
Meiotic Recombination Intermediates Are Resolved with
Minimal Crossover Formation during Return-to-Growth,
an Analogue of the Mitotic Cell Cycle
Yaron Dayani1,2, Giora Simchen2, Michael Lichten1*

1 Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America, 2 Department of

Genetics, Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

Accurate segregation of homologous chromosomes of different parental origin (homologs) during the first division of
meiosis (meiosis I) requires inter-homolog crossovers (COs). These are produced at the end of meiosis I prophase, when
recombination intermediates that contain Holliday junctions (joint molecules, JMs) are resolved, predominantly as COs. JM
resolution during the mitotic cell cycle is less well understood, mainly due to low levels of inter-homolog JMs. To compare
JM resolution during meiosis and the mitotic cell cycle, we used a unique feature of Saccharomyces cerevisiae, return to
growth (RTG), where cells undergoing meiosis can be returned to the mitotic cell cycle by a nutritional shift. By performing
RTG with ndt80 mutants, which arrest in meiosis I prophase with high levels of interhomolog JMs, we could readily monitor
JM resolution during the first cell division of RTG genetically and, for the first time, at the molecular level. In contrast to
meiosis, where most JMs resolve as COs, most JMs were resolved during the first 1.5–2 hr after RTG without producing COs.
Subsequent resolution of the remaining JMs produced COs, and this CO production required the Mus81/Mms4 structure-
selective endonuclease. RTG in sgs1-DC795 mutants, which lack the helicase and Holliday junction-binding domains of this
BLM homolog, led to a substantial delay in JM resolution; and subsequent JM resolution produced both COs and NCOs.
Based on these findings, we suggest that most JMs are resolved during the mitotic cell cycle by dissolution, an Sgs1
helicase-dependent process that produces only NCOs. JMs that escape dissolution are mostly resolved by Mus81/Mms4-
dependent cleavage that produces both COs and NCOs in a relatively unbiased manner. Thus, in contrast to meiosis, where
JM resolution is heavily biased towards COs, JM resolution during RTG minimizes CO formation, thus maintaining genome
integrity and minimizing loss of heterozygosity.
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Introduction

Recombination has a major role during meiosis, as it is

necessary for accurate homolog segregation at the first meiotic

division [1]. Meiotic recombination is initiated by DNA double

strand breaks (DSBs) that are formed by the Spo11 nuclease [2,3].

Single stranded DNA, produced at break ends by 59 to 39 resection

[4], then interacts with complementary sequences on the homolog

or on the sister chromatid [5,6]. Some interhomolog recombina-

tion events produce a noncrossover (NCO), in which both

interacting chromosomes retain parental flanking sequence

configurations, whereas other events produce a reciprocal

exchange of flanking sequences, or crossover (CO). COs, in

combination with sister chromatid cohesion, form the inter-

homolog linkage that is required for proper homolog segregation

[1]. In Saccharomyces cerevisiae, COs comprise about one half of all

interhomolog recombination events [7]. Meiotic COs are

produced by the resolution of joint molecule (JM) intermediates

[8–10], most of which contain two Holliday junctions [11], here

called double Holliday junction JMs (dHJ-JMs).

In most organisms, including S. cerevisiae, meiotic DSB formation

and recombination are also necessary for progressive colocaliza-

tion and alignment of homologs during prophase. This process

culminates at pachytene, where homologs are joined at sites of

recombination and linked tightly along their entire length by a

meiosis-specific tripartite protein structure called the synaptone-

mal complex (SC; [12]).

Although genome-wide programmed DSB formation is central

to normal meiosis, it does not usually occur during the mitotic cell

cycle. During the budding yeast mitotic cell cycle, most breaks are

repaired by recombination between sister chromatids [13–15], and

the inter-homolog homologous recombination (HR) events that do

occur during the mitotic cell cycle produce COs less frequently

than in meiosis [13,16].

The lower yield of COs during mitotic recombination, as

compared to meiotic recombination, can be explained in two

ways. First, fewer dHJ-JMs are produced per DSB repair event

during mitosis than during meiosis [15], and it is possible that most

mitotic DSB repair does not involve dHJ-JM formation. Second, it

is possible that JMs are produced at significant levels during
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mitotic HR, but are resolved differently than are JMs produced

during meiosis. In S. cerevisiae, most meiotic JMs are resolved as

COs [8–10] in a process that most likely involves endonuclease

cleavage of Holliday junctions, and that is triggered by Cdc5, the

budding yeast polo-like kinase homolog [17,10]. Much less is

known about JM resolution during the mitotic cell cycle, since the

products of intersister recombination cannot be distinguished from

the precursor molecules.

Several structure-selective nucleases have been suggested as

having a role in JM resolution by Holliday junction cleavage [18].

The most extensively studied of these is a structure-selective

heterodimeric endonuclease, hereafter called the Mus81 complex,

that contains the conserved Mus81 nuclease in complex with a

second protein, called Mms4 in S. cerevisiae and Drosophila, and

Eme1 in fission yeast, mammals and plants [19–21]. Meiotic

progression defects are evident in S. pombe and S. cerevisiae mutants

lacking the Mus81 complex, but the nature of these defects differs

in the two organisms. In S. pombe, mutants lacking the Mus81

complex show a strong CO defect and accumulate unresolved JMs

[19,22–24], while in S. cerevisiae, mus81 or mms4 mutants show only

a minor CO loss and resolve the vast majority of JMs [25–29].

Thus, in budding yeast, most meiotic JMs must be resolved by

other, yet unidentified endonucleases. It also is not clear whether

or not the Mus81 complex resolves JMs that form during the

mitotic cell cycle. A recent study of I-Sce1 endonuclease-promoted

mitotic recombination in S. cerevisiae suggested redundant roles for

the Mus81 complex and for the Yen1 endonuclease in

interhomolog CO formation [30], but it remains to be established

that these crossovers are produced by dHJ-JM resolution.

dHJ-JMs can also be resolved by an endonuclease-independent

process, called dissolution, that uses a RecQ-family helicase and a

type 1 topoisomerase to disassemble JMs and to produce only

NCOs [31–34]. Dissolution has been demonstrated in biochemical

studies of the human BLM helicase combined with the

TOPOIIIa/BLAP75 heterodimer, and of the corresponding

budding yeast proteins Sgs1 and Top3/Rmi1 [35,33,36].

Dissolution has not yet been directly demonstrated in vivo, but is

consistent with observations that loss of BLM or Sgs1 helicase

activity is accompanied by a substantial increase in mitotic sister

chromatid exchange [37–39], and that sgs1 mutants show

increased JM accumulation and CO formation during mitotic

DSB repair [16,15]. During meiosis, sgs1 single mutants show only

a slight increase in COs, but produce ‘‘abnormal’’ JMs involving 3

or 4 chromatids at elevated levels [40,41]. In addition, the CO and

JM formation defects of mutants lacking SC components are

partially suppressed by sgs1 mutation [40,42,41]. These findings

are consistent with the suggestion that the Sgs1/BLM helicase

prevents COs by reducing JM levels. However, because this

helicase also has the potential to disassemble early strand invasion

intermediates that are precursors to JMs [43,44], it remains to be

determined if Sgs1/BLM act primarily to prevent JM formation,

or to disassemble JMs once they form.

Finally, JMs that form during the G1 phase of the mitotic cell

cycle can, in theory, also be resolved passively by chromosome

replication [45], producing a CO if the original JM contains an

odd number of HJs and an NCO if the original JM contains an

even number of HJs.

