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A B S T R A C T

Recently, the study of protein structures using angular representations has attracted much attention among
structural biologists. The main challenge is how to efficiently model the continuous conformational space
of the protein structures based on the differences and similarities between different Ramachandran plots.
Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial
need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address
this need, we have developed a nonparametric method for collective estimation of multiple bivariate den-
sity functions for a collection of populations of protein backbone angles. The proposed method takes into
account the circular nature of the angular data using trigonometric spline which is more efficient compared
to existing methods. This collective density estimation approach is widely applicable when there is a need
to estimate multiple density functions from different populations with common features. Moreover, the
coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation
that is useful for visualization, clustering, and classification of the densities. The proposed method provides
a novel and unique perspective to two important and challenging problems in protein structure research:
structure-based protein classification and angular-sampling-based protein loop structure prediction.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Proteins are large biomolecules or macromolecules that perform
a vast array of functions for the biological processes within the
cell of organisms. A protein is a linear chain of amino acids, each
of which is composed of an amino group (–NH2), a central carbon
atom (Ca), a carboxyl group (–COOH), and a side-chain group that is
attached to Ca and is specific to each amino acid. Depending on the
amino acid sequence (different amino acids have different biochem-
ical properties) and interactions with their environment, proteins
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fold into a three-dimensional structure, which allows them to inter-
act with other proteins and molecules to perform their function.
Hence, an important topic in the field of structural biology is the
determination of the three-dimensional (3D) structure of a protein.
In a protein, each amino acid is called a residue and the chain of
carbon, nitrogen and oxygen atoms are referred to as the backbone.
While the side-chain structures determine local structures and inter-
actions of the amino acids of the protein, the backbone structure
determines the overall shape of the protein and is the focus of much
research.

The backbone conformation of proteins can be represented equiv-
alently by Cartesian coordinates of carbon, nitrogen and oxygen
atoms, or the backbone dihedral angles (0,x), and y, with the
assumption of standard bond lengths and angles. Moreover, the
global folds of proteins can be equivalently represented by either
the Cartesian coordinates of Ca traces or the 2 pseudo-angles
(h, t) between the two consecutive planes formed by 4 successive
Ca . The Ramachandran plot, a scatter plot of 0 vs. x, can reflect
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the allowed regions of conformational space available to protein
chains. By analogy to Ramachandran’s concept of dihedral angles, the
pseudo-Ramachandran plot, a scatter plot of h vs. t, can provide a
distinctive classification of protein structures and largely contribute
to different applications [1].

In the development of protein tools over the last two decades,
the angular representation of proteins and Ramachandran plots
have been applied in various protein structure-related problems,
such as protein structural model checking [2–4], structure pre-
diction [5–9], model quality assessment [10–12], prediction server
ranking [13, 14], protein structure alignment [15, 16], free energy
function learning [17–19], molecular dynamics simulation [20],
empirical energy functions [21] and classification functions such as
backbone-dependent rotamer library [22, 23].

Since the seminal work of Ramachandran et al. [24], the two-
dimensional histogram of Ramachandran plot has been commonly
used to determine accessible regions and validate new protein struc-
tures [2, 3]. The histogram is a rough non-parametric density estima-
tion where the number of parameters is equal to the number of data
points. Furthermore, because of the circular nature of the protein
angles, the traditional parametric or non-parametric density estima-
tion methods cannot be used for estimating Ramachandran distribu-
tions. In the last decade, novel parametric and non-parametric meth-
ods have been introduced to address this problem. The parametric
methods propose to use directional distributions such as von Mises
distribution or short Fourier series that are naturally designed for
periodic data [25–29]. On the other hand, the non-parametric tech-
niques use kernel density estimates with periodic kernels, Dirichlet
process with boundary modification, or a mixture of directional
distributions [30–32].

Depending on the purpose of the study, one may produce
Ramachandran plots based on residues associated with some spe-
cific amino acids, and/or some specific structural elements. In some
cases, the number of residues (data points) is too small, and that
makes it challenging to obtain reliable bivariate densities using tech-
niques that estimate each Ramachandran distribution separately. An
intuitive solution to this problem is to borrow information from
a group of Ramachandran plots that has some common features.
To this end, Lennox et al. [33] proposed a hierarchical Dirichlet
process technique based on bivariate von Mises distributions that
can simultaneously model angle pairs at multiple sequence posi-
tions. This method is typically used for predicting highly variable
loop and turn regions. Ting et al. [34] and Joo et al. [35] also used
this technique with further modification to produce near-native loop
structures. In another approach, Maadooliat et al. [36] proposed a
penalized spline collective density estimator (PSCDE) to represent
the log-densities based on some shared basis functions. This method
showed some significant improvements for loop modeling of the
hard cases in a benchmark dataset where existing methods do not
work well [36].

Comparing to other competitive approaches, PSCDE is more
efficient in estimating the densities in the sparse regions by incor-
porating the shared information among the distributions. In this
technique, the bivariate log-densities are represented using a com-
mon set of basis functions. Each log-density has its own coefficient
vector in the basis expansion, and it can be used for clustering
and classification of the densities. Furthermore, using a common
set of basis functions significantly reduces the number of param-
eters to be estimated. This method has been applied to estimate
the neighbor-dependent Ramachandran distributions to make the
angular-sampling-based protein structure prediction more accurate.
In this paper, we make an innovative and constructive development
over the PSCDE method.

