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ABSTRACT The overproduction and secretion of inositol (i.e., Opi2) phenotype is associated with defects
in regulation of phospholipid biosynthesis in yeast. Here we report a screen of the essential yeast gene set
using a conditional-expression library. This screen identified novel functions previously unknown to affect
phospholipid synthesis.
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Transcription of the phospholipid biosynthetic structural genes in
Saccharomyces cerevisiae is regulated by inositol and choline (Carman
and Henry 1999; Greenberg and Lopes 1996; Henry et al. 2012; Henry
and Patton-Vogt 1998; Jesch et al. 2005; Paltauf et al. 1992; Santiago
and Mamoun 2003). Gene expression is maximally repressed in the
presence of inositol and choline and derepressed when they are lim-
iting. This regulation requires several transcription factors that when
mutated display one of two phenotypes: inositol auxotrophy or over-
production and secretion of inositol (Opi2) (Carman and Han 2009;
Greenberg and Lopes 1996; Henry et al. 2012). Some of these mutants
were identified during the last three decades through traditional ge-
netic screens. However, we previously reported a genomic screen of
the viable yeast deletion set (VYDS) for Opi2 mutants that identified
91 mutants (Hancock et al. 2006). Here we report a screen of the
essential yeast gene set using a conditional-expression library
(Mnaimneh et al. 2004).

Well studied regulators of phospholipid biosynthetic genes include
the Ino2p:Ino4p activators, the Opi1p repressor, the Ume6p-Sin3p-
Rpd3p histone deacetylase complex (HDAC), the SAGA histone ace-

tyltransferase complex, the ISW2, INO80, SWI/SNF chromatin
remodeling complexes, andMot1p (Ambroziak andHenry 1994; Dasgupta
et al. 2005; Elkhaimi et al. 2000; Fazzio et al. 2001; Ford et al. 2008;
Jackson and Lopes 1996; Kadosh and Struhl 1997, 1998; Nikoloff
and Henry 1994; Rundlett et al. 1996, 1998; Shen et al. 2000; White
et al. 1991). Ino2p and Ino4p belong to a family of basic helix-loop-
helix regulatory proteins, which form a heterodimer that binds to
a UASINO sequence to activate transcription of most phospholipid
biosynthetic genes (e.g., INO1, CHO2, and OPI3 in Figure 1) (Jesch
et al. 2005; Santiago and Mamoun 2003). The Ume6p-Sin3p-Rpd3p
HDAC, the ISW2 and INO80 chromatin remodeling complexes, and
Mot1p are global regulators that play a negative role in phospholipid
biosynthetic gene expression (Dasgupta et al. 2005; Elkhaimi et al.
2000; Fazzio et al. 2001; Grigat et al. 2012; Jackson and Lopes 1996;
Kadosh and Struhl 1997, 1998; Rundlett et al. 1996, 1998; Shen et al.
2000). Opi1p was the first, and to date, the only repressor found that
specifically regulates the phospholipid biosynthetic pathway.

The OPI1 locus was first identified in a screen for mutants that
overproduce and excrete inositol into the medium in the absence of
inositol (Opi2 phenotype) (Greenberg et al. 1982). The original opi1
mutant and a small set of similar mutants identified over the next two
decades showed that the Opi2 phenotype correlated with a defect in
repression of the INO1 gene (Elkhaimi et al. 2000; Hirsch and Henry
1986; Hudak et al. 1994), which is required for inositol synthesis de
novo (Figure 1) (Culbertson and Henry 1975). However, most of the
91 Opi2 mutants identified in a more recent screen of the VYDS did
not affect inositol-mediated repression of an INO1-lacZ reporter
(Hancock et al. 2006).

Our current understanding of the mechanism for inositol-
mediated repression of phospholipid biosynthetic gene expression is
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that it requires translocation of Opi1p from the endoplasmic reticu-
lum (ER) to the nucleus. Repression in response to inositol is actually
mediated by the level of phosphatidic acid (PA) (Figure 1). In the
absence of inositol, PA levels are elevated and Opi1p binds PA (Loewen
et al. 2004) and is tethered in the ER by Scs2p, an integral membrane
protein (Gavin et al. 2002; Kagiwada and Zen 2003; Loewen et al.
2003, 2004; Loewen and Levine 2005). When inositol is added,
phosphatidylinositol synthesis is increased, causing a decrease in
PA levels, and Opi1p is released from the ER. Opi1p rapidly trans-
locates to the nucleus, where it interacts with the Ino2p activator and
recruits several HDACs to repress transcription. (Gardenour et al.
2004; Grigat et al. 2012; Heyken et al. 2005; Wagner et al. 2001). The
addition of choline by itself has little effect on PA levels; however, in
combination with inositol, choline further reduces PA levels, result-
ing in additional repression (Henry and Patton-Vogt 1998). Not
surprisingly, blocks in de novo phosphatidylcholine (PC) biosynthe-
sis that elevate PA levels also yield an Opi2 phenotype (Klig et al.
1988; McGraw and Henry 1989; Shen and Dowhan 1996; Summers
et al. 1988). Thus, cds1, cho2, and opi3 mutants all have the Opi2