In the current study, we present experiments aimed at

examining how JMs are resolved during the S. cerevisiae mitotic

cell cycle. Although several groups have detected JMs in S. cerevisiae

undergoing vegetative growth [46,47,15], definitive study of their

resolution has been precluded by their relatively low levels and by

the fact that most form between sister chromatids. However,

interhomolog JMs can be recovered at high levels during meiosis,

especially in cells that lack Ndt80, a transcription factor required

for expression of many mid- and late-meiosis proteins, including

the Cdc5 polo-like kinase which is required for meiotic JM

resolution [48,17]. ndt80 mutant cells arrest at the pachytene stage

of meiosis, with duplicated but unseparated spindle pole bodies

[49], with homologs tightly paired by SC [49], and, most

important to this study, with a high level of unresolved JMs [8].

To examine resolution of these JMs in a cellular environment that

mimics the mitotic cell cycle, we used a singular property of S.

cerevisiae, called return to growth (RTG). When cells in meiosis I

prophase are shifted to rich medium, they rapidly exit meiosis,

adopt a G1-like transcription pattern, and ultimately resume the

mitotic cell cycle [50–58].

We report here the first molecular characterization of JM

resolution during RTG. We show here that, unlike in meiosis,

most JMs are resolved after RTG in a manner that does not

produce COs. Examination of JM resolution in sgs1 and in mus81

mutants suggest that, during RTG of wild-type cells, the majority

of JMs are resolved by Sgs1-mediated dissolution, with a minor

fraction of JMs being resolved by Mus81 complex-dependent

cleavage to produce both CO and NCO products.

Results

To determine how JMs are resolved after RTG, we used ndt80D
mutant cells, which arrest at pachytene with fully-formed SC and

high levels of JMs [49,8]. In general, RTG experiments involved

incubating ndt80D cells in nutrient-poor sporulation medium (1%

potassium acetate) for 7 hr to allow cells to initiate meiosis and

arrest at pachytene, and then shifting cells to nutrient-rich growth

medium (YPD) to induce RTG. We confirmed that ndt80D cells

retain viability after RTG [49]; virtually all cells produced colonies

when a culture incubated 7 hours in sporulation medium was

plated on YPD agar plates (colonies/visible cells = 1.0+/20.1;

strain MJL3164—see Table S1). To examine the timing and

efficiency of RTG in greater detail, we monitored progression of

the first cell cycle after RTG (Figure 1). Budded cells were first

observed 2 hr after RTG, and half of the cells had produced a bud

Author Summary

Cell proliferation involves DNA replication followed by a
mitotic division, producing two cells with identical ge-
nomes. Diploid organisms, which contain two genome
copies per cell, also undergo meiosis, where DNA replication
followed by two divisions produces haploid gametes, the
equivalent sperm and eggs, with a single copy of the
genome. During meiosis, the two copies of each chromo-
some are brought together and connected by recombina-
tion intermediates (joint molecules, JMs) at sites of
sequence identity. During meiosis, JMs frequently resolve
as crossovers, which exchange flanking sequences, and
crossovers are required for accurate chromosome segrega-
tion. JMs also form during the mitotic cell cycle, but resolve
infrequently as crossovers. To understand how JMs resolve
during the mitotic cell cycle, we used a property of budding
yeast, return to growth (RTG), in which cells exit meiosis and
resume the mitotic cell cycle. By returning to growth cells
with high levels of JMs, we determined how JMs resolve in a
mitotic cell cycle-like environment. We found that, during
RTG, most JMs are taken apart without producing
crossovers by Sgs1, a DNA unwinding enzyme. Because
Sgs1 is homologous to the mammalian BLM helicase, it is
likely that similar mechanisms reduce crossover production
in mammals.

Joint Molecule Resolution during Return to Growth
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by 2.5 hr. Nuclear division occurred about 1 hr after bud

emergence, with half of the cells having undergone nuclear

division by 3.5 hr after RTG. By 4 hr after RTG, virtually all cells

had undergone nuclear division, consistent with the high viability

seen in plating experiments.

Cells of the SK1 strain background used here complete a

mitotic cell cycle every 80 minutes while growing in YPD (M. L.,

unpublished data), whereas in the current experiments, the first

cell division did not occur until at least 2.5 hr after the shift from

sporulation to YPD growth medium (Figure 1b). This difference

might be explained if nuclear division during RTG was delayed by

the presence of unresolved interhomolog connections that were

formed during meiosis. To test this suggestion, we examined RTG

in spo11 mutant cells (strain MJL2807), which do not initiate

recombination or produce SC [59,60]. Bud emergence and

nuclear divisions occurred at times similar to those seen in

SPO11 cells (Figure 1b), indicating that the extended gap phase

seen upon RTG is not caused by a need to resolve recombination-

dependent meiotic chromosome structures.

The SC rapidly breaks down after RTG
ndt80D cells arrest with chromosomes that are fully paired by

SC [49]. It was previously shown that the SC formed in NDT80

cells breaks down rapidly after RTG [56]. We confirmed this

observation in ndt80D strains by staining surface-spread nuclei for

Zip1, a central component of the SC [61]. Most cells lose full-

length linear SC within 15 minutes of transfer to YPD, and less

than 30% of cells contained even residual (dotty) Zip1-containing

structures 1.5 hr after RTG, before bud emergence and well

before nuclear division (Figure 1c, 1d).

Sister chromatids segregate during the nuclear division
after RTG

The first nuclear division of meiosis involves segregation of

homologs (reductional division), whereas during mitotis, sister

chromatids separate from each other (equational division). To

determine if the first nuclear division after RTG is reductional

or equational, we used a TRP1/trp1 heterozygous strain. TRP1 is

Figure 1. Cell cycle progression and SC breakdown after RTG. a. Representative images of ndt80 cells (MJL3430) at various stages of RTG,
visualized by differential interference contrast (DIC) or by DAPI-staining to detect nuclei (DNA). Note that the daughter cell is elongated as compared
to the round mother cell. Scale bar—4mm. b. Time of bud emergence and nuclear division after RTG using SPO11 ndt80D (MJL3164, top) or spo11-
Y135F ndt80D (MJL2807, bottom); the latter do not form SC or JMs. Circles – unbudded cells; squares – cells with a bud and one nucleus; triangles –
cells that are undergoing or have finished nuclear division. Values for MJL3164 are from 4 independent determinations. c. SC breakdown upon RTG.
Nuclei (MJL3163) were surface-spread and probed with anti-Zip1 antisera. Representative images of nuclei classified as full SC (long, continuous Zip1
lines), partial SC (discontinuous or dotty Zip1) and no SC (no Zip1 chromosomal staining) are shown together with DNA staining. Extrachromosomal
Zip1 aggregates (polycomplex) were also detected as a bright-staining body. Scale bar—4 mm. d. Time of SC breakdown after RTG (MJL3163). At least
150 nuclei were scored for each time point. Circles – nuclei with full SC; squares – nuclei with partial SC; triangles – nuclei with no SC. Values are from
a single experiment.
doi:10.1371/journal.pgen.1002083.g001
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tightly linked to the centromere of chromosome IV (,0.5cM;

[62]), so chromosome segregation in the first division after

RTG can be determined by examining TRP1 allele segregation

(Figure 2a). If the first division is reductional, one daughter cell

will inherit both copies of the TRP1 allele, whereas the other

will inherit both copies of the trp1 allele, resulting in a sectored

Trp+/Trp2 colony. If the first division is equational, both

daughter cells will inherit one TRP1 and one trp1 allele, resulting

in a uniform Trp+ colony. A TRP1/trp1 ndt80D/ndt80D diploid

(strain MJL3163) was induced to undergo meiosis for 7 hr,

returned to growth by plating on YPD, and the resulting colonies

were replica plated onto medium lacking tryptophan. Only one

colony in 2767 was sectored, and the rest were uniformly Trp+
(Figure 2b). Thus, the first nuclear division after RTG involves a

mitosis-like equational chromosome segregation.