The PSCDE method is constructed based on Bernstein-Bézier
spline basis functions defined over triangles to estimate the
log-densities in a complex domain [36]. In simple words, in PSCDE,

we artificially extended the constraints of the adjacent triangles to
the triangles in boundaries in order to estimate the densities in a
two-dimensional circular domain. Here, we propose an alternative
approach that uses the tensor product of trigonometric B-spline basis
to handle the angular nature of the data. The main advantage of the
proposed method is that there is no need to implement any further
constraints to take into account the continuity and circularity of the
data since the new bases are trigonometric functions that are smooth
and intrinsically periodic. Another improvement in the proposed
procedure is on selecting the smoothing parameter. In the existing
PSCDE procedure, the tuning parameter is selected using the Akaike
Information Criterion. Therefore a grid search is needed to choose the
optimal tuning parameter and that could become time-consuming,
especially if different tuning parameters are used for different basis
functions. Following Schellhase and Kauermann [37], we propose
to update the smoothing parameter within the Newton–Raphson
iterative procedure that is used for the density estimation.

The PSCDE method is originally applied to the protein loop mod-
eling problem. Here, we focus on a new application and use an exten-
sion of PSCDE to the protein structure classification problem. There is
a large literature on the classification of the protein structures in the
Protein Data Bank (PDB) [38–40]; because a good classification can
reveal the evolutionary relationship between the proteins and step
toward understanding the protein functions. While a vast majority of
the literature deals with the protein classification in a pairwise struc-
tural comparison framework, the proposed estimated densities can
be used as an alternative technique based on angular representation
for the structural classification.

Specifically, the estimated angular density corresponding to a
protein structure has a basis expansion whose coefficients can be
used as an input to a clustering algorithm. Furthermore, most of
the existing techniques for protein classification are using sequence
and/or 3D structure comparison to classify the proteins based on
some (dis)similarity scores obtained after pairwise alignments. The
proposed method is an alignment-free procedure that provides a
vector of coefficients (i.e. features), associated with each structure
(density), that can be directly used to classify the proteins.

We also applied the proposed method to the loop modeling
problem and compared the result with the other methods in the
online supplementary. In this application, we trained the neighbor-
dependent distributions of the backbone dihedral angles (i.e.,
neighbor-dependent Ramachandran distributions) using the new
collective density estimation approach and fed the results into the
Rosetta loop modeling procedure to study the accuracy and effi-
ciency of the Rosetta server in predicting the loop regions. The
main concern of using the neighbor-dependent Ramachandran dis-
tributions is that we are partitioning the data into smaller groups,
some partitions may end up with a limited number of observations,
and therefore we may lose accuracy in estimating the Ramachan-
dran distributions due to the data sparsity. The proposed collec-
tive estimation procedure can overcome this difficulty and thereby
improve the accuracy of the estimated densities. We encourage
the interested readers to read the online supplementary materials
for the implementation of the proposed method on loop-modeling
application.

The rest of the paper is organized as follows. Section 2 intro-
duces the penalized spline collectively density estimator procedure
based on the new trigonometric basis functions to incorporate the
circular nature of data. Section 3 presents the protein structure clas-
sification problem and the implementation of the new procedure for
this application. Section 4 concludes the paper with a discussion. A
web-based toolbox is also introduced in the Appendix to illustrate
the advantages of the proposed technique. This toolbox can be used
further by the research community to obtain the collective estima-
tion of Ramachandran distributions for any other related application
(e.g. backbone-dependent rotamer library [22, 23]).
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2. Collective Estimation of Multiple Probability Density Functions

In this section, we review and extend a procedure for estimating the multiple probability density functions, known as the PSCDE [36].
Suppose that we observe data from m bivariate probability distributions with the density functions fi, i = 1, · · · , m. We assume that each
log-density can be represented by a set of common basis functions. Therefore we write each log-density function as

log{fi(x)} = yi(x) + ci, (1)

where yi(x) is a linear combination of the basis functions {0k, k = 1, . . . , K} such that

yi(x) =
K∑

k=1

0k(x)aik ∀i = 1, . . . , m, (2)

and ci is a normalizing constant (ci = − log
∫

expyi(x)dx) to ensure that each fi is a valid density function. In our setting, the value of K and the
basis functions (0k

′s) are not pre-specified and will be determined based on data. We assume that 0k
′s fall in a low-dimensional subspace of a

function space spanned by a rich family of fixed basis functions, {b�(x), � = 1, . . . , L}, (L � K), such that

0k(x) =
L∑

�=1

b�(x)h�k.

This framework provides a common set of basis functions to represent the log-densities. Also, each density in this model is represented with
a set of coefficients aik, k = 1, . . . , K, which can be used as an excellent feature for comparison, assessment and classification of the densities.
Furthermore, similar to the scree plot in principal component analysis (PCA), one may plot the sum of square of the component coefficients(
g(k) =

∑
ia

2
ik

)
as a function of component index, to select number of significant components, K, e.g. see Figs. 1A and 2A.