phenotype (Figure 1). The Opi2 phenotype of these mutants is condi-
tional and it can be suppressed by adding choline (i.e., C) to the me-
dium. Choline restores PC synthesis through the Kennedy pathway,
thereby alleviating the accumulation of PA caused by the block in the
de novo PC pathway (Figure 1) (Henry and Patton-Vogt 1998).

Consistent with the role of PA as the signal, we reported that
reduced expression of the PIS1 gene (Figure 1) yields an Opi2 phe-
notype (Jani and Lopes 2009). Because PIS1 is an essential gene, we
created a strain harboring a GAL1-PIS1 gene that allowed us to reduce
PIS1 gene expression by growth in glucose or low galactose concen-
trations (Jani and Lopes 2009). These growth conditions reduced
phosphatidylinositol levels and PA would therefore increase explain-
ing the Opi2 phenotype (Jani and Lopes 2009). These results are
consistent with another study showing that GFP-Opi1p translocation
into the nucleus is slow and impaired in a pis1 partial function mutant
(Loewen et al. 2004).

Many studies have shown that screening the VYDS (Giaever et al.
2002; Winzeler et al. 1999) and an essential yeast mutant gene set
(Mnaimneh et al. 2004) can yield valuable insight into well-studied
processes such as regulation in response to phosphate concentration
(Huang and O’Shea 2005). We previously reported the results of
a VYDS screen for the Opi2 phenotype to further understand repres-

sion of phospholipid biosynthesis (Hancock et al. 2006). That screen
identified all seven of the Opi2 mutants that had been identified by
several labs over the previous 30 years but also identified 84 new Opi2

mutants. Highly represented in this mutant set were the components
of the Rpd3p HDAC complex and five of the six nonessential com-
ponents of NuA4 KAT complex (EAF1, EAF3, EAF5, EAF7, and
YAF9) (Hancock et al. 2006). The screen also identified the reg1
mutant (Hancock et al. 2006), which was known to regulate gene
expression in response to changes in glucose. Early hypotheses sug-
gested a coordination of glucose use and phospholipid synthesis; how-
ever, the mechanism for this coordination was unknown. More
recently, it was found that the Opi2 phenotype of a reg1 mutant is
actually due to the altered protonation status of PA, as a function of
cellular pH, which affects Opi1 translocation to the nucleus (Young
et al. 2010).

It is well established that phospholipid biosynthesis is coordinated
with the unfolded protein response (UPR) and that Opi1p plays a role
in this coordination (Betz et al. 2002; Cox et al. 1997; Jesch et al.
2005). The UPR is initiated in the ER in response to accumulation of
unfolded proteins (Schröder and Kaufman 2005) and is also induced
by depleting inositol (Betz et al. 2002; Cox et al. 1997). Upon UPR
induction, Ire1p is activated initiating splicing of HAC1 mRNA
(Sidrauski and Walter 1997). The spliced HAC1 transcript produces
the Hac1p basic leucine zipper transcription factor that binds to the
UPR element of genes such as KAR2 but also regulates UASINO con-
taining promoters by counteracting the function of Opi1p (Cox and
Walter 1996). Thus, it was predictable that the VYDS Opi2 screen
identified genes that are known to affect the UPR (L. C. Hancock and
J. M. Lopes, unpublished results). Screening the VYDS for the Opi2

phenotype provided a wealth of information about other functions
that affect regulation of phospholipid synthesis.

MATERIALS AND METHODS

Strains and growth conditions
This study used the BY4742 (MATa, his3D1, leu2D0, lys2D0, ura3D1)
wild-type and doxycycline (Dox) titratable strains (Giaever et al. 2002;
Mnaimneh et al. 2004; Winzeler et al. 1999). The BRS1005 tester strain
is a diploid homozygous for the ino1-13 and ade1 alleles (Hancock et al.
2006). Yeast cultures were grown at 30� in complete synthetic me-
dium (Kelly and Greenberg 1990) containing 2% glucose (w/v) but
lacking inositol and choline (I-C-). For the Opi2 screen, agarose was
reduced to 1.2%, and Dox was added to concentrations noted in the
sections to follow.