Cells do not replicate DNA before the first nuclear
division after RTG

Because DNA replication can resolve JMs, it was important to

determine whether or not cells undergo replication before the first

division after RTG. During the mitotic cell cycle, bud emergence

is closely followed by initiation of DNA replication [63]. We asked

if bud emergence after RTG was also associated with DNA

replication. ndt80D cells arrest after meiotic DNA replication, and

thus have a 4C DNA content. Therefore, DNA re-replication

before the first division after RTG will result in tetraploid daughter

cells. On the other hand, if DNA re-replication does not occur

after RTG, diploid daughter cells will be produced. To determine

whether DNA re-replication occurs after RTG, we monitored the

copy number of chromosome V, using a centromere-linked array

of tet operator (tetO) repeats that bind a constitutively-expressed tet

repressor-green fluorescent protein fusion [64,65], referred to here

as CEN5-GFP. To check the efficiency of detection of individual

CEN5-GFP signals, diploids that were hemizygous (strain

MJL3312) or homozygous (strain MJL3313) for CEN5-GFP were

grown to log phase, and the number of GFP dots per nucleus was

scored in unbudded cells (G1-phase of the cell cycle). As expected,

unbudded cells with a hemizygous CEN5-GFP showed one dot per

nucleus (133/133). In contrast, 28/104 unbudded cells homozy-

gous for CEN5-GFP showed two dots in their nuclei (Figure 2d),

indicating that two copies of CEN5-GFP are detected with about

25% efficiency. The reduced efficiency of detection of two GFP

spots is most likely a result of the limited separation of centromeres

during interphase in yeast, due to the close attachment of

centromeres to the spindle pole body [66].

Using this assay, we determined the number of GFP dots in

unbudded cells produced from the first or second division after

RTG of a diploid with a hemizygous CEN5-GFP (strain MJL3312).

Re-replication followed by an equational division would result in

each daughter cell inheriting two copies of CEN5-GFP, and two

GFP dots will be observed in the nucleus (Figure 2c). However, if

no re-replication occurs, each daughter cell will inherit one copy of

CEN5-GFP, resulting in one GFP dot in the nucleus. All cells

examined (282/282) showed only one dot in each nucleus. Thus,

cells do not undergo DNA replication before the first nuclear

division after RTG.

To confirm the conclusion that cells do not undergo DNA

replication before the first nuclear division after RTG, we

monitored the copy number of the loosely centromere linked

MAT locus. Re-replication, followed by an equational division,

would result in most daughter cells being MATa/MATa/MATa/

MATa tetraploids. However, if no re-replication occurs, most

daughter cells will be MATa/MATa diploids. Sporulation of

MATa/MATa/MATa/MATa tetraploid cells would frequently

produce MATa/MATa nonmating diploid spores. On the other

hand, sporulation of MATa/MATa diploid cells will only produce

haploid spores with a single MATa or MATa allele (Figure S1).

To sporulate cells that are phenotypically Ndt802, we used a

strain (strain MJL3430, pGPD1-GAL4-ER pGAL1-NDT80;

[67,68,10]) where NDT80 is normally not expressed, but where

NDT80 expression can be induced by the addition of estradiol

(ED). Seven independent segregants from RTG performed

without NDT80 expression (without ED) were induced to undergo

a second meiosis with NDT80 expression (with ED), and tetrads

produced by these strains were dissected. All spores from 4 spore-

viable tetrads (at least 10 tetrads per primary segregant; n = 400)

were either MATa or MATa maters, and none were MATa/MATa
nonmaters, confirming the conclusion that re-replication does not

occur before the first nuclear division after RTG.

Genetic evidence that COs are infrequently produced
after RTG

Since unresolved JMs are expected to interfere with chromo-

some segregation at mitosis, the observation that most ndt80

Figure 2. The first cell division after RTG involves equational
chromosome segregation without replication. a. Outcome of
different types of chromosome segregation after RTG. One homolog is
shown as solid line and the other as dashed line. Black and diagonal
hatched boxes indicate dominant TRP1 and recessive trp1 alleles,
respectively. Reductional chromosome segregation (left) separates
homologs, producing a sectored colony with TRP1/TRP1 and trp1/trp1
cells. Equational chromosome segregation (right) separates sister
chromatids, producing homogenous TRP1/trp1 colonies. b. Meiotic
cells (MJL3163) were plated on YPD, inducing RTG, and 2767 colonies
were replica-plated to medium lacking tryptophan. The single Trp+/
Trp2 colony observed is shown. c. Expected outcomes if DNA
replication occurs or does not occur before the first nuclear division
after RTG. A strain hemizygous for a CEN5-GFP array (black rectangles,
see text for details) is illustrated. After 7 hr in meiosis, each cell includes
two copies of CEN5-GFP (middle). Replication followed by equational
chromosome segregation (left) results in two copies of CEN5-GFP in
each cell. Equational chromosome segregation without prior replication
(right) leaves a single copy of CEN5-GFP in each cell. d. Upper panel—
post-mitotic cells with a hemizygous CEN5-GFP array (MJL3312), from a
sample taken 3.5 hr after RTG. All 282 post-mitotic G1 cells examined
had a single GFP spot. Lower panel—control cells with a homozygous
CEN5-GFP array (MJL3313) growing vegetatively in YPD. An unbudded
cell in G1 is shown. 28/104 G1 cells had two GFP dots. Left—Nuclei
detected by DNA/DAPI fluorescence; right—GFP fluorescence.
doi:10.1371/journal.pgen.1002083.g002
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mutant cells retain viability after RTG ([49]; see above) suggests

that meiotic JMs must be resolved before the first cell division after

RTG. During meiosis, JMs are mainly resolved to produce COs

[8–10]. To ask if JMs are resolved similarly after RTG, we

monitored segregation of the recessive cycloheximide–resistance

allele, cyh2-z, in a cyh2-z/CYH2 heterozygous diploid. In wild-type

meiosis, 66% of cells undergo second division segregation for cyh2-

z, resulting from crossing over between the CYH2 locus and the

centromere of chromosome VII (CEN7; see Materials and

Methods). If JMs are similarly resolved as COs during RTG,

66% of cells are expected to have a CO between CYH2 and CEN7.

Assuming random sister chromatid segregation at the first division

after RTG, as it is in mitosis [69], half of the cells with a CO

between CEN7 and CYH2 will produce cycloheximide-resistant

cyh2-z/cyh2-z daughter cells (33% of total colonies; Figure 3a).

To directly compare JM resolution after RTG and during

meiosis, we used an ndt80D/ndt80D CYH2/cyh2-z strain that

contains an estrogen-inducible CDC5 gene (ndt80D pGPD1-GAL4-

ER pGAL1-CDC5; strain MJL3267), to allow conditional JM

resolution [10]. In the absence of inducer (-ED), cells accumulate

in pachytene with unresolved JMs. ED addition induces CDC5

expression, and cells exit from pachytene and resolve JMs to

produce COs, but do not progress further through meiosis [10].

Thus, if CDC5 is expressed before RTG, JMs will be resolved and

COs will be produced at a level similar to that seen in meiosis.

Thus, 33% of colonies are expected to be cycloheximide resistant

(Figure 3a). Cells were induced to undergo meiosis for 7 hr, and

then aliquots were plated on YPD to undergo RTG (Figure 3b).