Fig. 1. A classification task with 33 domains from four Species of the same protein class, separated at the bottom of SCOP hierarchy with PSCDE approach [36]. (A) The scree plot
with numbers showing the percentage of variability explained by the leading components; (B) the AIC plot; (C) the scatter plot of coefficients 1 vs 2; and (D) the scatter plot of
coefficients 3 vs 4.
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Fig. 2. A classification task with 33 domains from four Species of the same protein class, separated at the bottom of SCOP hierarchy with PSCDE(T) approach. (A) The scree
plot with numbers showing the percentage of variability explained by the leading components; (B) the trace of the penalized log-likelihood function; (C) the scatter plot
of coefficients 1 vs 2; and (D) the scatter plot of coefficients 2 vs 3.

Here, we use the tensor product technique to construct bivariate trigonometric splines that are smooth and intrinsically periodic in one
or two directions. The details on how to construct the basis functions are given in Section 2.1. To further simplify the presentation, let
0(x) = (01(x),02(x), . . . ,0K(x))�, ai = (ai1,ai2, . . . ,aiK)�, b(x) = (b1(x), b2(x), . . . , bL(x))�, hk = (h1k, h2k, . . . , hLk)T and H = (h1, h2, . . . , hK),
then yi(x) given in Eq. (2) can be written as

yi(x) = 0(x)�ai = b(x)�Hai, i = 1, . . . , m. (3)

If we evaluate the densities on common regular grids (xj, j = 1, · · · , n) in the circular plane, we may further simplify the presentation of
the densities in an n × m matrix: Y = {yi(xj)}�. Specifically, let B = (b(x1), b(x2), . . . , b(xn))�, and A = (a1,a2, . . . ,am)�, then Eq. (3) can be
written in the matrix form, Y = BHAT, where the parameters to be estimated are (H, A). To address the identifiability issue raised by the
product of two matrices (H, A), we follow the remedy given in [36] based on the singular value decomposition (SVD) technique.

Now, by assuming observations xij, j = 1, . . . , ni from the ith group, i = 1, . . . , m, the log-likelihood function has the following form:

�(H, A) =
m∑

i=1

ni∑
j=1

{
yi

(
xij

)
+ ci

}
. (4)

To obtain smooth densities, the parameters can be estimated by introducing the roughness penalty [41] and minimizing the penalized
likelihood criterion:

−2 �(H, A) + k trace(H�DH), (5)

where D penalizes wiggliness (induces smoothness) and k > 0 is the tuning parameter. We then use the alternating blockwise Newton–
Raphson algorithm in Maadooliat et al. [36] to minimize the penalized likelihood function.
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There are different well-known methods to select the tuning parameter. A commonly used technique is to choose the tuning parameter,
k, that minimizes the Akaike Information Criterion (AIC) [42]:

AIC(k) = −2 �(H, A) + 2 df(k),

where �(H, A) is the log likelihood function and df(k) is the degrees of freedom, defined as:

df(k) =
K∑

k=1

trace

⎧⎨
⎩

[
∂2�(H, A)
∂hk∂h

�
k

+ kD

]−1 [
∂2�(H, A)
∂hk∂h

�
k

]⎫⎬
⎭ .

Selecting the tuning parameter that minimizes the AIC, requires training the model for different values of k′s and then pick the one that
minimizes the criterion function, which can be very expensive in time. Instead, we present an alternative procedure that updates the value
of the tuning parameter within the Newton–Raphson iterations. This idea has been used in generalized mixture model to iteratively update
the smoothing parameter [43]. Schellhase and Kauermann [37] extended this approach for density estimation. We borrow their formulation,
and use the parameter estimates in the ith step to update the tuning parameter, k̂i+1, through

k̂−1
i+1 =

trace
(
Ĥ

�
i DĤi

)

df
(
k̂i

)
− (a − 1)

, (6)

where a is the order of the differences used in the penalty matrix D (see Section 2.1). From what we have seen in the implementation of
the new procedure, updating the tuning parameter within the Newton–Raphson iterations, on average, does not increase the number of the
iterations required to converge. Therefore the new procedure obtains the final result p times faster than the older procedure, where p is the
number of k′s used in the grid search to minimize the AIC.

In the following subsection, we obtain the trigonometric basis functions and the penalty matrix that has been used in minimizing the
penalized likelihood function (Eq. (5)).

2.1. Basis Functions and the Penalty Matrix

There are a variety of basis functions that can come in handy depend on the dimensionality of the problem and the data structure. In
this context, the circular nature of the protein angles is an obstacle that prevents us from using the standard B-spline functions. Maadooliat
et al. [36] proposed to use bivariate spline functions over triangulations, and they artificially extended the constraints for two adjacent
triangles [44] to the triangles in boundaries. Triangulation is a sophisticated procedure that works perfectly for complex geometries with
unbalanced observations over irregular grid points. For Ramachandran plot, we evaluate the densities over regular grid points in a smooth
rectangular plane that is obtained by unfolding a simple manifold (torus or sphere), and it is better if we can avoid such sophisticated
procedure. Furthermore, extending the triangulation technique beyond the bivariate case, and implementing the PSCDE via triangulations
in higher dimensions is not straightforward.