RESULTS AND DISCUSSION

Screen of an essential yeast gene library driven by
a titratable promoter identifies 122 Opi2 mutants
To date there had been no screen of the essential genes for defects in
phospholipid synthesis, and it is clear that the essential gene set and
VYDS are not identical with respect to the biological processes they
affect (Winzeler et al. 1999). Motivated by this and the success of the
VYDS Opi2 screen, we conducted a screen of an essential gene library
driven by a titratable promoter (Mnaimneh et al. 2004). The collection
we used contains 838 essential yeast genes driven by a Tet-regulated
promoter that is shut off by the addition of Dox. We tested a range of
Dox concentrations because different strains have been shown to have
differing growth sensitivities (Mnaimneh et al. 2004). Our screen of
the VYDS for the Opi2 phenotype used a pinning strategy (Hancock
et al. 2006), but this strategy did not work for the essential gene

Figure 1 Abridged yeast phospholipid biosynthetic de novo and Ken-
nedy pathways. Genes encoding biosynthetic enzymes are italicized
and boxed. Those genes noted in green and orange are nonessential
and essential (respectively) and yield an Opi2 phenotype when mu-
tated. PA, phosphatidic acid; CDP-DAG, CDP-diacylglycerol; PI, phos-
phatidylinositol; PC, phosphatidylcholine; and C, choline
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collection. Thus, we used a more laborious but also more sensitive
screening assay (Figure 2A) (McGee et al. 1994). Briefly, the Tet-
driven strain was streaked at the top of plates containing various
concentrations of Dox (0, 5, and 10 mg/mL), and lacking inositol
and allowed to grow for 122 d. A tester strain was then streaked
perpendicular to the Tet-driven strain. The tester strain is a diploid
homozygous for ino1 and ade1 mutants (Swede et al. 1992). This
strain does not normally grow on media lacking inositol because of
the ino1 mutation. Thus, the Opi2 phenotype is observed if the Tet-
driven strain secretes inositol into the growth medium allowing the
tester to grow. As inositol levels increase in the media, the tester grows
more robustly as a red streak (ade1 phenotype). The tester strain was
streaked 3x on each plate and each Tet-driven strain was analyzed in
duplicate. The growth of the tester was scored as 0 (no growth), 1, 2,
or 3 for progressively varying growth phenotypes. Three researchers
independently scored each plate. The screen yielded 122 mutants that
all three researchers agreed had a positive test in the two independent
assays (Figure 2B and Supporting Information, Table S1). As a control,
we included the BY4742 strain (wild type) and an opi1 mutant, which
had an Opi2 phenotype under all [Dox]. Sometimes the tester will
show a papillar pattern rather than a uniform growth pattern (Figure
2A). These are not revertants or a result of rare mating since the tester
is homozygous diploid. We have observed this pattern previously and
shown that it correlates with a defect in transcription regulation
(Elkhaimi et al. 2000; Hancock et al. 2006).

Most of the mutant strains did not display an Opi2 phenotype in
the absence of Dox but did have the phenotype with increasing [Dox]
(Figure 2B). In a few cases the Opi2 phenotype was observed at lower
[Dox] but not at higher [Dox] (top of Figure 2B). This was because the
mutant strains did not grow at the higher [Dox]. In a couple of cases
the mutant strain yielded an Opi2 phenotype in the absence of Dox
and did not grow in the presence of Dox (bottom of Figure 2B). These
may be false positives or they may result from reduced expression
from the Tet promoter (in the absence of Dox) relative to the native
promoter and lethality when expression is further reduced by the
addition of Dox. As expected, the screen identified the cds1 mutant
which is the only essential gene previously shown to yield an Opi2

phenotype (the aforementioned pis1 allele was not present in the
collection) (Klig et al. 1988; Shen and Dowhan 1996). The screen also
identified five mutants that are duplicated in the collection (use1, cks1,
rpn11, sec4, and vrg4). These results suggest that the screen was suc-
cessful in identifying legitimate Opi2 mutants. We should also note
that four of the Opi2 mutants (YNG2, HSC82, KIC1, and SMB1) are
actually not classified as essential in the Saccharomyces Genome Data-
base (http://www.yeastgenome.org/). Regardless of this fact, down-
regulation did yield an Opi2 phenotype so these mutants are retained
in our dataset.