The remainder of the culture was incubated for another 4 hr in

sporulation medium, either with ED to induce pachytene exit, or

in the absence of ED as a control, and aliquots were plated on

YPD. Colonies on YPD were replica plated onto YPD with

cycloheximide to score for sectored colonies produced by

crossovers. Only a small fraction of the RTG colonies from

samples taken before mock or CDC5 induction contained

cycloheximide-resistant sectors (3.9% and 2.6%, respectively,

Figure 3c, 3d), and cells plated after a 4 hr incubation without

ED also produced few cycloheximide-resistant sectors (4.6%,

Figure 3e). In contrast, when CDC5 was expressed and JMs

resolved as COs, 30% of colonies contained cycloheximide-

resistant sectors (Figure 3f). The relatively low frequencies of

colonies with cycloheximide-resistant sectors in all samples that

underwent RTG without CDC5 induction indicates that the

majority of JMs are not resolved as COs after RTG.

Molecular evidence that most JMs are not resolved as
COs after RTG

Reduced CO formation after RTG was confirmed by molecular

analysis. To allow direct comparison between events that occur

during meiosis and during RTG, we used a recombination-

reporter strain, described below, that also contained the estrogen-

inducible NDT80 allele described above (strain MJL3430) that

Figure 3. Few COs are produced after RTG. a. CO detection after RTG. Chromosome VII homologs are shown as solid and dashed lines. Black and
grey boxes indicate dominant CYH2 and recessive cyh2-z cycloheximide sensitive and resistant alleles, respectively. If a CO occurs between CYH2 and
the centromere, equational chromosome segregation produces either a colony that is uniformly CYH2/cyh2-z (cycloheximide-sensitive), or a colony
with a CYH2/CYH2 (cycloheximide-sensitive) sector and a cyh2-z/cyh2-z (cycloheximide-resistant) sector. b. Experimental design. ndt80D CDC5-IN
(MJL3267) cells are incubated in sporulation medium for 7 hr to uniform pachytene arrest, and aliquots are plated on YPD for RTG (c and d). The
culture is then incubated for an additional 4 hr without CDC5 induction and plated on YPD (e), or the culture is incubated for 4hr in the presence of
estradiol to induce CDC5 expression before plating on YPD (f). Colonies on YPD are replica-plated to YPD + cycloheximide to detect cyh2-z/cyh2-z
recombinants. c, d. Control aliquots plated directly on YPD before replica-plating to YPD + cycloheximide. e. Pachytene-arrested cells were incubated
for 4 hr without CDC5 induction before plating on YPD. f. Pachytene-arrested cells were incubated for 4 hr with estradiol to induce CDC5 expression
before plating on YPD. Note the marked increase in the frequency of cycloheximide-resistant segregants.
doi:10.1371/journal.pgen.1002083.g003
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confers reversible pachytene arrest [68]. Pachytene-arrested cells

can be transferred to YPD without estradiol addition to undergo

RTG in the absence of NDT80 expression. Alternatively, they can

be kept in sporulation medium, and by adding ED to induce

NDT80 expression, be made to complete meiosis (Figure 4a, 4b).

Meiotic NDT80 expression resulted in meiotic divisions (Figure 4d),

spore formation (data not shown), and the rapid expression of

CDC5, a known target of Ndt80 [70]. Cdc5 was detected one hr

after addition of ED to meiotic cultures, whereas Cdc5 was not

present in RTG cultures until 2–2.5 hr after the shift to YPD,

about 30 min before nuclear division (Figure 4c, 4e). The mitotic

cyclin Clb2, which is not produced during meiosis [71], was

observed only in the RTG culture, at about the same time as Cdc5

(Figure 4c).

Recombination intermediate resolution and recombinant prod-

uct formation were monitored at the molecular level, using a

recombination reporter system [7] (Figure 4f). JM resolution

initiated at similar times in both ED-induced meiotic and RTG

cultures (Figure 4g). However, the two cultures differed markedly

in terms of CO production. JM resolution in the meiotic culture

was accompanied by a marked increase in crossovers in the same

time interval, and was complete by 1.5 hr after Ndt80 induction

(Figure 4h). In contrast, no increase in COs was seen in the first

2 hr after RTG, during which JMs decreased by five-fold. After

two hr, a time that corresponded to the time of bud emergence

(Figure 4e), resolution of the remaining JMs was accompanied by a

modest increase in COs (Figure 4h). NCO products were

produced in meiotic and in RTG cultures at similar levels

(Figure 4i). Similar results were observed in RTG experiments

using ndt80D cells lacking the inducible NDT80 system (strain

MJL3164; Figure S2).

The data presented here support the conclusion from genetic

experiments described above, that most JMs are resolved after

RTG without producing COs. The CO increase seen after 2 hr

indicates that surviving JMs can be resolved as COs during the

later stages of RTG.

Efficient JM resolution without CO production after RTG
in the absence of Mus81

The Mus81 complex plays a major role in JM resolution during

meiosis in S. pombe and a less prominent role in meiotic JM

metabolism in S. cerevisiae [19,26,20,27,22,24,72,28]. To determine

if the Mus81 complex resolves JMs after RTG, ndt80D mus81D
cells (strain MJL3389) were induced to undergo meiosis for 7 hr

and then transferred to YPD. Bud emergence and nuclear division

occurred at times similar to those seen in ndt80D MUS81 cells

(Figure 5a, compare to Figure 1b). JMs were resolved completely

after RTG (Figure 5b). A modest net increase in noncrossovers was

seen (Figure 5d), similar to that seen in MUS81 cells (see Figure 4i).

Unlike in wild-type, where JM resolution after two hr was

accompanied by an increase in COs, no significant CO increase

was observed after RTG in mus81D mutants (Figure 5c). These

data indicate that the Mus81 complex is not required for JM

resolution after RTG, but it may play an important role in the

limited JM resolution as COs that occurs at later stages.

Delayed JM resolution after RTG in the absence of Sgs1
helicase activity

The BLM and Sgs1 helicases, in combination with topoisom-

erase III and Rmi1/BLAP45, resolve dHJs in vitro as NCOs

[33,36]. To ask if Sgs1 has a similar role in JM resolution after

RTG, we used an sgs1 mutant allele (strain MJL3388; sgs1-DC795)

that expresses only the first 652 amino acids of the protein [73],

and which lacks both the helicase domain and a region (the

HRDC domain) which in BLM interacts with Holliday junctions

[74]. Although bud emergence occurred at a similar time after

RTG in sgs1-DC795 and in SGS1 cells, nuclear division was 1.5–

2 hr later in sgs1-DC795 than in SGS1 (Figure 6a, compare to

Figure 1b). A recombination-null ndt80D sgs1-DC795 spo11 triple

mutant (strain MJL3428), which does not produce JMs, underwent

nuclear division without this delay (Figure 6a), suggesting that the

delay in nuclear division seen in sgs1-DC795 might result from a

delay in JM resolution.

To ask if JM resolution is delayed in ndt80D sgs1-DC795 cells, we

monitored JMs and recombination products, using the molecular

assay system described above. As was previously described [41],

ndt80D sgs1-DC795 cells accumulate high levels of intersister JMs,

and JMs with more than two chromatids (multi-chromatid JMs;

mcJMs), in addition to the dHJ-JMs that accumulate in ndt80D
SGS1 cells (Figure 6b). Resolution of all JM species was delayed by

about 1 hr in sgs1-DC795 as compared to SGS1. While the vast

majority of JMs resolved in SGS1 by about 2.5 hr after RTG

(Figure 4g), more than half of total JMs remained unresolved in

sgs1-DC795 at the same time, although all JMs resolved by 4 hr

(Figure 6b). Thus, loss of the Sgs1 helicase results in a substantial

delay in JM resolution after RTG.