A frequently used basis functions for Euclidean space is the tensor product of standard B-spline functions which is appealing and very
easy to use in the real world applications [45]. With some small alteration, the tensor product of trigonometric spline can be defined by sin
and cos functions which are smooth and naturally periodic functions [46]. Moreover, this method can be easily applied to higher dimensional
density estimation.

We need to develop rich set of basis functions {b�(X), � = 1, . . . , L}, that is required for estimating the Ramachandran or pseudo-
Ramachandran distributions, over the support set (Y or Y′) which can be defined as

Y = {−p ≤ 0 ≤ p and − p ≤ x ≤ p} or Y′ = {−p ≤ h ≤ p and 0 ≤ t ≤ p}. (7)

From a geometric point of view, Y resembles the surface of a torus with some fixed minor/major radiuses and Y′ represents the surface
of a sphere with fixed radius. In fact, the existing parametric models take into account the topology and develop a parametric framework
on surfaces of a torus or sphere with some fixed radiuses to model the bivariate densities [32, 47, 48]. In contrast, non-parametric methods
use either a periodic kernel or some boundary modification technique to address this issue.

Here we present the tensor product of two sets of trigonometric basis functions and construct the bivariate bases that can be used to
represent the space for two dihedral angles (0,x) defined over Y. One may proceed with a similar procedure based on the Kronecker product
of a trigonometric spline and a standard B-spline to obtain the bivariate basis representation for the pair of dihedral, planar angles (h, t)
defined over Y′.

A univariate normalized trigonometric spline with j knots, (x1, x2, · · · , xj), and order of m, can be represented recursively as a periodic
spline on a circle; see Schumaker [49, ch. 8] for details. In specific, for every 0 within the interval [xi, xi+m] the spline functions are defined as

S1
i (0) =

{
1 xi ≤ 0 ≤ xi+1

0 o.w.
,

Smi (0) =
sin

(
0−xi

2

)
sin

(
xi+m−1−xi

2

) Sm−1
i (0) +

sin
(

xi+m−0

2

)
sin

(
xi+m−xj+1

2

) Sm−1
i+1 (0). (8)
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The same methodology should be used to create basis functions for dihedral angle, x. The main advantage of using these linearly
independent basis functions over the standard B-spline choice is that the continuity of the tangent plane for any smooth function on surface
of a sphere is the result of the former one. Therefore, there is no need to introduce any periodic constraints for the trigonometric spline
functions (for more details see Schumaker and Traas [50]), due to the fact that each piece lies in span(Fm), where:

Fm =

{{
cos(0/2), sin(0/2), . . . , cos((2q − 1)0/2), sin((2q − 1)0/2)

}
if m = 2q,

{cos(0), sin(0), . . . , cos(q0), sin(q0)} if m = 2q − 1.

In matrix form, we denote B0 and Bx to be the matrices that represent the trigonometric basis functions associated to 0 and x directions
with ranks M and N respectively. The matrix B that represents the bivariate spline basis functions can be then obtained from the Kronecker
product of B0 and Bx:

B = B0 ⊗ Bx,

where the symbol ⊗ is used to represent the Kronecker product.
It should be noted that the number of knots, j, directly influence the smoothness of the estimated functions. The smaller j results smooth,

but biased estimates. While increasing j will reduce the bias, but it will consequently increase the variability and therefore, we end up with
some rough estimates. It is customary to have a large number of knots in the model and control the smoothness of estimates by introducing
a roughness penalty into the likelihood function, to control the bias-variance tradeoff. Here, we monitor the roughness of the estimated
functions by using difference penalty [51] to achieve the appropriate level of smoothness. In a nutshell, the variability is controlled through
a difference function of order a, Da, where D1hk := hk − hk−1, and Da is obtained recursively. For example, the second order difference
function, D2, has the following form:

D2hk := D1D1hk = hk − 2hk−1 + hk−2.

We may write the difference functions Da into a matrix form, La. For example, for a = 1 we have

L1 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0

0 1 −1
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎦

(M−1×M)

The positive definite penalty matrix used to control the smoothness in the 0 direction is defined as D0, and it has the following quadratic form:
D0 = L�

a La. Now, we may use the tensor product technique to derive the penalty matrix for the bivariate domain, (0,x), as the following:

D =
[
IN ⊗ D0 + Dx ⊗ IM

]
, (9)

where D0 =
(

L0
a

)�
L0

a and Dx =
(

Lx
a

)�
Lx

a .
We now have the required tools to proceed with the estimation procedure. The minimization of the penalized likelihood function (Eq. (5))

can be obtained through the Newton–Raphson algorithm, of which the details can be found in [36]. After convergence, the densities can be
obtained using Eq. (1). From now on, we refer to our new procedure that uses the trigonometric basis expansion in PSCDE as PSCDE(T).

