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ABSTRACT: Palladium-catalyzed C(sp2)−H arylation of ortho C−H bonds involving 2-(1-methylhydrazinyl)pyridine (MHP) as
the directing group has been investigated. The reaction proceeds smoothly under an air atmosphere to generate biaryl derivatives in
an environmentally friendly manner while tolerating a wide range of functional groups. Notably, the directing group present in the
product could be easily removed under mild reductive conditions.

■ INTRODUCTION

Transition-metal-catalyzed C−H functionalization is a power-
ful tool for the transformation of an inert C−H bond into a
C−C or C−X (X = N, O, S, F, B, etc.) bond that enables
efficient construction of structurally diverse natural products
and pharmaceutical compounds.1,2 In particular, C−H
arylation, as an environmentally benign and economically
attractive alternative to the traditional cross-coupling reactions
that require prefunctionalized substrates and generate stoi-
chiometric metallic wastes, has garnered considerable
attention.3,4 In 2005, Daugulis and co-workers reported their
pathbreaking example of 8-aminoquinoline-directed C(sp2)−H
and C(sp3)−H arylation by utilizing Pd(OAc)2 as the catalyst.

5

It is believed that the bidentate auxiliaries could bind to a
metal center and allow direct insertion of a metal catalyst into a
proximal C−H bond, followed by functionalization of the
resulting organometallic intermediate. Since then, a variety of
dual-chelation-assisted C−H arylations have been developed,
in which 8-aminoquinoline, picolinic acid, and other related
compounds are the most used directing moieties.6

The biaryl unit widely occurs in natural products,
pharmaceuticals, agrochemicals, and conjugated materials,7 as
exemplified by hippadine,8 azilsartan,9 and bifenthrin10 (Figure
1). By exploiting C(sp2)−H arylation, the biaryl motifs have
been constructed successfully with the aid of metal catalysts
such as palladium,5,11 ruthenium,12 cobalt,13 nickel,14 copper,15

and iron16 complexes (Scheme 1).
Recently, we have developed a novel removable bidentate

directing group, 2-(1-methylhydrazinyl)pyridine (MHP),17

which exhibited superior reactivity in the functionalization of
aromatic C(sp2)−H bonds. This directing group can be easily

synthesized from commercially available materials. So far, we
have achieved highly efficient C−H functionalization of
benzoyl hydrazides with alkynes,17a CO,17b allenes,17c

maleimides,17d,e oxabicyclic alkenes,17f and isocyanides.17g

Herein, we report a palladium-catalyzed direct C(sp2)−H
arylation with MHP as the directing group. The current
synthetic approach to biaryl derivatives features a broad
substrate scope, great functional group tolerance, and opera-
tional simplicity. In particular, the directing group present in
the products could be easily removed under mild reductive
conditions in our case.17
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Figure 1. Representative bioactive biaryl derivatives.
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■ RESULTS AND DISCUSSION

N′-Methyl-N′-(pyridin-2-yl)benzohydrazide 1a and 4-iodoani-
sole 2a were chosen as the model substrates to survey the
optimal reaction parameters. For the baseline experiment,
treatment of 1a with 2a in the presence of Pd(OAc)2 (10 mol
%), AgOAc (1.5 equiv), and NaOPiv (2.0 equiv) in PhCl at
130 °C for 24 h afforded the desired biphenyl product 3aa in
10% yield (Table 1, entry 1). Similar results were obtained
when AgOAc was replaced with other silver salts such as
Ag2CO3 and AgNO3 (entries 2 and 3), suggesting that the type
of silver salt has little effect on the reaction. A significant
enhancement of the reaction efficiency (46%) was realized
when the reaction time was extended to 48 h in the absence of
any silver salt additives (entry 4). A brief screening of catalysts
revealed that Pd(OAc)2 is the optimal catalyst (Table S1). The
yield of 3aa was further improved as the catalyst load was
increased to 20 mol % (entry 5). Various bases including
NaOAc, Na2CO3, NaHCO3, K2CO3, and KOAc were
evaluated and NaOAc was found to be the best in terms of
the reaction outcome (entries 6−10). Comparison of the
solvents revealed that m-xylene, mesitylene, and dimethylfor-
mamide (DMF) were inferior to PhCl (entries 11−13). The
yield of 3aa was increased to 77% when the reaction was
conducted at 140 °C, while the yield of 3aa dropped
significantly at 120 °C (entries 14 and 15). The control
experiments indicated that the presence of the base was critical
to the reaction (entry 16) and that the reaction was completely
inhibited in the absence of the Pd(OAc)2 catalyst (entry 17).
Having established the optimized reaction conditions, we

next explored the scope of the hydrazide substrates (Scheme
2). Gratifyingly, benzoyl hydrazides bearing either an electron-
donating group (e.g., Me, tBu, OMe, SMe, OPh, OCF3, and
Ph) or an electron-withdrawing group (e.g., F, Cl, Br, CF3, and
CO2Me) at the para-position of the aromatic ring were well
accommodated, furnishing the expected products in moderate
to high yields (3aa−3ma), which indicated that the reaction
might not be sensitive to the electronic effect. Substrates with a

meta-substituent (e.g., Me and Cl) on the benzene ring
afforded 3na and 3oa in 67 and 70% yields, respectively. ortho-
Substituted hydrazides were also compatible with this protocol
(3pa, 3qa). In addition, the 2-naphthamide derivative was
proved to be a suitable substrate, giving the product in 75%
yield (3ra). However, the hydrazide with a heteroaromatic
moiety (such as furan) seemed to be less efficient under the

Scheme 1. Transition Metal-Catalyzed C(sp2)−H Arylation

Table 1. Optimization of Reaction conditionsa

aReaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), Pd(OAc)2
(0.04 mmol), base (0.4 mmol), solvent (2.0 mL), 48 h, air, 130 °C.
bDetermined by 1H NMR using 1,3,5-trimethoxybenzene as the
internal standard. cThe reaction time was 24 h, under Ar. dPd(OAc)2
(0.02 mmol) was used. eAt 120 °C. fAt 140 °C. gIn the absence of
Pd(OAc)2.