Delayed JM resolution after RTG in sgs1-DC795 was accom-

panied by altered recombinant product formation. COs increased

only slightly in the first 1.5 hr after RTG (Figure 6c), but there was

also only a slight increase in NCOs during the same period

(Figure 6d). After 1.5 hr, JM resolution was accompanied by an

increase in both COs and NCOs (Figure 6c, 6d). Thus, in both

SGS1 and in sgs1-DC795, few COs are produced during the first

1.5–2 hr after RTG, with substantially greater CO formation at

later times. However, unlike in SGS1, where most NCOs appear in

the first 1.5–2 hr after RTG, NCO production in sgs1-DC795 is

delayed until the time that COs also appear.

Discussion

Most JM intermediates formed during budding yeast meiosis are

produced by interhomolog recombination and are resolved as

COs, and the majority of meiotic COs derive from interhomolog

JMs [8,9,17,10]. In contrast, interhomolog JMs and COs are less

prominent during the mitotic cell cycle. Most JMs produced

during mitotic DSB repair involve sister chromatids [15], and only

a minor fraction (typically 5–10%) of mitotic recombination

involves crossing-over, as would be expected if interhomolog JMs

are rarely resolved as COs during the mitotic cell cycle [16,75].

Testing this suggestion has, to date, been limited by the very low

levels of interhomolog JMs produced in vegetatively-growing cells,

even when initiating DSBs occur at levels similar to those seen in

meiosis [15].

In this paper, we used RTG as an alternate approach to the

study of JM resolution during the mitotic cell cycle. Although

aspects of RTG have been examined in many studies [50–58],

interpretation has been complicated by the relatively poor

synchrony of yeast meiotic cultures. Thus, RTG samples from

normal meiotic cultures can contain cells with unrepaired DSBs,

cells with repaired DSBs but unresolved recombination interme-

diates, and cells where intermediates already have been resolved.

To avoid complications inherent in the analysis of such a complex

mixture, we performed RTG using meiotic cultures of ndt80

mutant cells, which arrest at a single stage of meiosis (pachytene),

with chromosomes fully paired by synaptonemal complex and

with high levels of interhomolog JMs. This has provided insight

into features of the mitosis-like cell cycle that immediately follows
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Figure 4. JM resolution and recombinant product formation during meiosis and RTG. a. Experimental design. Cells with an estrogen-
inducible NDT80 allele (MJL3430) are incubated in sporulation medium for 7 hr to uniform pachytene arrest. Estradiol (ED) is added to half of the
culture to induce NDT80 expression and the completion of meiosis, while the other half is transferred to YPD to undergo RTG in the absence of NDT80
expression. b. Western blot showing Ndt80 production after addition of ED (meiosis) or after RTG. Arp7 is used as a loading control. Relative Ndt80
levels (arbitrary units) are shown below each lane. c. Western blot showing production of Ndt80-regulated polo-like kinase, Cdc5, and of the G2/M
cyclin, Clb2, which is not expressed during meiosis. Arp7 is used as loading control. Relative protein levels (arbitrary units) are shown below each lane.
d. Meiotic progression after NDT80 induction by ED addition. The percentage of cells completing meiosis I in a single experiment was determined by
DAPI staining and counting the fraction of cells with more than one nucleus (MI + MII). Values are from a single experiment. e. Cell cycle progression
after RTG. Cell cycle events were scored as in Figure 1. Values are from three independent experiments. f. Recombination reporter system used to
detect recombination intermediates and products [7]. A 3.5 Kb insert with the URA3 (grey) and ARG4 (black) genes is inserted at LEU2 (red) on one
chromosome III homolog and at HIS4 (blue), 16.7 Kb away, on the other. 65 nt of yeast telomere sequences (open box), inserted between URA3 and
ARG4, create a strong meiotic DSB site (vertical arrow). A short palindrome containing an EcoRI site (lollipop) ,0.6 kb from the DSB site, creates the
arg4-pal allele in the insert at his4. Arrows denote the direction of transcription. Restrictions sites: Xm—XmnI; X—XhoI; E—EcoRI. An XmnI digest
probed with ARG4 sequences (black bar) detects dHJ-JMs. A XhoI digest probed with the same sequences detects CO products. An EcoRI/XhoI double
digest, probed with HIS4 sequences (blue bar) detects NCO events where the arg4-pal allele is converted to ARG4 (full conversion shown), as well as a
subset of COs (CO). It should be noted that a subset of NCOs are detected by this assay. Based on tetrad data from similar strains [7], we estimate that
about 1/6 of total NCOs are detected. g–i. DNA was prepared from NDT80-IN cells (MJL3430) that were either induced to complete meiosis by ED
addition or shifted to YPD to undergo RTG, as illustrated in a. Samples were analyzed for JMs, COs and NCOs as illustrated in f. Values for meiosis are
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exit from meiosis, and into mechanisms of the recombination

intermediate resolution.

Return to growth involves a mitosis-like division without
an intervening S-phase

When transferred from sporulation to growth medium, yeast

cells degrade most meiotic transcripts within 20 min, and return to

a pattern of gene expression that roughly resembles the G1 phase

of the mitotic cell cycle [57]. Despite this rapid change in

transcription patterns, cells spend an extended lag period (1.5 to

3 hours, equivalent to one or two normal mitotic cell cycles) before

they undergo bud emergence, the first outward sign of resumed

growth (Figure 1). Although cells disassemble synaptonemal

complex and resolve meiotic recombination intermediates during

this period ([56], this work), a similar lag before bud emergence is

seen in spo11 mutants (this work), and also if SC disassembly and

JM resolution occur before RTG, by virtue of Cdc5 induction in

ndt80D CDC5-IN cells (Y.D. and M.L., unpublished observations).

It is therefore likely that this extended gap phase represents the

time needed for metabolic adjustment to the shift from acetate to

glucose, and from nitrogen-depleted to nitrogen-rich medium,

rather than the time needed to disassemble meiosis-specific

chromosome and DNA structures.

During the mitotic cell cycle, bud emergence is accompanied by

the initiation of chromosome replication [63], but this is not the

case during RTG. We used two different approaches to confirm

that bud emergence occurs without DNA replication after RTG

[53]. This could be the consequence of a failure to express

completely the ensemble of proteins necessary for DNA replica-

tion. While some replication protein-encoding genes are tran-

scribed after RTG ([57], Lea Jessop and M. L., unpublished

observations), transcripts of DBF4 and CDC7, which encode a

kinase critical for replication origin firing, are rapidly reduced

upon RTG [57]. Re-replication may also be blocked if cyclin-

dependent kinase remains at post-S phase levels throughout RTG,

which would prevent origin re-licensing [76–78].

We also find that the first nuclear division after RTG involves

an equational division, unlike the reductional division that occurs

during meiosis I. Reductional division at meiosis I requires the

loading, at kinetochores, of the meiosis-specific protein complex

monopolin, which promotes co-orientation of sister kinetochores

towards a single spindle pole [79,80]. Monopolin contains a

meiosis-specific protein, Mam1, and two nucleolar proteins, Csm1

and Lrs4, whose kinetochore localization requires Cdc5 activity

[79,17,81,80,82]. Meiotic CDC5 transcription requires NDT80,

and MAM1 transcripts are reduced in ndt80 mutants [70] and

rapidly decline upon RTG [57]. In addition, monopolin loading at

kinetochores requires active Cdc7/Dbf4 kinase [82], which is most

likely not produced after RTG [57]. Therefore, it is unlikely that

monopolin is loaded at kinetochores during RTG of ndt80D cells,

and thus it is not surprising that the first nuclear division after

RTG is equational.