3. Application: Protein Structure Classification

In this section, we introduce an application of collective density
estimation in protein structural comparison. To evaluate the pro-
posed method, we designed four protein clustering tasks from the
Structural Classification of Proteins (SCOP) database, and then try to
cluster the proteins in each task without knowing their labels in the
SCOP tree. The final clustering result of PSCDE(T) is compared with
seven competitive approaches using two external measures (the
descriptions are given in Sections 3.3 and 3.4), where SCOP labels are
used as the gold standard. Since the class labels were not used, this
is a clustering or unsupervised learning problem.

3.1. Structural Classification of Proteins

The Structural Classification of Proteins is a widely used database
that stores the results of classification of known protein structures
and is available at http://scop.mrc-lmb.cam.ac.uk/scop/. The SCOP
has been constructed manually by visual inspection and comparison

of structures. Since manual inspection and classification is time-
consuming and subjective, automated classification methods have
been developed in the past two decades, including alignment-
based methods [52–54], alignment-free methods [55], and consen-
sus methods [56, 57]. However, it is well acknowledged that a
reliable automatic protein classification method is not yet available,
partly due to the fact that most of the existing methods depend
on distance-based similarity measures and are biased by sequence
alignments [55, 58]. In this section, we report the results from some
experiments of using the SCOP database as a benchmark to evalu-
ate the potential use of angular distributions for automatic protein
structure classification. In contrast to the existing protein structure
classification methods, our method is completely alignment-free and
does not depend on sequence similarity or distance-based measures,
thus provides a unique perspective to the problem.

In the SCOP database, protein domains are classified hierarchically
according to their sequential, structural and functional relationship.
From top to bottom, the SCOP hierarchy comprises the following
seven levels: Class, Fold, Superfamily, Family, Protein, Species, and

http://scop.mrc-lmb.cam.ac.uk/scop/
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Domain. The Domain level lists the individual protein domains of
known structures. We refer to Murzin et al. [38] and Andreeva
et al. [40] for more details regarding the description of the SCOP
hierarchy and how the database is organized.

3.2. Task Designs

To evaluate the performance of PSCDE(T) in different datasets, we
designed four SCOP tasks with “Easy”, “Somewhat Hard”, “Hard” and
“Challenging” level of difficulty, that we call them SCOP.1 to SCOP.4,
respectively:

1. SCOP.1 (Easy Task): In this task, we considered an easy pro-
tein classification. The goal is to classify 63 protein domains
that were randomly selected from three remote Protein Classes
in SCOP. The constituents of the collection of protein domains
and the details of this SCOP tree are available in the online
supplementary materials.

2. SCOP.2 (Somewhat Hard Task): We considered a protein clas-
sification task for which 33 domains were extracted from four
Species under the same Protein subclass that belongs to the
“all-alpha protein” Class. The constituents of the collection
of domains and the details of the SCOP tree involving these
domains are available in the online supplementary materials.
This classification task is considered somewhat harder than the
easy task, because the domains are very similar both sequen-
tially and structurally—they are very close in the SCOP tree and
depart only at the bottom (i.e., the Species level) of the SCOP
hierarchy.

3. SCOP.3 (Hard Task): We considered a protein classification
task for which 40 protein chains were randomly selected from
three different Fold/Superfamily levels, where all chains belong
to the “Alpha and beta proteins (a+b)” Class. The constituents
of the collection of domains and the details of the SCOP tree
involving these domains are available in the online supple-
mentary materials. This classification task is considered harder
than the SCOP.2, because the similarities within a group of
chains branched out from a specific Superfamily level is not as
strong as branching out at a specific Species levels. This task can
be used to evaluate different methods in detecting the remote
homology relationship at the Superfamily level.

4. SCOP.4 (Challenging Task): Fischer et al. [59] provided a chal-
lenging benchmark to assess the performance of a fold recog-
nition method in an objective, unbiased and thorough way.
We have selected 26 protein chains from their benchmark in
the “All beta proteins” Class within three different Folds. This
classification task is considered the hardest task in this paper,
which is also indicated in [59].

After choosing the protein domains from the SCOP database, the
complete information of the proteins were obtained from the Protein
Data Bank (PDB). The PDB record of each protein structure con-
tains its 3D atomic coordinates, secondary structure assignments, as
well as atomic connectivity. While different types of dihedral/planar
angles can be obtained using the atomic coordinates, we used the R
package PRESS [60] to derive the (h, t) angles from the PDB files for
each task. We observed that h angles are within the range (75,165)
and t′s are within (−180,180).

3.3. Protein Classification Approaches and Distance Matrices

Due to the tree based structure of the SCOP database, we use
the agglomerative hierarchical clustering technique to group the
protein structures. In order to do this, we need to feed in a pair-
wise (dis)similarity matrix as an input to the clustering algorithm.
In this subsection, we illustrate how to obtain such (dis)similarity

matrices to compare five non-density based and three density based
approaches, respectively.