hIsolated yield. ND = not detectable.
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standard conditions, delivering the corresponding product in
only 16% yield (3sa).
The scope of the aryl iodide substrates was then investigated

and the results are summarized in Scheme 3. The experiments
showed that aryl iodides with electron-withdrawing substitu-
ents at the para-position afforded the corresponding coupling
products in 68−70% yields (3ab−3ad). Notably, aryl iodides
with a Br atom on the phenyl ring (see 3ad) worked well and
showed excellent chemoselectivity in this reaction. In
comparison, aryl iodides with an electron-donating substituent
at the para-position performed even better (3af, 3ag).
Moreover, when the electron-donating group was located at
the ortho- or meta-position of aryl iodides, the reaction still

worked but gave the products in slightly lower yields (3ah,
3ai).
Next, replacement of Ar−I with Ar−OTf, Ar−OTs, Ar−Br,

and Ar−Cl was evaluated for the reaction (Scheme 4). With
Ar−OTf (2j), Ar−OTs (2k), and Ar−Cl (2m, 2o) as the
substrates, no desired products were obtained, while the
reaction of aryl bromides 2l, 2n, and 2p did give a trace
amount of the products under the standard conditions. This
can be accounted for based on the barrier for oxidative
addition of aryl halides, which increases in the order of ArI <
ArBr < ArCl, consistent with the reactivity order. The
speculation is in line with the mechanism proposed in the
literature.18

Scheme 2. Substrate Scope of the Benzoylhydrazidea,b

aReaction conditions: 1 (0.2 mmol), 2a (0.6 mmol), Pd(OAc)2 (20 mol %), NaOAc (2.0 equiv), PhCl (2.0 mL), air, 140 °C, 48 h. bIsolated yields.
cThe reaction time was 72 h.

Scheme 3. Substrate Scope of the Iodobenzenesa,b

aReaction conditions: 1a (0.2 mmol), 2 (0.6 mmol), Pd(OAc)2 (20 mol %), NaOAc (2.0 equiv), PhCl (2.0 mL), air, 140 °C, 48 h. bIsolated yields.
cThe reaction time was 72 h.
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Similar to the transformations developed previously in this
laboratory,17 the N−N bond present in the products was easily
cleaved under mild reductive conditions. For example,
treatment of 2-aryl benzoyl hydrazines 3aa, 3oa, 3ra, and
3ae with SmI2 afforded benzamides 4a−4d in 88−95% yields

(Scheme 5). Therefore, the current reaction features easy N-
deprotection that allows further N-derivatization.
The reaction kinetics plot revealed that the reaction rate was

fast at the start of the reaction and gradually decreased with
time (see the Supporting Information). In order to better

Scheme 4. Substrate Scope of Other Coupling Partnersa,b

aReaction conditions: 1a (0.2 mmol), 2 (0.6 mmol), Pd(OAc)2 (20 mol %), NaOAc (2.0 equiv), PhCl (2.0 mL), air, 140 °C, 48 h. bDetermined
by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard.

Scheme 5. Reductive Removal of the Directing Group

Scheme 6. Mechanistic Studies
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understand the reaction mechanism, the kinetic isotope effect
of the catalytic reaction was evaluated by the reaction of
hydrazide 1a and isotopically labeled counterpart [D5]-1a with
2a under the standard reaction conditions (Scheme 6). The
kH/kD value was determined to be 2.5, indicating that ortho
C(sp2)−H bond cleavage took place in the rate-determining
step (see the Supporting Information). Furthermore, by
employing acetic acid-d4 as a cosolvent, H/D scrambling was
observed at the ortho-position of the carbonyl group in 1q,
suggesting the reversibility of the C−H cleavage step under the
reaction conditions.
Based on our preliminary mechanistic studies and the

relevant literature reports,19 a plausible reaction mechanism is
proposed in Scheme 7. First, 1a reacts with Pd(OAc)2 to
generate the palladium amidate A, facilitating the subsequent
C−H insertion to produce the palladium chelate B. Oxidative
addition of B to aryl iodide forms Pd(IV) species C, which
undergoes reductive elimination to deliver the desired product
3 along with PdIOAc. The latter (i.e., PdIOAc) could initiate a
second catalytic cycle, leading to the unreactive species, PdI2.
However, both PdI2 and PdIOAc could react with NaOAc to
regenerate the catalyst, Pd(OAc)2.

■ CONCLUSIONS

We have accomplished an efficient palladium-catalyzed C-
(sp2)−H arylation involving the easily accessible and highly
efficient MHP as the directing group. With this unique
directing group developed by our laboratory, arylations of C−
H bonds were carried out under an air atmosphere with good
regioselectivity, and a wide range of aryl iodides and benzoic
hydrazides were successfully applied. In spite of the
involvement of the palladium catalyst, our protocol should
still be useful in the facile construction of valuable biaryl
scaffolds, considering the superb accessibility and removability
of the MHP directing group as well as the potential

recyclability of the catalyst in large-scale applications. Studies
on the application of MHP as the directing group to other
related transformations and to achieve a clearer understanding
of the reaction mechanism are ongoing.

■ EXPERIMENTAL SECTION

General Information. All reactions were carried out under
an air atmosphere, unless otherwise noted. All the chemicals
were purchased commercially, and used without further
purification. Thin-layer chromatography (TLC) was con-
ducted with 0.25 mm Tsingdao silica gel plates (60F-254)
and visualized by exposure to UV light (254 nm). Flash
column chromatography was performed on the Tsingdao silica
gel (200−300 mesh). 1H NMR spectra were recorded on
Bruker spectrometers (at 400 or 500 MHz) and reported
relative to deuterated solvent signals or tetramethylsilane
internal standard signals. Data for 1H NMR spectra were
reported as follows: chemical shift (δ/ppm), multiplicity (s =
singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and
br = broad), coupling constant (J/Hz), and integration. 13C
NMR spectra were recorded on Bruker spectrometers (101 or
126 MHz). Data for 13C NMR spectra were reported in terms
of chemical shift. 19F NMR spectra were recorded on Bruker
spectrometers (376 MHz). High-resolution mass spectrometry
(HRMS) was conducted on Bruker Apex IV RTMS.