The essential gene and VYDS screens identified mutants
in different sets of biological processes
We predicted that the screen might reveal novel processes compared
to the VYDS screen. To test this the mutants were grouped based on
biological processes using the SGD Yeast Go Slim Mapper software
(http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl). The
results clearly showed that the two screens yielded different informa-
tion with respect to biological processes (Figure 3). The essential
mutant collection yielded significantly more mutants affecting
RNA metabolic processes, the cell cycle, and cell division whereas
the VYDS screen identified more mutants in transport, cellular
localization, transcription, and response to stimulus.

Consistent with the results from the VYDS screen and the
coordination of phospholipid biosynthesis with the UPR, the current
screen identified several mutants that affect protein modifications
(Figure 4 and Table S1). These include several genes that glycosylate
proteins in the ER (ALG2, ALG13, OST2, PMI40, RFT1, and SEC53).
The screen also identified several genes required for synthesis of gly-
cosylphosphatidylinositol anchors (GPI12, GPI12, and PGA1) and for
sphingolipid synthesis (LCB1, LCB2, and TSC11) (Figure 4 and Table
S1). This is the first report linking these two processes to phospholipid
synthesis.

Expression of the INO1 gene is affected by a mechanism that
involves both gene looping and association of the INO1 promoter
with the nuclear pore complex (Brickner 2010; Kerr and Corbett
2010). Interestingly, mutants that affect both gene looping and nuclear
pore complex were identified in the Opi2 mutant screen (Figure 4 and
Table S1). Both the pta1 and ssu72 mutants were identified in the
essential gene screen. These proteins have been previously shown to
be required for gene looping (promoter-terminator) of the INO1 gene
(Ansari and Hampsey 2005). It is not immediately obvious why they
should also have an Opi2 phenotype but this does provide the first
phenotype for gene looping. A significant number of nuclear pore
complex mutants (Aitchison and Rout 2012) were identified in the
two screens. The VYDS screen identified NUP84 whereas the essential
gene screen identified NIC96, NUP1, NUP49, NUP82, NUP85, and
NUP145. On activation, the INO1 promoter is recruited to the nuclear

Figure 2 Essential Opi2 mutants. (A) Representative Opi2 phenotype
for the gpi16 (0,3,3), sec4 (0,1,2), and ypp1 (0,0,1) mutants grown
under three Dox concentrations. (B) Mutants were clustered with re-
spect to phenotype severity using Cluster 3.0 (http://bonsai.hgc.jp/
~mdehoon/software/cluster/software.htm) and displayed using Java
Treeview (Saldanha 2004).
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pore complex via cis sequences called DNA Zip Codes (GRS1 and II)
within the INO1 promoter and the adjoining SNA3 ORF (Ahmed
et al. 2010; Light et al. 2010). Upon transfer to repressing conditions,

the INO1 promoter remains associated with the nuclear periphery for
up to three to four generations (Brickner et al. 2007). This association
is a mechanism for transcriptional memory of recently repressed

Figure 3 Radar chart comparing percentage of Opi2 mutants in different biological processes for the VYDS (blue) and essential (red) mutant
collections. Each point on the graph represents the percentage of mutants within each of the Opi2 mutant sets in each functional category.

Figure 4 Opi2 mutants cluster by functional categories.
Shown are those cases in which a significant set of
mutants affected a biological function.
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INO1 transcription (Brickner et al. 2007; Light et al. 2010). This
memory requires an 11-bp sequence, the memory recruitment se-
quence, within the INO1 promoter (Light et al. 2010). Importantly,
both recruitment to the periphery and transcriptional memory involve
distinct mechanisms with different cis elements and nuclear pore
components, including the Nup1p, Nup84p, Nup145p, and Nic96p
subunits (Light et al. 2010). Thus, identification of nuclear pore com-
plex mutants in the Opi2 screens is consistent with its role in recruit-
ing and regulating the INO1 promoter.