Since clustering cannot be directly performed on 3D protein struc-
tures, a protein structure or sequence comparison algorithm is usually
applied to generate (dis)similarity scores between any pair of struc-
tures and such scores are then used for clustering [61]. We considered
five such algorithms that cover a broad spectrum of existing methods:

• Needleman–Wunsch (NW) algorithm for global sequence align-
ment [62], with implementation available in the R package
Biostrings;

• Smith–Waterman (SW) algorithm for local sequence align-
ment [63], with implementation available in the R package
Biostrings;

• TM-align [64], available at http://zhanglab.ccmb.med.umich.
edu/TM-align/;

• Yakusa [65], available at http://bioserv.rpbs.jussieu.fr/Yakusa/
download/index.html;

• Dali [66], available at http://ekhidna.biocenter.helsinki.fi/dali_
lite/downloads/v3/.

The first two methods are based on sequence comparison, and
the other three methods are based on structure comparison. After we
apply these five algorithms, we follow Sam et al. [61] to transform
the similarity matrices to distance matrices.

We also considered three density based approaches: Kernel Den-
sity Estimator (KDE), PSCDE and PSCDE(T) for protein classification.
We used Symmetric Kullback–Leibler Divergence (SKLD) between
Ramachandran distributions to obtain pairwise distance matrices
between proteins [14]. In the KDE, we used Gaussian kernel density
estimation with slight modification to consider the angular structure
of the data to obtain an estimate of each density separately [14].

In the PSCDE(T) method, we initialized the algorithm with the
cubic B-spline basis functions with 5 degrees of freedom in the h

direction and the cubic trigonometric B-spline basis functions with
15 degrees of freedom in the t direction. The final tensor product
basis functions are obtained and evaluated over 90 gird points in
each direction. Furthermore, we selected the number of common
basis to be equal to the number of classes in the gold standard associ-
ated to each task (four common basis for SCOP.2, and three common
basis for the remaining three tasks). In general, one may use scree
plot based on the initial estimates (obtained by mapping the ker-
nel density estimators to the column space of the basis expansion)
or other approaches available in the literature to select the num-
ber of common basis. After estimating the parameters (A,H) using
the Newton–Raphson algorithm, the densities can be obtained using
Eq. (1). The PSCDE results can be obtained similarly. In order to have
comparable initial basis functions for PSCDE, we partitioned the (h, t)
domain to 64 similar right triangles with cubic bivariate B-spline
basis functions over each triangle (see [36] for more details).

The distance matrices obtained for the above eight approaches:
NW, SW, TM-align, Yakusa, Dali, KDE, PSCDE and PSCDE(T) are used
as an input to the hierarchical clustering algorithm, implemented in
the hclust function with option {method=”ward.D”} in the R pack-
age stats to obtain dendrograms [67] (e.g. see Fig. 3). In order to
obtain the clusters, we cut the dendrograms of all eight approaches
into the number of the original clusters in the SCOP database. To
evaluate the performance of the proposed method in discovering the
correct label (gold standard), we used two external measures that are
commonly used in the clustering evaluation literature and discussed
in Section 3.4.

3.4. External Evaluation Measures

Consider A and B be two clusterings of a dataset consisting of N
records. Let A cluster the data in r clusters and define ai as the size of

http://zhanglab.ccmb.med.umich.edu/TM-align/
http://zhanglab.ccmb.med.umich.edu/TM-align/
http://bioserv.rpbs.jussieu.fr/Yakusa/download/index.html
http://bioserv.rpbs.jussieu.fr/Yakusa/download/index.html
http://ekhidna.biocenter.helsinki.fi/dali_lite/downloads/v3/
http://ekhidna.biocenter.helsinki.fi/dali_lite/downloads/v3/
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Fig. 3. Dendrograms from hierarchical clustering for SCOP.4 task.
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Table 1
r × c contingency table M relating to two clustering A and B.
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cluster i = 1, . . . , r, and let B cluster the data in c clusters of size bj for
each cluster j = 1, . . . , c (Note that, in our comparison r = c). Given
that A and B are partitions of the same data it is possible to count the
elements that belong both to cluster i and j. Let nij denote the number
of records shared between cluster i and j. The overlap between two
clusterings can be represented in matrix form by a r × c contingency
table M such as the one in Table 1. We refer to ai =

∑
jnij as the row

marginals and to bj =
∑

inij as the column marginals.
Here, we have used two external measures as follows:

1. Normalized Mutual Information (NMI): In the information
theory, the mutual information of two random variables
is a measure of the mutual dependence between the two
variables. The concept of mutual information is intricately
linked to that of entropy of a random variable. The entropy
in clustering is defined as the expected value of its infor-
mation content if it is seen as a random variable. We can
therefore define entropy for clustering A and B as H(A) =

−∑r
i=1

ai
N log ai

N and H(B) = −∑c
j=1

bj
N log

bj
N , respectively.

Formally, the mutual information of two clusterings [68] can
be defined as

MI(A, B) =
∑r

i=1
∑c

j=1
nij
N log

nijN
aibj

.