Recombination intermediate resolution during RTG is
biased against crossovers

Most of the Holliday junction-containing JMs that accumulate

during meiosis in ndt80 mutants are resolved as COs upon

restoration of either NDT80 or CDC5 gene expression ([10], this

work). In contrast, our genetic and molecular analyses show that

most of the JMs that form during wild-type meiosis are resolved

without crossover formation during RTG. This indicates that

mechanisms of JM resolution that operate during RTG differ from

those that operate during meiosis.

There are three general mechanisms for dHJ-JM resolution:

endonuclease cleavage; helicase/topoisomerase-mediated dissolu-

tion; and replication (Figure 7a–7c). Of these, replication and

dissolution produce only NCO products, while endonuclease

cleavage can, in principle, produce either COs or NCOs, depending

from a single experiment; values for RTG are from three independent experiments (for JMs and COs) and two independent experiments for NCOs. g.
JM intermediates. Left: blots of XmnI digests probed with ARG4 sequences. In addition to dHJ-JMs, JMs containing 3 or 4 chromatids (multichromatid,
mc-JMs) were detected at low levels. Right: frequencies of all JMs, plotted as a percent of total lane signal. h. COs. Left: blots of XhoI digests probed
with ARG4 sequences. Right: CO product 2 (CO2) plotted as a percent of total lane signal. i. Noncrossover recombinants. Left: blots of XhoI/EcoRI
digests probed with HIS4 sequences. Right: NCOs, plotted as a percent of total lane signal.
doi:10.1371/journal.pgen.1002083.g004

Figure 5. Efficient JM resolution without CO production after
RTG in the absence of Mus81. a. Cell cycle progression of ndt80D
mus81D cells (MJL3389) after RTG. Cell cycle events were scored as in
Figure 1. b. JM intermediates. Left: blot of XmnI digests probed with
ARG4 sequences as in Figure 4. Right: total JMs plotted as a percentage
of total lane signal. c. COs. Left: blot of XhoI digests probed with ARG4
sequences, as in Figure 4. Right: CO product 2 (CO2), plotted as a
percentage of total lane signal. d. NCOs. Left: blots of XhoI/EcoRI digests
probed with HIS4 sequences, as in Figure 4. Right: NCO products
plotted as a percentage of total lane signal.
doi:10.1371/journal.pgen.1002083.g005
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upon the orientation of the two cleavage reactions. Since most dHJ-

JMs resolve as COs during meiosis, meiotic resolution must involve

endonuclease cleavage, and this cleavage must be constrained so

that the two Holliday junctions are usually cut in opposite directions

(see Figure 7a).

In contrast, JM resolution during RTG appears to occur in two

phases with different outcomes (Figure 7d–7f). In wild-type cells,

about 80% of JMs disappear during the first 1.5–2 hr after RTG.

Few COs are produced during this period, and NCOs increase to

near-final levels. The greatest net increase in COs occurs at 2 hr

and later (Figure 7e), when the remaining 20% of JMs are resolved

(Figure 7d). Thus, RTG appears contain an initial period

(hereafter called early RTG) that precedes bud emergence, during

which SC breaks down (Figure 1c) and the majority of JMs resolve

without CO formation (Figure 7d, 7e). During the second period

(hereafter called late RTG), between bud emergence and nuclear

division, JM resolution is accompanied by CO formation.

Sgs1-dependent dissolution as a mechanism for JM
resolution during early RTG

JM resolution without CO formation, which predominates

during early RTG, could occur by endonucleolytic cleavage that is

constrained to produce only NCOs, by dissolution, or by

replication (Figure 7a–7c). Resolution by replication is unlikely,

since all available evidence indicates that the first cell division after

RTG occurs without prior replication (this work, [53]). Both JM

resolution and NCO formation are significantly reduced during

early RTG in sgs1-DC795 mutant cells (Figure 7d, 7f), which lack

both the helicase and Holliday junction-binding domains of this

RecQ helicase [73,74]. The most parsimonious interpretation of

these data is that, in wild-type cells, JM resolution during early

RTG occurs primarily by dissolution, catalyzed by Sgs1 and

Top3/Rmi1, as has been observed in vitro [36]. However, it is

formally possible that other activities are responsible for the initial

phase of JM resolution in wild-type, and that, unlike in wild-type,

the majority JMs that form during sgs1-DC795 meiosis have

structures that are refractory to resolution by these hypothetical

activities.

During budding yeast meiosis, the Sgs1 helicase acts with

Mus81/Mms4 to prevent the accumulation of abnormal recom-

bination intermediates [28,29]. Normal JM intermediates are

protected from Sgs1 by components of the synaptonemal complex,

and sgs1-DC795 partially suppresses the JM deficit observed in

mutants lacking SC components [40,42,41]. These and other

observations have been interpreted as indicating that Sgs1 acts

primarily to prevent JM formation during meiosis. Our current

data indicate that, in addition to preventing JM formation, Sgs1

can also dissolve JMs in vivo, but is prevented from doing so during

meiosis by the SC. This suggestion is also supported by the finding

that most JMs are resolved without CO production upon Cdc5-

independent SC breakdown in pachytene-arrested meiotic cells

(Anuradha Sourirajan, Arnaud de Muyt and M. L., unpublished

observations).

JM resolution by endonucleolytic cleavage during late
RTG

While JM resolution during early RTG is rarely accompanied

by CO production, JMs that survive this initial phase appear to be

resolved frequently as COs. This is seen in wild-type, but is most

evident in sgs1-DC795 mutant cells, where an increase in the rate

of JM resolution during late RTG is accompanied by a marked

increase in both CO and NCO recombinants (Figure 7e, 7f).

Because COs can only be produced by endonuclease-mediated JM

cleavage, this suggests that a Holliday junction resolvase is

activated 1.5–2 hr after RTG, a time that is also marked by bud

emergence. We do not know the regulatory change that is

responsible for this change in modes of JM resolution, but it is

worth noting that both Cdc5 and the G2/M phase cyclin, Clb2,

are first produced at this time (Figure 4c).

During meiosis, the Cdc5 kinase triggers JM resolution as COs

[10], suggesting an obligate cleavage of JM Holliday junctions in

opposite directions (Figure 7a). In contrast, JM resolution during

Figure 6. Delayed JM resolution and increased CO formation
after RTG in the absence of the Sgs1 helicase. a. Delayed nuclear
division during RTG of in the absence of Sgs1 helicase activity is due to
meiotic recombination. Panels show cell cycle progression of ndt80D
sgs1-DC795 cells that are meiotic recombination competent (SPO11, left;
MJL3388) or recombination null (spo11, right; MJL3428). b. Joint
molecule intermediates. Left: blots of XmnI digests probed with ARG4
sequences. Right: frequencies of total JMs (multichromatid JMs, mcJMs
plus dHJ-JMs, filled circles) and of dHJ intermediates (dHJ; empty
circles) plotted as a percentage of total lane signal. c. Crossovers. Left:
blots of XhoI digests probed with ARG4 sequences. Right: CO product 2
(CO2) are plotted as a percentage of total lane signal. d. Noncrossovers.
Left: blots of XhoI/EcoRI digests probed with HIS4 sequences. Right:
NCOs, plotted as a percentage of total lane signal.
doi:10.1371/journal.pgen.1002083.g006
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late RTG of sgs1-DC795 mutants produces both COs and NCOs

(Figure 7e, 7f), as would be expected for the mixed parallel and

opposite cleavage patterns contained in the original DSBR model

([83], see Figure 7a). This apparent difference in resolution

mechanisms may reflect the chromosome environment in which

intermediates reside. While JM resolution during late RTG occurs

in the absence of detectable SC, crossover-designated meiotic JMs

are thought to reside in SC-associated structures, called late

recombination nodules, that contain the Holliday junction-binding

proteins Msh4/Msh5 and associated Mlh1, Mlh3 and Exo1

proteins [84–86]. In mlh1, mlh3, and exo1 mutants, meiotic JM

levels are normal but crossover formation is reduced roughly two-

fold [87,88], consistent with the suggestion that the Mlh1/Mlh3/

Exo1 components of late recombination nodules direct nuclease-

mediated meiotic JM resolution towards a crossover-only out-

come. In the absence of such specialized chromosome structures,

nuclease-mediated JM resolution may be more evenly divided

between COs and NCOs, in both mitotic and meiotic cells.

