity and a discussion of the

experimental application of the definition.

(DOC)

Acknowledgments

We thank Gregory Carter and Ilya Shmulevich for their contributions.

Author Contributions

Conceived and designed the experiments: TG. Performed the experiments:

EGT. Analyzed the data: EGT TG. Wrote the paper: EGT TG.

References

1. Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype-

phenotype map: the evolvability of complex organisms. Nat Rev Genet 12: 204–
213.

2. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge.

Nat Rev Genet 11: 855–866.
3. Rockman MV (2008) Reverse engineering the genotype-phenotype map with

natural genetic variation. Nature 456: 738–744.
4. Kruglyak L (2008) The road to genome-wide association studies. Nat Rev Genet

9: 314–318.
5. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed

genetic nets. J Theor Biol 22: 437–467.

6. Aldana M, Coppersmith S, Kadanoff LP (2002) In:Kaplan E, Marsden JE,
Sreenivasan KR, editors. Perspectives and Problems in Nonlinear Science. New

York: Springer. pp. 23–89.
7. Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in

Evolution. New York: Oxford University Press.

8. Bornholdt S (2008) Boolean network models of cellular regulation: prospects and
limitations. J R Soc Interface 5 Suppl 1: S85–94.

9. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev
Genet 8: 450–461.

10. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale

organization of metabolic networks. Nature 407: 651–654.
11. Thomas R (1981) On the relation between the logical structure of systems and

their ability to generate multiple steady states and sustained oscillations. In Ser

Synergetics 9: 180–193.
12. Remy E, Ruet P (2008) From minimal signed circuits to the dynamics of Boolean

regulatory networks. Bioinformatics 24: i220–226.
13. Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, et al. (2006) Core

transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol 2: 2006
0017.

14. Yu H, Gerstein M (2006) Genomic analysis of the hierarchical structure of

regulatory networks. Proc Natl Acad Sci U S A 103: 14724–14731.
15. Liu YY, Slotine JJ, Barabasi AL (2011) Controllability of complex networks.

Nature 473: 167–173.
16. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is

robustly designed. Proc Natl Acad Sci U S A 101: 4781–4786.

17. Jorgensen P, Tyers M (2000) The fork’ed path to mitosis. Genome Biol 1:
REVIEWS1022.

18. Stark GR, Taylor WR (2006) Control of the G2/M transition. Mol Biotechnol
32: 227–248.

Quantifying and Analyzing Genetic Complexity

PLoS Computational Biology | www.ploscompbiol.org 10 July 2012 | Volume 8 | Issue 7 | e1002583