The mutual information has many possible upper bounds
that might be used to obtain the Normalized Mutual Infor-
mation. Here, we have used max{H(A), H(B)} to normalize
the MI as follows:

NMI =
MI

max{H(A), H(B)} . (10)

2. Adjusted Rand Index (ARI): The Rand index in data cluster-
ing is a measure of the similarity between two data clus-
terings. The adjusted Rand Index (ARI) is defined to adjust
the chance grouping of elements [69]. ARI is related to the

accuracy but is applicable even when class labels are not
used. It is defined as

ARI =

∑
ij
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(11)

Both NMI and ARI indices change between 0 to 1, with 0 indicat-
ing that the two clusters do not agree on any pairs and 1 indicating
that the clusters are exactly the same. In the following subsection, we
present and compare the clustering results for the eight approaches
given in Section 3.3 considering the original SCOP labels as the gold
standard in four different tasks given in Section 3.4 using the above
external measures. We should point out that we do not use the class
labels when applying the clustering algorithms and only use the class
labels for evaluation of the clustering results.

3.5. Results

We implemented the eight approaches introduced in Section 3.3
(NW, SW, TM-align, Yakusa, Dali, KDE, PSCDE and PSCDE(T)) on four
design tasks, given in Section 3.2 as SCOP.1 to SCOP.4, and obtained
the external measures between the eight different clusters and the
gold standard for each task (based on the SCOP tree). The results are
presented in Table 2.

Furthermore, Table 3 compares the running time and number
of iterations needed to run PSCDE and PSCDE(T) in a personal
Macintosh computer with 2.5 GHz Intel Core i5 and 10 GB memory.
The running time of PSCDE(T) is clearly faster than PSCDE. This is due
to the fact that PSCDE(T) updates the tuning parameter (k) within
each iteration while PSCDE runs independent Newton–Raphson iter-
ations for each tuning parameters separately and pick the one that
minimizes the AIC [36] (see e.g. Fig. 1B). It is worth to note that the
web-application is approximately 3 times faster due to the higher
performance of the Shiny servers.

In the remaining of this section, we emphasize some impor-
tant outcomes of each task and refer the readers to the online
supplementary materials for further details.

SCOP.1 (Easy Task): As it is expected, Table 2 confirms that all of
the eight competing approaches do a great job in this easy task.
This can be seen in the dendrogram given in the online supple-
mentary materials (Fig. S.2) as well. The height of the vertical
lines, indicates the degree of difference between branches. The
longer the line, the greater the difference.
SCOP.2 (Somewhat Hard Task): The results shown in Table 2
confirm that PSCDE and PSCDE(T) methods are again com-
petitive with the other methods on this clustering task. The
PSCDE procedure mislabels only one of the structures (same as
“TM-align” method), while the other six methods give perfect
classification. The dendrogram associated to this task is also given

Table 2
Comparing the clustering performance of eight approaches (NW, SW, TM-align, Yakusa, Dali, KDE, PSCDE and PSCDE(T)) on four different tasks: “Easy”, “Somewhat Hard”, “Hard”
and “Challenging” (SCOP.1–SCOP.4) based on Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).

Task Measure NW SW TM-align Yakusa Dali KDE PSCDE PSCDE(T)

SCOP.1 NMI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SCOP.2 NMI 1.00 1.00 0.93 1.00 1.00 1.00 0.93 1.00
ARI 1.00 1.00 0.91 1.00 1.00 1.00 0.91 1.00

SCOP.3 NMI 0.47 0.32 1.00 0.86 1.00 0.87 1.00 1.00
ARI 0.34 0.19 1.00 0.86 1.00 0.86 1.00 1.00

SCOP.4 NMI 0.48 0.48 0.71 0.29 0.44 0.39 0.56 0.64
ARI 0.30 0.30 0.60 0.17 0.23 0.30 0.47 0.51
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Table 3
Running time and number of iterations to achieve the final results of PSCDE and
PSCDE(T) in a personal computer.

PSCDE(T) PSCDE

Method Time (min) Iterations Time (min) Iterations

SCOP.1 1.24 19 11.49 176
SCOP.2 1.39 37 14.85 324
SCOP.3 1.00 18 15.19 174
SCOP.4 0.12 7 8.52 112

in the online supplementary materials. The height of the ver-
tical lines in Fig. S.4 suggests that our angular density-based
method provides a competitive result in clear separation of the
four clusters.

The difference between the results of PSCDE and PSCDE(T) in
SCOP.2 makes it interesting to further compare the associated results
in more details and illustrate their properties. Fig. 1 presents the
results from applying the PSCDE method. The scree plot (Fig. 1A)
indicates that four components can represent most of the variabil-
ity among the angular densities. The AIC plot (Fig. 1B) shows a
clear minimum of the AIC corresponding to the selected penalty
parameter. The scatter plots (Fig. 1C and D) of coefficients in the
fitted exponential family densities show that no single coefficient
can separate the four classes. Neither any pairs of the coefficients
can provide a good separation, but all coefficients together give
some good separation. However, one of the proteins (indicated as
number 2 with black color) is mislabeled and is closer to the green
color cluster.

In a similar framework, Fig. 2 presents the results from apply-
ing the proposed PSCDE(T) method. Similarly, the scree plot (Fig. 2A)
indicates that four components represent most of the variability
among the angular densities. The penalized log-likelihood versus
iterations (Fig. 2B) shows that the convergence is achieved after 37
iterations. Although, the scatter plots (Fig. 2C) and D) of coefficients
in the fitted exponential family densities show that no single coeffi-
cient can separate the four classes, but the coefficients 2 and 3 can
separate three classes and with coefficients 1 together give a perfect
separation of four classes.