General Procedure for the Synthesis of Starting
Materials (1a−1s). To a stirred solution of MHP (1.0 equiv,
5.0 mmol) and Et3N (5.0 equiv) in dry dichloromethane
(DCM) (0.5 M) was added benzoyl chloride (1.05 equiv)
dropwise under an Ar atmosphere at 0 °C. After stirring for 30
min, the resulting mixture was warmed to room temperature
and stirred overnight at this temperature. Upon completion of
the reaction indicated by TLC, the reaction mixture was
washed with H2O and extracted with DCM (50 mL × 3). The
combined organic phases were washed with brine, dried over

Scheme 7. Proposed Mechanism
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with anhydrous Na2SO4, filtered, and concentrated under
reduced pressure. The residue was purified by column
chromatography (petroleum ether/EtOAc = 3:1 to 1:1) to
afford the corresponding product. All spectroscopic data of
1a−1s are in good agreement with the literature reported
data.17

General Procedure for Palladium-Catalyzed C(sp2)−H
Arylation. A mixture of N′-methyl-N′-(pyridin-2-yl)-
benzohydrazide (0.2 mmol, 1.0 equiv), aryl iodides (0.6
mmol, 3.0 equiv), Pd(OAc)2 (9 mg, 0.2 equiv), NaOAc (33
mg, 2.0 equiv), and PhCl (2.0 mL, 0.1 M) was added to a 10
mL reaction tube. It was stirred at 140 °C for 48 h under air
conditions. After cooling to room temperature, the reaction
mixture was filtered through a plug of Celite, followed by
washing with 10 mL of DCM. The combined residue was
concentrated under reduced pressure, and then the resulting
crude product was purified by column chromatography to
provide 3.
General Procedure for Reductive Removal of the

Directing Group. An oven-dried 25 mL two-neck round
bottom flask was charged with 3 (0.1 mmol). After purging
with Ar three times, 5 mL fresh distilled THF was added,
followed by the dropwise addition of SmI2 (0.1 M in THF, 5.0
equiv) at 0 °C. After 5 min, the mixture was warmed to room
temperature and stirred for 3 h. After that, the mixture was
quenched with 5 mL saturated aqueous Na2S2O3 and extracted
with DCM, dried over Na2SO4, filtered, concentrated under
reduced pressure, and 4 was obtained via column chromatog-
raphy.
Characterization Data of Products. 4′-Methoxy-N′-

methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-carbohydrazide.
Compound 3aa (50 mg, yield = 75%) was isolated (petroleum
ether/EtOAc = 10:1 to 3:1) as a white foam. 1H NMR (400
MHz, CDCl3): δ 8.11 (ddd, J = 5.0, 1.8, 0.8 Hz, 1H), 7.71 (dd,
J = 7.6, 1.1 Hz, 1H), 7.51 (td, J = 7.5, 1.4 Hz, 1H), 7.46−7.37
(m, 4H), 7.34 (ddd, J = 8.8, 7.2, 1.9 Hz, 1H), 7.23 (s, 1H),
6.98 (d, J = 8.7 Hz, 2H), 6.64 (ddd, J = 7.1, 5.0, 0.8 Hz, 1H),
6.30 (d, J = 8.5 Hz, 1H), 3.85 (s, 3H), 3.13 (s, 3H). 13C{1H}
NMR (101 MHz, CDCl3): δ 168.8, 159.6, 159.1, 147.5, 139.5,
137.4, 133.6, 132.2, 130.6, 130.2, 130.2, 128.9, 127.4, 114.6,
114.3, 107.2, 55.4, 37.5. HRMS m/z: [M + H]+ calcd for
C20H20N3O2, 334.1477; found, 334.1550.
4′-methoxy-N′,5-dimethyl-N′-(pyridin-2-yl)-[1,1′-biphen-

yl]-2-carbohydrazide. Compound 3ba (54 mg, yield = 78%)
was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a white
foam. 1H NMR (500 MHz, CDCl3): δ 8.13 (dd, J = 4.9, 1.0
Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.7 Hz, 2H),
7.35 (ddd, J = 8.8, 7.3, 1.8 Hz, 1H), 7.25 (d, J = 9.5 Hz, 1H),
7.19 (s, 1H), 7.09 (s, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.64 (dd, J
= 6.7, 5.3 Hz, 1H), 6.33 (d, J = 8.5 Hz, 1H), 3.85 (s, 3H), 3.15
(s, 3H), 2.43 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3): δ
168.7, 159.6, 159.1, 147.4, 140.9, 139.5, 137.4, 132.4, 131.0,
130.6, 130.1, 129.1, 128.1, 114.5, 114.2, 107.2, 55.4, 37.4, 21.4.
HRMS m/z: [M + H]+ calcd for C21H22N3O2, 348.1707;
found, 348.1706.
5-(tert-butyl)-4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-

biphenyl]-2-carbo-hydrazide. Compound 3ca (55 mg, yield =
72%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white solid; mp 81−83 °C. 1H NMR (400 MHz, CDCl3): δ
8.11 (ddd, J = 4.9, 1.8, 0.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H),
7.47 (dd, J = 8.2, 2.0 Hz, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.38−
7.31 (m, 2H), 7.15 (s, 1H), 7.00 (d, J = 8.7 Hz, 2H), 6.64
(ddd, J = 7.1, 5.0, 0.7 Hz, 1H), 6.32 (d, J = 8.5 Hz, 1H), 3.86

(s, 3H), 3.14 (s, 3H), 1.36 (s, 9H). 13C{1H} NMR (101 MHz,
CDCl3): δ 168.7, 159.6, 159.2, 154.1, 147.5, 139.3, 137.3,
132.9, 130.6, 130.2, 128.9, 127.3, 124.6, 114.5, 114.3, 107.2,
55.4, 37.5, 34.9, 31.2. HRMS m/z: [M + H]+ calcd for
C24H28N3O2, 390.2176; found, 390.2178.
4′,5-dimethoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphen-

yl]-2-carbohydrazide. Compound 3da (52 mg, yield = 71%)
was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a white
foam. 1H NMR (500 MHz, CDCl3): δ 8.12 (dd, J = 4.9, 1.0
Hz, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.40 (d, J = 8.5 Hz, 2H),
7.35 (ddd, J = 8.8, 7.3, 1.8 Hz, 1H), 7.10 (s, 1H), 6.99 (d, J =
8.7 Hz, 2H), 6.95 (dd, J = 8.6, 2.6 Hz, 1H), 6.85 (d, J = 2.5 Hz,
1H), 6.64 (dd, J = 6.7, 5.3 Hz, 1H), 6.36 (d, J = 8.5 Hz, 1H),
3.87 (s, 3H), 3.85 (s, 3H), 3.14 (s, 3H). 13C{1H} NMR (126
MHz, CDCl3): δ 168.2, 161.2, 159.8, 159.2, 147.5, 141.5,
137.3, 132.4, 131.2, 130.1, 125.9, 115.6, 114.5, 114.3, 112.9,
107.2, 55.5, 55.4, 37.5. HRMS m/z: [M + H]+ calcd for
C21H22N3O3, 364.1656; found, 364.1655.
4′-methoxy-N′-methyl-5-(methylthio)-N′-(pyridin-2-yl)-