A role for Mu81/Mms4 in JM resolution during RTG?
Although the nuclease(s) responsible for dHJ resolution during

either meiosis or during RTG remain to be determined, it is worth

noting that CO formation during RTG is even more reduced in

mus81D mutants than in wild-type (Figure 7e), and the increase in

COs seen during late RTG in wild-type and in sgs1-DC795 is not

seen in mus81D mutants. In many organisms, including S. cerevisiae,

the Mus81 nuclease complex is dispensable for most meiotic COs

[26,89–91], and the majority of meiotic JMs resolve in a timely

manner in S. cerevisiae mus81 or mms4 mutants [27,28]. In addition,

it has been reported that intact Holliday junctions are a relatively

poor substrate for the Mus81/Mms4 nuclease, while junctions

with one nicked strand are resolved efficiently [92,22,93]. On

the other hand, MUS81 is required for timely disappearance of

X-shaped DNA molecules that form in methyl methanesulfonate-

treated rmi1-ts cells [94]. This would suggest a role for Mus81/

Mms4 in resolving these JMs, whose structure remains to be

determined.

Our data suggest that Mus81/Mms4 has a role in resolving the

JMs that survive until late RTG, but it does not appear to be active

during early RTG. It is possible that either Mus81/Mms4 or a

junction nicking activity that converts HJs into a Mus81/Mms4

substrate are absent during early RTG. Alternatively, the Mus81

complex may be modified during late RTG so that it resolves

intact Holliday junctions unassisted. The latter suggestion, if

correct, might explain the failure to observe robust Holliday

junction resolution activity in most biochemical studies [95].

Concluding remarks
In this work, we have shown that Holliday junction-containing

recombination intermediates, formed during meiosis, are resolved

during RTG in a manner that substantially reduces CO production.

To the extent that recombination is regulated similarly during RTG

and during the mitotic cell cycle, and to the extent that similar

recombination intermediates are present, this finding can help

explain the relatively low yield of COs during mitotic recombina-

tion. In particular, our findings reinforce the identification of the

Figure 7. Modes of dHJ-JM resolution and summary of data. a. Resolution by junction cleavage [83]. Cleavage of both Holliday junctions in
the same orientation (black arrows) yields noncrossovers; cleavage of the two junctions in orthogonal orientations (black and grey arrows) yields
crossovers. For simplicity, only one of the two patterns for each type of cleavage is shown. b. Resolution by dissolution [31,32]. Helicase-driven
convergent junction branch migration, coupled with topoisomerase-removal of superhelical stress, produces only noncrossovers. c. Resolution by
replication produces only noncrossovers. d. Summary of JM resolution during RTG. Maximum JM levels in each individual experiment (3 for wild-type,
2 for sgs1-DC795 and mus81D) were set to 1. For sgs1-DC795, 2-chromatid JM values were used, although similar results are obtained with total JMs
(2-chromatid + multichromatid). Plotted values represent averages; error bars indicate standard error of the mean. e. Net CO production during RTG.
CO levels at 0 hr (the time of RTG) were subtracted from each time-point value and plotted as in d. f. Net NCO production during RTG. NCO levels at
0 hr (the time of RTG) were subtracted from each time-point value and plotted as in d.
doi:10.1371/journal.pgen.1002083.g007
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BLM family of RecQ helicases as playing an important role

in suppressing CO recombination during the mitotic cell cycle [38].

Our findings also suggest that the Mus81 complex is the primary

nuclease responsible for mitotic CO recombination [30]. Our

finding, that these two enzymes act during different phases of the

period before the first cell dvision after RTG, raises the intriguing

possibility that the mitotic cell cycle may be similarly partitioned. It

is attractive to suggest that helicase-mediated dissolution predom-

inates during most of the mitotic cell cycle, with endonuclease-

mediated JM cleavage being activated at the end. This would

minimize the potential for CO-mediated loss of heterozygosity and

chromosome entanglement, while preserving the ability to resolve

JMs that escape dissolution before the initiation of mitosis.

In applying conclusions regarding JM resolution during RTG to

the mitotic cell cycle, it should be kept in mind that these processes

are not identical. For example, RTG involves the disassembly of

chromosome structures that are not present during the mitotic cell

cycle, as well as S-phase bypass, and both of these differences have

the potential to affect modes of JM resolution. It will be of

considerable interest to examine, during RTG, patterns of

expression and modification of proteins involved in recombina-

tion, repair, and cell cycle progression during meiosis and the

mitotic cell cycle.

Materials and Methods

Yeast strains and media
Strains are listed in Table S1 and are SK1 derivatives [96]. The

URA3-ARG4 recombination interval has been described [7]; cyh2-z

is a spontaneous cycloheximide resistance mutation (CyhR); spo11-

Y135F [97] was a gift from S. Keeney; mus81D and sgs1-DC795

have been described [42,28]. Strains with estrogen-inducible

CDC5 and NDT80 alleles (pGPD1-GAL4-ER pGAL1-CDC5 and

pGPD1-GAL4-ER pGAL1-NDT80, respectively) have been de-

scribed [10]. Strains were constructed by genetic crosses, or by

transformation. Media formulae were as described [98,99].

Liquid sporulation and return to growth
Sporulation was as described [99] using 400 ml cultures in a 2.8

liter baffled Fernbach flask (BellCo Glass) with a cell density of 2x

107 cells per ml at the beginning of sporulation. For RTG

experiments, cells were induced to undergo meiosis for 7 hr,

harvested by centrifugation, resuspended in an equal volume of

liquid YPD (prewarmed to 30uC) and aerated with vigorous

shaking at 30uC in conditions similar to those used for sporulation.

For plating experiments, samples were sonicated twice for 5

seconds at baseline power (Microson XL 2005), diluted appropri-

ately and then plated on YPD plates. To determine colony-

forming units, samples were counted in a hematocytometer and

the concentration of cells was determined; cells with unseparated

buds were counted as a single entity. For Ndt80 or Cdc5

induction, b-estradiol (ED; Sigma; 5 mM stock in ethanol) was

added to a final concentration of 1 mM. For no Cdc5-indcuation

control experiments, the same amount of ethanol (without ED)

was added. For RTG after Cdc5 induction during meiosis, cells

were washed twice with sporulation medium lacking ED at 30uC
before resuspension in YPD.

Unless stated otherwise, all data presented are the average of

two independent experiments; error bars in plots indicate standard

error.

Cytology
To score bud emergence and nuclear division, 1 ml of a culture

was mixed with 1 ml of ethanol and stored at 4uC. Just before

examination, 1 ml of 1 mg/ml 49,6-diamidino-2-phenylindole

(DAPI) was added and samples were left for 5 min at room

temperature, washed once with an equal volume of water and

resuspended in 0.5 ml water. Cell morphology was scored using

phase contrast or differential interference contrast microscopy and

nuclear morphology by DAPI epifluorescence microscopy, using a

Zeiss Axioplan 2 epifluorescence microscope and a QICAM

camera. Images were acquired using QCapture 3.1.1 and

processed with Adobe Photoshop CS3.