By comparing the results of Figs. 1 and 2 some interesting
observations were obtained. Although the information (energy) in
components 1 is less (76.3%) in PSCDE(T), it does a good job in sep-
arating the classes. Furthermore, instead of running the PSCDE for
8 different tuning parameters (324 Newton–Raphson iterations that
took 14.85 min to run) and then pick the optimal one that mini-
mizes the AIC, the proposed PSCDE(T) gives even better estimates
in one run (37 iterations in 1.39 min). Note that, in PSCDE(T) the
tuning parameter gets updated within the Newton–Raphson iter-
ations, which leads to obtaining the results almost 8 (number of
different tuning parameters used in PSCDE) times faster than PSCDE
procedure.

SCOP.3 (Hard Task): The results shown in Table 2 indicate that
TM-align, Dali, PSCDE and PSCDE(T) provided the clustering
results that are in total agreement with the gold standard of
SCOP.3 task. While the results of Yakusa and KDE are some-
how acceptable, the performances of NW and SW are poor for
this clustering task. Similar to the previous two tasks, the asso-
ciated dendrogram to SCOP.3 is presented in the online supple-
mentary material (Fig. S.6). Fig. S.6 also confirms that the first
two methods (NW and SW), which are motivated from pairwise
sequence alignment, produced unacceptable hierarchical clus-
tering results. While (i) Yakusa and KDE results are somehow

acceptable; (ii) TM-align and Dali have no mislabeling in this case;
but clearly PSCDE and PSCDE(T) have the longest vertical lines
among the respective dendrograms, indicating the highest degree
of difference (separation) between the branches.
SCOP.4 (Challenging Task): The results shown in Table 2 clearly
indicate that five of the approaches (NW, SW, Yakusa, Dali and
KDE) failed to produce acceptable results (NMI < 0.50 and
ARI ≤0.30), while PSCDE(T) and TM-align produced the exter-
nal measures (NMI and ARI) greater than 0.50. Fig. 3 provides
the dendrograms for all eight approaches and confirms that
TM-align and PSCDE(T) have the longest vertical lines among
the respective dendrograms with acceptable degree of separation
(compared with the other six approaches). It is worth to mention
that TM-align incorporates an optimal alignment of the whole
3D structures, while PSCDE(T) is only a summary statistics and
ignores many aspects of the protein structure.

4. Discussion

This paper develops an extension to a recent technique for collec-
tive estimation of multiple bivariate densities. The proposed method
develops a new set of bivariate spline functions, using a tensor prod-
uct approach, which can replace the bivariate B-spline functions
(based on triangulation) implemented in PSCDE. The construction of
the new bivariate basis function is simpler, more appealing, and can
be easily extended to handle cases with more than two dimensions.
While PSCDE handles the circular nature of the angular data with
some artificial constraints (that extend the notion of adjacent tri-
angles to the triangles in boundaries), the proposed method simply
uses the trigonometric spline functions, that are naturally periodic.
Another advantage of the new procedure is to speed up the process
by updating the smoothness parameter within the Newton–Raphson
iterations and avoid a grid search over the space of smoothing
parameter, k, which could be very expensive in time.

The estimated coefficients of the basis expansion based on
PSCDE(T) provide a low-dimensional representation of the densi-
ties that can be used for visualization and clustering the densities.
In general, the PSCDE(T) algorithm is faster, more appealing and
interpretable in comparison to the previous approach, PSCDE.

We have applied the proposed method to four protein structural
comparison tasks with different levels of difficulties. The results of
these tasks show that PSCDE(T) is a new competitive method com-
pared with existing approaches. Furthermore, the last two tasks
illustrate that the PSCDE(T) can improve the efficiency of the esti-
mated densities by borrowing strength across distributions while the
non-collective estimation method of KDE does not have such ability.
This improvement directly influenced the efficiency of clustering in
the last two harder tasks.

We also used this method in estimating the neighbor-dependent
Ramachandran distributions (the results are given in online supple-
mentary materials), and fed those estimates into Rosetta for loop
modeling application. The ultimate results showed that PSCDE(T) is
competitive with other similar methods and occasionally improve
the results for some hard cases. We also included, in our web
application tool, the corresponding input file that contains the 800
neighbor-dependent Ramachandran densities. This can be used by
the scientific community to test the quality and applicability of
PSCDE(T) approach in loop modeling or any other applications
that use the neighbor-dependent Ramachandran distributions (e.g.
backbone-dependent rotamer library [22, 23]).

In summary, since the angular density is only a summary statis-
tics and ignores many aspects of the protein structure, we do not
expect that it always gives the best results in an arbitrary dataset.
This new methodology can be used independently or as a supple-
ment to the existing methods.
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Appendix A. Supplementary data

A web application is available at “https://pscde-t.shinyapps.io/
PSCDE-T/” that can be used by the research community to reproduce
the results in this paper and/or estimate Ramachandran distributions
collectively, based on PSCDE(T), for any other related applications.

The online supplementary materials are available with this paper
at the Journal website at http://dx.doi.org/10.1016/j.csbj.2017.01.
011.
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