[1,1′-biphenyl]-2-carbo-hydrazide. Compound 3ea (56 mg,
yield = 74%) was isolated (petroleum ether/EtOAc = 10:1 to
3:1) as a white foam. 1H NMR (400 MHz, CDCl3): δ 8.12
(dd, J = 5.0, 1.1 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.43−7.31
(m, 3H), 7.27 (dd, J = 8.1, 2.0 Hz, 1H), 7.18 (d, J = 1.9 Hz,
1H), 7.17 (s, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.64 (dd, J = 6.8,
5.2 Hz, 1H), 6.32 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.13 (s,
3H), 2.52 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
168.2, 159.8, 159.1, 147.5, 142.4, 140.1, 137.4, 131.9, 130.1,
129.7, 129.6, 127.1, 124.4, 114.6, 114.3, 107.1, 55.4, 37.5, 15.1.
HRMS m/z: [M + H]+ calcd for C21H22N3O2S, 380.1427;
found, 380.1430.
4′-methoxy-N′-methyl-5-phenoxy-N′-(pyridin-2-yl)-[1,1′-bi-

phenyl]-2-carbohydrazide. Compound 3fa (72 mg, yield =
85%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white solid; mp 149−151 °C. 1H NMR (400 MHz, CDCl3): δ
8.12 (dd, J = 5.0, 1.1 Hz, 1H), 7.73 (d, J = 8.5 Hz, 1H), 7.43−
7.35 (m, 5H), 7.29 (s, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.11−7.06
(m, 2H), 7.02 (dd, J = 8.5, 2.5 Hz, 1H), 6.93−6.99 (m, 3H),
6.67 (dd, J = 6.6, 5.2 Hz, 1H), 6.39 (d, J = 8.6 Hz, 1H), 3.84
(s, 3H), 3.16 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
168.2, 159.8, 159.3, 159.1, 155.9, 147.5, 141.7, 137.4, 131.8,
131.1, 130.0, 130.0, 127.9, 124.2, 119.7, 119.5, 116.8, 114.6,
114.3, 107.1, 55.4, 37.5. HRMS m/z: [M + H]+ calcd for
C26H24N3O3, 426.1812; found, 426.1813.
4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-5-(trifluorome-

thoxy)-[1,1′-biphenyl]-2-carbohydrazide. Compound 3ga (60
mg, yield = 72%) was isolated (petroleum ether/EtOAc = 10:1
to 3:1) as a light yellow foam. 1H NMR (400 MHz, CDCl3): δ
8.12 (dd, J = 5.0, 1.0 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.41
(d, J = 8.7 Hz, 2H), 7.39−7.33 (m, 1H), 7.30−7.26 (m, 2H),
7.24 (s, 1H), 7.00 (d, J = 8.7 Hz, 2H), 6.67 (ddd, J = 7.1, 5.0,
0.4 Hz, 1H), 6.33 (d, J = 8.5 Hz, 1H), 3.86 (s, 3H), 3.14 (s,
3H). 13C{1H} NMR (101 MHz, CDCl3): δ 167.6, 160.1,
158.9, 150.4, 147.6, 141.9, 137.5, 132.0, 130.9, 130.8, 130.1,
122.2, 120.4 (q, J = 256.8 Hz), 119.4, 114.8, 114.5, 107.1, 55.4,
37.7. 19F NMR (376 MHz, CDCl3): δ −57.60. HRMS m/z:
[M + H]+ calcd for C21H19F3N3O3, 418.1373; found,
418.1374.
4″-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′:3′,1″-ter-

phenyl]-4′-carbohydrazide. Compound 3ha (65 mg, yield =
80%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white solid; mp 80−82 °C. 1H NMR (400 MHz, CDCl3): δ
8.13 (dd, J = 5.0, 1.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.69−
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7.58 (m, 4H), 7.51−7.43 (m, 4H), 7.43−7.36 (m, 2H), 7.35
(s, 1H), 7.01 (d, J = 8.7 Hz, 2H), 6.66 (dd, J = 6.5, 5.1 Hz,
1H), 6.35 (d, J = 8.5 Hz, 1H), 3.86 (s, 3H), 3.16 (s, 3H).
13C{1H} NMR (101 MHz, CDCl3): δ 168.5, 159.8, 159.1,
147.5, 143.5, 140.1, 139.9, 137.4, 132.3, 132.2, 130.2, 129.7,
129.0, 128.9, 128.0, 127.2, 126.0, 114.6, 114.3, 107.2, 55.4,
37.6. HRMS m/z: [M + H]+ calcd for C26H24N3O2, 410.1863;
found, 410.1862.
5-fluoro-4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-bi-

phenyl]-2-carbohydrazide. Compound 3ia (51 mg, yield =
73%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white foam. 1H NMR (400 MHz, CDCl3): δ 8.10 (ddd, J =
4.8, 1.6, 0.8 Hz, 1H), 7.70 (dd, J = 8.5, 5.8 Hz, 1H), 7.42−7.29
(m, 4H), 7.14−7.03 (m, 2H), 6.98 (d, J = 8.7 Hz, 2H), 6.65
(ddd, J = 7.1, 5.0, 0.6 Hz, 1H), 6.31 (d, J = 8.5 Hz, 1H), 3.84
(s, 3H), 3.12 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
167.9, 163.5 (d, J = 251.6 Hz), 160.0, 159.0, 147.5, 142.2 (d, J
= 8.4 Hz), 137.4, 131.3 (d, J = 9.1 Hz), 131.1 (d, J = 1.6 Hz),
130.0, 129.7 (d, J = 3.1 Hz), 117.0 (d, J = 21.9 Hz), 114.7,
114.4 (d, J = 3.1 Hz), 114.3, 107.1, 55.4, 37.6. 19F NMR (376
MHz, CDCl3): δ −109.23. HRMS m/z: [M + H]+ calcd for
C20H19FN3O2, 352.1456; found, 352.1458.
5-chloro-4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-bi-