GFP chromosome dot visualization was done using cells fixed in

3.7% formaldehyde as described [65]. Vectashield with DAPI

(Vector Laboratories) was used to simultaneously stain DNA. Cells

were counted as having two GFP dots if two separated GFP dots

could be clearly visualized. Sample fluorescence was visualized

using a Zeiss Axioplan 2 epifluorescence microscope and a

Micromax 1300 CCD camera. Images were acquired using IPlab

3.7 and processed with Adobe Photoshop CS3.

Nuclear spreads were performed and stained as described

[100] using cells from 5 ml of culture. Zip1 was detected

using anti-Zip1 rabbit polyclonal sera (a gift from G.S. Roeder,

1:100 dilution) as the primary antibody and Alexafluor 488

conjugated goat anti-rabbit IgG (Molecular Probes #A11034) at

1:100 as the secondary antibody. To visualize DNA, 40 ml of

Vectashield with DAPI (Vector Laboratories) was added. Sample

fluorescence was visualized using a Zeiss Axioplan 2 epifluores-

cence microscope and a Micromax 1300 CCD camera. Images

were acquired using IPlab 3.7 and processed with Adobe

Photoshop CS3.

Calculation of cumulative curves for bud emergence and
nuclear division

During RTG, cells lose synchrony and continue to further cell

cycles, complicating calculation of a cumulative cell division curve.

We assumed that bud emergence and nuclear division occur with

the same relative timing in the first and second cell division after

RTG. To distinguish between daughter and mother cells, we took

advantage of the fact that after RTG, ndt80D cells produce an

elongated bud that can be easily distinguished from the round

mother cell (Figure 1a). The fraction of cells that had not yet

budded (unbudded cells) was calculated according to the equation:

unbudded cells = (X1-Y1)/Z1 where X1 = unbudded round cells

(i.e. cells before the first mitotic division), Y1 = unbudded

elongated cells (i.e. products of the first mitotic division) and

Z1 = total cells counted. At late times, due to continuous division

of the cells, the number of cells that have already undergone the

first mitotic division (Y1) can exceed the number of cells that have

not undergone a mitotic division (X1). In such a case, (X1-Y1) was

set to zero.

The fraction of cells that had undergone the first nuclear

division (post-division) was calculated according to the equation:

post-division = X2/Y2 where X2 = round cells that were

undergoing mitosis (detected as budded with a nucleus stretched

between the mother and daughter cells) plus all elongated cells

with a nucleus (i.e. cells that have already completed the first

mitotic division) and Y2 = all round cells. At late times, due to

continuous cell division, X2 may be greater than Y2. In such a

case, the fraction of post-division cells was set to one.

DNA extraction and digestion
DNA preparation and analysis on Southern blots were as

described [101,8]. XhoI and XmnI digests were probed with ARG4

coding sequences (+165 to +1413). XhoI/EcoRI double digests

were probed with HIS4 coding sequences (+538 to +718).
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Protein analysis
Protein was prepared from 4 ml of sporulating culture by TCA

precipitation [102]. 5 ml samples of each extract were displayed on

7.5% polyacrylamide Tris-Glycine pre-cast gels (Bio-Rad) and

electroblotted to a PVDF membrane (Invitrogen), using an iBlot

Dry Blotting System (Invitrogen) as recommended by the

manufacturer. Blots were washed for at least one hr on an orbital

shaker at room temperature in blocking buffer, 0.2% I-block

(Tropix) in PBST (0.15 M NaCl, 0.053 M Na2HPO4, 0.008 M

KH2PO4, 0.05% v/v Tween-20, pH 7.4). Primary antibody,

diluted in blocking buffer, was added to the blot and incubated on

an orbital shaker at room temperature for at least one hr. Blots

were washed four times for 15 min with blocking buffer, incubated

with secondary antibody for one hr with shaking at room

temperature, and wash steps were repeated. Signal was developed

using the chemiluminescent CDP-star substrate (Applied Biosys-

tems), detected using a Fuji LAS3000 CCD camera, and

quantified using ImageGauge V4.22 software (Fuji). Blots were

stripped with OneMinute Western Blot Stripping Buffer (GM

Biosciences) and reprobed for Arp7 as a loading control. Primary

antisera were as follows: Arp7 – goat polyclonal (Santa Cruz

Biotechnology, Inc; Sc-8961), 1:500; influenza hemagglutinin (HA)

– mouse monoclonal (5 mg/ml; Roche Applied Science; 12CA5),

1:10,000; Cdc5 – goat polyclonal (Santa Cruz Biotechnology, Inc;

Sc-6733), 1:500; Ndt80 – rabbit polyclonal (a gift from K.

Benjamin), 1:10,000; Clb2 – rabbit polyclonal (Santa Cruz

Biotechnology, Inc; Sc-9071), 1:500. Secondary antibodies were

alkaline phosphatase conjugates of goat-anti-mouse (Sigma,

A3562), goat-anti-rabbit (Sigma, A3687) and rabbit-anti-goat

(Sigma, A4187), all used at 1:10,000.

Measuring crossovers between CYH2 and the centromere
To measure the frequency of recombination between the CYH2

locus and the centromere of chromosome VII, we measured

second division segregation pattern of the TRP1 and CYH2 alleles

in dissected tetrads from strain MJL3548 (CYH2/cyh2-z TRP1/

trp1), using TRP1 as a centromere-linked marker [62]. Of 72

tetrads with 4 viable spores, 12 tetrads were parental ditypes, 12

were non-parental ditypes and 47 were tetratypes. One tetrad had

gene conversion of cyh2-z and was not counted. Thus, as expected

for a locus far removed from its centromere, the vast majority of

cells undergo at least one crossover between CYH2 and CEN7, and

about two thirds of cells produce spores with a crossover between

the CYH2 locus and its centromere.

Supporting Information

Figure S1 Expected outcomes if DNA replication occurs (a) or

does not occur (b) before the first nuclear division after RTG. One

homolog is shown as solid line and the other as dashed line. Black

and diagonal hatched boxes indicate MATa and MATa alleles,

respectively. After 7 hr in meiosis (left in a and b), each cell

contains two copies of each MAT allele. a. Replication followed by

equational chromosome segregation results in two copies of each

MAT allele in each daughter cell. Sporulation of these cells

produces MATa/MATa nonmater, MATa/MATa mater and

MATa/MATa mater diploid cells. b. Equational chromosome

segregation without prior replication leaves one copy of each

allele. Sporulation of these cells produces only haploid mater cells.

See text for details.

(TIF)

Figure S2 JM resolution after RTG in an ndt80D diploid cells

(MJL3164). After 7 hr in sporulation medium, cells were shifted to

YPD to undergo RTG. 0 hr – time of shift to YPD. See Figure 4

for digest and probe details. a. JM intermediates. Left: blots of

XmnI digests probed with ARG4 sequences. Right: JM frequencies,

plotted as a percent of total lane signal. b. COs. Left: blots of XhoI

digests probed with ARG4 sequences. Right: CO2 frequencies

plotted as a percent of total lane signal. c. NCOs. Left: blots of

XhoI/EcoRI digests probed with HIS4 sequences. Right: NCO

frequencies plotted as a percent of total lane signal.

(TIF)

Table S1 Strains used in this work. All are MATa/MATa lys2/

lys2 ho::LYS2/ho::LYS2. The ndt80 allele is ndt80D(Eco47III-

BseRI)::KanMX6. MJL2984-derived strains contain the recombi-

nation reporter illustrated in Figure 5.

(DOC)
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