The essential gene Opi2 screen identified several interesting
mutants in biological processes that were not identified in the VYDS
screen. There was an overrepresentation of mutants in the ubiquitin-
mediated degradation pathway (Figure 4 and Table S1). This included
the UBA1 and RSP5 genes that encode E1 and E3 ubiquitinating
enzymes (Kerscher et al. 2006). Interestingly, an rsp5mutant has been
shown to affect expression of an INO1-lacZ reporter under derepress-
ing conditions (Kaliszewski et al. 2006). The screen also identified
several genes required for proteasome function (Forster et al. 2010;
Tomko and Hochstrasser 2011), including the PRE4 gene that is re-
quired for assembly of the 20S proteolytic core particle; the RPN11
gene that encodes a deubiquitylase present in the lid of the 19S reg-
ulatory particle (Guterman and Glickman 2004); and the RPT2 and
RPT4 genes that are required for unfolding and translocating the
protein substrates as well as opening of the proteasome gate (RPT2)
(Forster et al. 2010; Tomko and Hochstrasser 2011). Another protein
modification pathway that was illuminated by the screen is that of an
ubiquitin-like modification, SUMO. The screen identified both E1
(AOS1) and E2 (UBC9) encoding genes (Figure 4 and Table S1)
(Johnson 2004; Kerscher et al. 2006). This finding is consistent with
recent published work showing that a mutation in a deubiquitylation
enzyme (ULP2) affects INO1 expression under derepressing condi-
tions by altering the sumoylation status of Scs2p, which normally
retains Opi1p in the ER under derepressing conditions (Felberbaum
et al. 2012).

Both Opi2 screens identified subunits of the NuA4
HAT complex
We previously reported that the VYDS screen identified five of the six
nonessential subunits of the NuA4 KAT complex (Hancock et al.
2006). The essential collection screen also identified three of the six
essential subunits (ARP4, ESA1, and SWC4) (Note: YNG2 is included
in the collection but is not essential.) (Figure 4). One of the essential
subunits (ACT1) was not present in the collection. Our screen iden-
tified ESA1, which encodes the KAT activity and contains a chromo-
domain that interacts with methylated histones as well as YNG2,
which contains a PHD domain that also interacts with methylated
histones (Schulze et al. 2010). Thus, both screens collectively identified
nine of the possible 12 NuA4 subunits.

It is possible that the proteasome and NuA4 complexes may
regulate INO1 gene expression via a direct role since it has been shown
that a 19S proteasome subcomplex works with NuA4 to regulate ex-
pression of ribosomal protein genes (Uprety et al. 2012). However, the
finding that mutations in the 20S complex and the ubiquitin modifi-
cation pathway yield an Opi2 phenotype suggests that protein degra-
dation is the more likely explanation for the phenotype. With respect
to the NuA4 complex it is interesting that it functions in activation of
gene expression while mutants in other transcription factors that also
yield the Opi2 phenotype (e.g., opi1, ume6, sin3, and rpd3) function in
repression (Doyon and Cote 2004; Hancock et al. 2006; Schulze et al.
2010). In the case of the nonessential Opi2 mutants, the mutants

yielded elevated expression of the INO1 target gene under both repres-
sing and derepressing growth conditions, that is, they had a defect in
repression (Hancock et al. 2006). A trivial explanation for this would
be that NuA4 affects repression of INO1 indirectly by controlling the
activation of the OPI1 repressor gene. However, we found that these
mutants did not affect activation of the OPI1 gene (Hancock et al.
2006). Moreover, there is evidence that NuA4 binds the INO1 pro-
moter (Konarzewska et al. 2012). It is also important to note that some
of the subunits of the NuA4 complex are shared with the SWR-C
complex that is responsible for loading the modified H2A.Z into nucle-
osomes and H2A.Z is involved in regulation of INO1 (Lu et al. 2009).
However, none of the SWR-C2specific components were identified in
our screen suggesting that the Opi2 phenotype is specific to the NuA4
complex. A more likely explanation is that NuA4 may be acetylating
a non-histone regulatory protein that controls INO1 expression. Con-
sistent with this, an in vitro protein acetylation microarray identified
many non-histone targets of NuA4 (Lin et al. 2009). Along this line it
is important that another HAT, Gcn5p, acetylates the Ume6p regula-
tory protein, which targets it for degradation via the anaphase-promoting
complex/cyclosome ubiquitin ligase (Mallory et al. 2007, 2012). This
occurs as cells are initiating the meiotic program. Consistent with
this model the essential gene screen did identify the CDC27, which is
a component of the anaphase-promoting complex/cyclosome (Figure
4 and Table S1). Although INO1 is not a meiotic gene, it is regulated
by Ume6p and its associated Sin3p/Rpd3 complex (Eiznhamer et al.
2001; Elkhaimi et al. 2000; Hudak et al. 1994; Jackson and Lopes 1996;
Kaadige and Lopes 2003; Kadosh and Struhl 1997, 1998). Thus, NuA4
could be regulating INO1 either through Opi1p or Ume6p via a mech-
anism that includes protein degradation. Future experiments will address
this possibility.
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