phenyl]-2-carbohydrazide. Compound 3ja (50 mg, yield =
68%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white foam. 1H NMR (400 MHz, CDCl3): δ 8.09 (dd, J = 5.0,
1.0 Hz, 1H), 7.62 (dd, J = 7.6, 1.0 Hz, 1H), 7.48 (s, 1H),
7.40−7.31 (m, 5H), 6.96 (d, J = 8.7 Hz, 2H), 6.65 (dd, J = 7.2,
4.8 Hz, 1H), 6.29 (d, J = 8.5 Hz, 1H), 3.84 (s, 3H), 3.10 (s,
3H). 13C{1H} NMR (101 MHz, CDCl3): δ 167.8, 160.0, 158.9
147.5, 141.3, 137.4, 136.5, 131.9, 130.9, 130.4, 130.2, 130.1,
127.5, 114.8, 114.4, 107.1, 55.4, 37.6. HRMS: m/z [M + H]+

calcd for C20H19ClN3O2, 368.1160; found, 368.1159.
5-bromo-4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-bi-

phenyl]-2-carbohydrazide. Compound 3ka (59 mg, yield =
72%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white solid; mp 86−88 °C. 1H NMR (500 MHz, CDCl3): δ
8.10 (d, J = 3.9 Hz, 1H), 7.58−7.52 (m, 3H), 7.39−7.32 (m,
4H), 6.97 (d, J = 8.6 Hz, 2H), 6.65 (dd, J = 6.8, 5.2 Hz, 1H),
6.28 (d, J = 8.5 Hz, 1H), 3.84 (s, 3H), 3.11 (s, 3H). 13C{1H}
NMR (101 MHz, CDCl3): δ 167.9, 159.9, 158.9, 147.4, 141.4,
137.4, 133.0, 132.3, 130.7, 130.4, 130.3, 130.1, 124.8, 114.7,
114.3, 107.1, 55.4, 37.6. HRMS m/z: [M + H]+ called for
C20H19BrN3O2, 412.0655; found, 412.0658.
4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-5-(trifluorometh-

yl)-[1,1′-biphenyl]-2-carbohydrazide. Compound 3la (62 mg,
yield = 77%) was isolated (petroleum ether/EtOAc = 10:1 to
3:1) as a white foam. 1H NMR (400 MHz, CDCl3): δ 8.10
(dd, J = 5.0, 1.0 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.66 (d, J =
9.7 Hz, 1H), 7.65 (s, 1H), 7.48 (s, 1H), 7.41 (d, J = 8.7 Hz,
2H), 7.37 (ddd, J = 8.8, 7.2, 1.9 Hz, 1H), 7.00 (d, J = 8.7 Hz,
2H), 6.67 (ddd, J = 7.1, 5.0, 0.7 Hz, 1H), 6.30 (d, J = 8.5 Hz,
1H), 3.86 (s, 3H), 3.13 (s, 3H). 13C{1H} NMR (101 MHz,
CDCl3): δ 167.6, 160.1, 158.8, 147.5, 140.4, 137.5, 136.8,
132.5 (q, J = 32.7 Hz), 130.7, 130.2, 129.5, 127.1 (d, J = 3.8
Hz), 124.0 (d, J = 3.7 Hz), 123.6 (q, J = 267.9 Hz), 114.9,
114.4, 107.1, 55.4, 37.8. 19F NMR (376 MHz, CDCl3): δ
−62.87. HRMS m/z: [M + H]+ calcd for C21H19F3N3O2,
402.1424; found, 402.1423.
Methyl 4′-methoxy-6-(2-methyl-2-(pyridin-2-yl)hydrazine-

1-carbonyl)-[1,1′-biphenyl]-3-carboxylate. Compound 3ma
(63 mg, yield = 80%) was isolated (petroleum ether/EtOAc
= 10:1 to 3:1) as a white foam. 1H NMR (400 MHz, CDCl3):

δ 8.13 (ddd, J = 5.0, 1.8, 0.8 Hz, 1H), 8.09−8.05 (m, 2H), 7.78
(d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.8 Hz, 2H), 7.40−7.33 (m,
1H), 7.28 (s, 1H), 7.00 (d, J = 8.7 Hz, 2H), 6.67 (ddd, J = 7.1,
5.0, 0.8 Hz, 1H), 6.31 (d, J = 8.5 Hz, 1H), 3.95 (s, 3H), 3.86
(s, 3H), 3.16 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
168.0, 166.2, 160.0, 158.9, 147.6, 139.8, 137.5, 137.5, 132.0,
131.4, 131.2, 130.2, 129.1, 128.2, 114.9, 114.4, 107.2, 55.4,
52.5, 37.8. HRMS m/z: [M + H]+ calcd for C22H22N3O4,
392.1605; found, 392.1603.
4′-methoxy-N′,4-dimethyl-N′-(pyridin-2-yl)-[1,1′-biphen-

yl]-2-carbohydrazide. Compound 3na (47 mg, yield = 67%)
was isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a white
foam. 1H NMR (400 MHz, CDCl3): δ 8.12 (ddd, J = 5.0, 1.8,
0.8 Hz, 1H), 7.52 (d, J = 0.5 Hz, 1H), 7.38 (d, J = 8.7 Hz, 2H),
7.37−7.30 (m, 2H), 7.27 (d, J = 7.1 Hz, 1H), 7.17 (s, 1H),
6.98 (d, J = 8.7 Hz, 2H), 6.64 (ddd, J = 7.1, 5.0, 0.8 Hz, 1H),
6.31 (d, J = 8.5 Hz, 1H), 3.84 (s, 3H), 3.13 (s, 3H), 2.43 (s,
3H). 13C{1H} NMR (101 MHz, CDCl3): δ 168.9, 159.5,
159.1, 147.4, 137.4, 137.3, 136.6, 133.3, 132.2, 131.4, 130.2,
130.1, 129.4, 114.6, 114.2, 107.2, 55.4, 37.5, 20.9. HRMS m/z:
[M + H]+ calcd for C21H22N3O2, 348.1707; found, 348.1708.
4-chloro-4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-bi-

phenyl]-2-carbohydrazide. Compound 3oa (51 mg, yield =
70%) was isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a
white solid; mp 96−98 °C. 1H NMR (400 MHz, CDCl3): δ
8.13 (dd, J = 4.9, 1.0 Hz, 1H), 7.71 (d, J = 2.2 Hz, 1H), 7.48
(dd, J = 8.3, 2.2 Hz, 1H), 7.43−7.35 (m, 3H), 7.33 (d, J = 8.3
Hz, 1H), 7.19 (s, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.68 (dd, J =
6.9, 5.2 Hz, 1H), 6.32 (d, J = 8.5 Hz, 1H), 3.85 (s, 3H), 3.14
(s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 167.3, 159.9,
158.9, 147.6, 138.0, 137.5, 134.9, 133.6, 131.7, 131.0, 130.7,
130.1, 129.0, 114.9, 114.4, 107.2, 55.4, 37.7. HRMS m/z: [M +
H]+ calcd for C20H19ClN3O2, 368.1160; found, 368.1160.
4′-methoxy-N′,3-dimethyl-N′-(pyridin-2-yl)-[1,1′-biphen-

yl]-2-carbohydrazide. Compound 3pa (43 mg, yield = 62%)
was isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a white
foam. 1H NMR (400 MHz, CDCl3): δ 8.09 (ddd, J = 5.0, 1.8,
0.8 Hz, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H),
7.25−7.16 (m, 4H), 6.97 (d, J = 8.8 Hz, 2H), 6.62 (ddd, J =
7.1, 5.0, 0.8 Hz, 1H), 5.93 (d, J = 8.5 Hz, 1H), 3.85 (s, 3H),
3.10 (s, 3H), 2.49 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3):
δ 168.9, 159.4, 159.0, 147.4, 139.5, 137.3, 136.2, 133.9, 132.7,
130.3, 129.5, 129.0, 127.3, 114.6, 114.0, 107.1, 55.4, 37.5, 19.4.
HRMS m/z: [M + H]+ calcd for C21H22N3O2, 348.1707;
found, 348.1707.
3-chloro-4′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-bi-

phenyl]-2-carbohydrazide. Compound 3qa (43 mg, yield =
40%) was isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a
white foam. 1H NMR (400 MHz, CDCl3): δ 8.10 (ddd, J =
5.0, 1.8, 0.8 Hz, 1H), 7.47−7.37 (m, 4H), 7.33−7.27 (m, 2H),
7.21 (ddd, J = 8.8, 7.2, 1.9 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H),
6.62 (ddd, J = 7.1, 5.0, 0.8 Hz, 1H), 5.99 (d, J = 8.5 Hz, 1H),
3.85 (s, 3H), 3.16 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3):
δ 166.0, 159.8, 159.0, 147.3, 141.8, 137.3, 133.5, 132.1, 131.1,
130.6, 130.4, 128.4, 128.2, 114.7, 114.1, 107.3, 55.4, 37.5.
HRMS m/z: [M + H]+ calcd for C20H19ClN3O2, 368.1160;
found, 368.1161.
3-(4-methoxyphenyl)-N′-methyl-N′-(pyridin-2-yl)-2-naph-

thohydrazide. Compound 3ra (57 mg, yield = 75%) was
isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a white
solid; mp 188−190 °C. 1H NMR (400 MHz, CDCl3): δ 8.34
(s, 1H), 8.08 (d, J = 4.5 Hz, 1H), 7.98 (br, 1H), 7.93 (d, J =
7.9 Hz, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.80 (s, 1H), 7.61−7.47
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(m, 4H), 7.39 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 8.5 Hz, 2H),
6.62 (t, J = 6.0 Hz, 1H), 6.38 (d, J = 8.6 Hz, 1H), 3.85 (s, 3H),
3.20 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 168.6,
159.6, 159.1, 147.5, 137.4, 136.4, 134.0, 132.4, 131.9, 131.7,
130.3, 129.5, 129.3, 128.3, 127.9, 127.8, 126.8, 114.6, 114.3,
107.2, 55.4, 37.6. HRMS m/z: [M + H]+ called for
C24H22N3O2, 384.1707; found, 384.1706.
3-(4-methoxyphenyl)-N′-methyl-N′-(pyridin-2-yl)furan-2-

carbohydrazide. Compound 3sa (11 mg, yield = 16%) was
isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a white
foam. 1H NMR (400 MHz, CDCl3): δ 8.35 (s, 1H), 8.20 (dd, J
= 5.0, 1.0 Hz, 1H), 7.72 (d, J = 8.9 Hz, 2H), 7.53−7.45 (m,
2H), 6.92 (d, J = 8.9 Hz, 2H), 6.79 (d, J = 8.5 Hz, 1H), 6.73−
6.66 (m, 2H), 3.81 (s, 3H), 3.43 (s, 3H). 13C{1H} NMR (101
MHz, CDCl3): δ 159.8, 159.3, 158.1, 147.6, 143.4, 139.7,
137.6, 132.7, 130.7, 123.4, 114.6, 114.4, 113.7, 107.1, 55.3,
38.8. HRMS m/z: [M + H]+ calcd for C18H18N3O3, 324.1343;
found, 324.1342.
4′-acetyl-N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-car-

bohydrazide compound 3ab (47 mg, yield = 68%) was isolated
(petroleum ether/EtOAc = 10:1 to 3:1) as a white foam. 1H
NMR (400 MHz, CDCl3): δ 8.12 (dd, J = 5.0, 1.0 Hz, 1H),
8.03 (d, J = 8.4 Hz, 2H), 7.74 (dd, J = 7.6, 1.3 Hz, 1H), 7.61
(d, J = 8.4 Hz, 2H), 7.60−7.54 (m, 1H), 7.51 (td, J = 7.5, 1.3
Hz, 1H), 7.44 (dd, J = 7.6, 1.0 Hz, 1H), 7.43 (s, 1H), 7.36
(ddd, J = 8.7, 7.2, 1.9 Hz, 1H), 6.67 (dd, J = 6.5, 5.0 Hz, 1H),
6.36 (d, J = 8.5 Hz, 1H), 3.16 (s, 3H), 2.64 (s, 3H). 13C{1H}
NMR (101 MHz, CDCl3): δ 197.6, 168.3, 158.9, 147.6, 144.7,
139.0, 137.5, 136.4, 133.8, 130.8, 130.2, 129.3, 128.8, 128.7,
128.4, 114.9, 107.1, 38.0, 26.7. HRMS m/z: [M + H]+ calcd
for C21H20N3O2, 346.1550; found, 346.1546.
Methyl 2′-(2-methyl-2-(pyridin-2-yl)hydrazine-1-carbonyl)-

[1,1′-biphenyl]-4-carboxylate. Compound 3ac (51 mg, yield =
70%) was isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a
white foam. 1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 7.9
Hz, 3H), 7.75 (d, J = 7.4 Hz, 1H), 7.61−7.54 (m, 3H), 7.51 (t,
J = 7.3 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.40−7.29 (m, 2H),
6.67 (dd, J = 6.8, 5.2 Hz, 1H), 6.35 (d, J = 8.6 Hz, 1H), 3.95
(s, 3H), 3.13 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
168.3, 166.7, 158.9, 147.5, 144.5, 139.0, 137.5, 133.7, 130.7,
130.2, 130.0, 129.6, 129.0, 128.8, 128.3, 114.8, 107.1, 52.3,
37.8. HRMS m/z: [M + H]+ calcd for C21H20N3O3, 362.1499;
found, 362.1500.
4′-bromo-N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-

carbohydrazide. Compound 3ad (52 mg, yield = 68%) was
isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a yellow
oil. 1H NMR (400 MHz, CDCl3): δ 8.13 (ddd, J = 5.0, 1.8, 0.8
Hz, 1H), 7.70 (dd, J = 7.6, 1.2 Hz, 1H), 7.58 (d, J = 8.5 Hz,
2H), 7.57−7.52 (m, 1H), 7.48 (td, J = 7.5, 1.4 Hz, 1H), 7.44−
7.34 (m, 5H), 6.69 (ddd, J = 7.2, 5.0, 0.8 Hz, 1H), 6.26 (d, J =
8.5 Hz, 1H), 3.18 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3):
δ 168.4, 158.9, 147.5, 138.8, 138.8, 137.6, 133.7, 131.9, 130.7,
130.6, 130.1, 128.8, 128.0, 122.4, 114.9, 107.1, 37.9. HRMS m/
z: [M + H]+ calcd for C19H17BrN3O, 382.0550; found,
382.0549.
N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-carbohydra-

zide. Compound 3ae (42 mg, yield = 70%) was isolated
(petroleum ether/EtOAc = 10:1 to 5:1) as a white foam. 1H
NMR (400 MHz, CDCl3): δ 8.12 (ddd, J = 4.9, 1.8, 0.8 Hz,
1H), 7.74 (dd, J = 7.6, 1.2 Hz, 1H), 7.55 (td, J = 7.5, 1.5 Hz,
1H), 7.51−7.40 (m, 7H), 7.35 (ddd, J = 8.9, 7.2, 1.9 Hz, 1H),
7.12 (s, 1H), 6.64 (ddd, J = 7.1, 5.0, 0.7 Hz, 1H), 6.29 (d, J =
8.5 Hz, 1H), 3.08 (s, 3H).13C{1H} NMR (101 MHz, CDCl3):

δ 168.5, 159.1, 147.5, 140.0, 140.0, 137.4, 133.6, 130.6, 130.2,
128.97, 128.95, 128.9, 128.1, 127.8, 114.6, 107.1, 37.4. HRMS
m/z: [M + H]+ calcd for C19H18N3O, 304.1444; found,
304.1445.
N′,4′-dimethyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-carbohy-

drazide. Compound 3af (55 mg, yield = 87%) was isolated
(petroleum ether/EtOAc = 10:1 to 4:1) as a white foam. 1H
NMR (400 MHz, CDCl3): δ 8.12 (dd, J = 5.0, 1.0 Hz, 1H),
7.74 (dd, J = 7.6, 1.2 Hz, 1H), 7.53 (td, J = 7.5, 1.4 Hz, 1H),
7.45 (td, J = 7.5, 1.3 Hz, 1H), 7.41−7.32 (m, 4H), 7.29 (s,
1H), 7.28 (d, J = 7.9 Hz, 1H), 7.17 (s, 1H), 6.65 (ddd, J = 7.1,
5.0, 0.7 Hz, 1H), 6.31 (d, J = 8.5 Hz, 1H), 3.12 (s, 3H), 2.43
(s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 168.6, 159.1,
147.4, 139.8, 137.9, 137.3, 137.0, 133.5, 130.6, 130.2, 129.5,
128.9, 128.8, 127.5, 114.5, 107.1, 37.3, 21.2. HRMS m/z: [M +
H]+ calcd for C20H20N3O, 318.1601; found, 318.1595.
4′-(tert-butyl)-N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-

2-carbohydrazide. Compound 3ag (58 mg, yield = 81%) was
isolated (petroleum ether/EtOAc = 10:1 to 4:1) as a white
foam. 1H NMR (400 MHz, CDCl3): δ 8.11 (dd, J = 4.8, 2.0
Hz, 1H), 7.74 (dd, J = 7.5, 0.9 Hz, 1H), 7.53 (td, J = 7.5, 1.4
Hz, 1H), 7.51−7.40 (m, 6H), 7.37 (ddd, J = 8.7, 7.2, 1.9 Hz,
1H), 7.07 (s, 1H), 6.64 (ddd, J = 7.2, 5.2, 0.4 Hz, 1H), 6.41 (d,
J = 8.5 Hz, 1H), 3.03 (s, 3H), 1.36 (s, 9H). 13C{1H} NMR
(101 MHz, CDCl3): δ 168.7, 159.1, 151.3, 147.4, 139.8, 137.4,
136.9, 133.6, 130.6, 130.2, 129.0, 128.6, 127.6, 125.8, 114.6,
107.2, 37.1, 34.6, 31.3. HRMS m/z: [M + H]+ called for
C23H26N3O, 360.2070; found, 360.2071.
3′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-

carbohydrazide. Compound 3ah (43 mg, yield = 64%) was
isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a white
foam. 1H NMR (400 MHz, CDCl3): δ 8.11 (dd, J = 4.9, 1.1
Hz, 1H), 7.74 (dd, J = 7.6, 1.3 Hz, 1H), 7.53 (td, J = 7.5, 1.4
Hz, 1H), 7.47 (td, J = 7.5, 1.3 Hz, 1H), 7.43−7.33 (m, 3H),
7.19 (s, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.02−6.95 (m, 2H),
6.64 (dd, J = 6.8, 5.3 Hz, 1H), 6.31 (d, J = 8.5 Hz, 1H), 3.81
(s, 3H), 3.10 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
168.5, 159.8, 159.1, 147.5, 141.3, 139.7, 137.4, 133.6, 130.6,
130.0, 130.0, 129.0, 127.8, 121.2, 114.6, 114.4, 113.8, 107.1,
55.3, 37.3. HRMS m/z: [M + H]+ called for C20H20N3O2,
334.1550; found, 334.1550.
2′-methoxy-N′-methyl-N′-(pyridin-2-yl)-[1,1′-biphenyl]-2-

carbohydrazide. Compound 3ai (40 mg, yield = 60%) was
isolated (petroleum ether/EtOAc = 10:1 to 3:1) as a light
yellow foam. 1H NMR (400 MHz, CDCl3): δ 8.12 (dd, J = 4.9,
1.1 Hz, 1H), 7.81 (dd, J = 7.6, 1.3 Hz, 1H), 7.57−7.39 (m,
4H), 7.36−7.27 (m, 3H), 7.08 (t, J = 7.4 Hz, 1H), 7.01 (d, J =
8.3 Hz, 1H), 6.63 (dd, J = 6.9, 5.2 Hz, 1H), 6.25 (d, J = 8.5 Hz,
1H), 3.78 (s, 3H), 3.06 (s, 3H). 13C{1H} NMR (101 MHz,
CDCl3): δ 168.0, 159.2, 156.2, 147.4, 137.4, 136.1, 134.3,
131.0, 131.0, 130.5, 129.8, 129.2, 128.7, 127.8, 121.2, 114.4,
111.1, 107.1, 55.5, 37.3. HRMS m/z: [M + H]+ calcd for
C20H20N3O2, 334.1550; found, 334.1546.
4′-methoxy-[1,1′-biphenyl]-2-carboxamide. Compound 4a

(20 mg, yield = 88%) was isolated (petroleum ether/EtOAc =
5:1 to 3:1) as a white solid; mp 108−110 °C. 1H NMR (400
MHz, CDCl3): δ 7.76 (dd, J = 7.7, 1.2 Hz, 1H), 7.48 (td, J =
7.5, 1.5 Hz, 1H), 7.42−7.32 (m, 4H), 6.96 (d, J = 8.8 Hz, 2H),
5.70 (br, 1H), 5.30 (br, 1H), 3.84 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3): δ 171.5, 159.4, 139.5, 134.2, 132.4, 130.5,
130.4, 129.9, 129.1, 127.2, 114.1, 55.3. HRMS m/z: [M + H]+

calcd for C14H14NO2, 228.1019; found, 228.1018.
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4-chloro-4′-methoxy-[1,1′-biphenyl]-2-carboxamide. Com-
pound 4b (25 mg, yield = 95%) was isolated (petroleum
ether/EtOAc = 5:1 to 3:1) as a white solid; mp 154−156 °C.
1H NMR (400 MHz, CDCl3): δ 7.74 (d, J = 2.3 Hz, 1H), 7.42
(dd, J = 8.3, 2.3 Hz, 1H), 7.31 (d, J = 8.8 Hz, 2H), 7.24 (s,
1H), 6.94 (d, J = 8.8 Hz, 2H), 5.63 (br, 1H), 5.28 (br, 1H),
3.83 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 169.8,
159.7, 137.9, 135.5, 133.4, 131.8, 131.2, 130.5, 129.9, 129.2,
114.3, 55.3. HRMS m/z: [M + H]+ called for C14H13ClNO2,
262.0629; found, 262.0629.
3-(4-methoxyphenyl)-2-naphthamide. Compound 4c (26

mg, yield = 94%) was isolated (petroleum ether/EtOAc =
5:1 to 3:1) as a white solid; mp 224−226 °C. 1H NMR (400
MHz, CDCl3): δ 8.33 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.85
(d, J = 8.0 Hz, 1H), 7.79 (s, 1H), 7.60−7.50 (m, 2H), 7.46 (d,
J = 8.7 Hz, 2H), 6.99 (d, J = 8.7 Hz, 2H), 5.77 (br, 1H), 5.43
(br, 1H), 3.86 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
171.2, 159.5, 136.5, 134.0, 132.5, 132.4, 131.7, 130.2, 129.8,
129.4, 128.5, 127.8, 127.6, 126.6, 114.2, 55.3. HRMS m/z: [M
+ H]+ calcd for C18H16NO2, 278.1176; found, 278.1174.
[1,1′-biphenyl]-2-carboxamide. Compound 4d (18 mg, yield

= 89%) was isolated (petroleum ether/EtOAc = 5:1 to 3:1) as
a white solid.1H NMR (400 MHz, CDCl3): δ 7.77 (dd, J = 7.6,
1.2 Hz, 1H), 7.50 (td, J = 7.5, 1.5 Hz, 1H), 7.46−7.38 (m,
6H), 7.36 (dd, J = 7.6, 1.1 Hz, 1H), 5.79 (s, 1H), 5.29 (s, 1H).
13C{1H} NMR (101 MHz, CDCl3): δ 171.4, 140.2, 139.8,
134.3, 130.5, 130.4, 129.0, 128.7, 128.6, 127.9, 127.6. HRMS
m/z: [M + H]+ calcd for C13H11NO, 198.0913; found,
198.0914.
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