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DDX3 localizes to the centrosome 
and prevents multipolar mitosis by 
epigenetically and translationally 
modulating p53 expression
Wei-Ju Chen1, Wei-Ting Wang1,2, Tsung-Yuan Tsai1,2, Hao-Kang Li1,2 & Yan-Hwa Wu Lee1,2

The DEAD-box RNA helicase DDX3 plays divergent roles in tumorigenesis, however, its function in 
mitosis is unclear. Immunofluorescence indicated that DDX3 localized to centrosome throughout the 
cell cycle and colocalized with centrosome-associated p53 during mitosis in HCT116 and U2OS cells. 
DDX3 depletion promoted chromosome misalignment, segregation defects and multipolar mitosis, 
eventually leading to G2/M delay and cell death. DDX3 prevented multipolar mitosis by inactivation 
and coalescence of supernumerary centrosomes. DDX3 silencing suppressed Ser15 phosphorylation 
of p53 which is required for p53 centrosomal localization. Additionally, knockout of p53 dramatically 
diminished the association of DDX3 with centrosome, which was rescued by overexpression of the 
centrosomal targeting-defective p53 S15A mutant, indicating that centrosomal localization of DDX3 
is p53 dependent but not through centrosomal location of p53. Furthermore, DDX3 knockdown 
suppressed p53 transcription through activation of DNA methyltransferases (DNMTs) along with 
hypermethylation of p53 promoter and promoting the binding of repressive histone marks to p53 
promoter. Moreover, DDX3 modulated p53 mRNA translation. Taken together, our study suggests 
that DDX3 regulates epigenetic transcriptional and translational activation of p53 and colocalizes with 
p53 at centrosome during mitosis to ensure proper mitotic progression and genome stability, which 
supports the tumor-suppressive role of DDX3.

Centrosome amplification and aneuploidy are hallmarks of cancer cells. In general, each cell has a single cen-
trosome which duplicates once in S phase. During mitosis, the duplicated centrosomes separate and form the 
two poles of the mitotic spindle. Chromosomes are then captured by the mitotic spindles and equally segregated 
into two daughter cells1. Centrosome over-duplication or cytokinesis failure results in supernumerary centro-
somes. By clustering or inactivating the excess centrosomes, cells with multiple copies of centrosomes satisfy 
pseudo-bipolar mitosis and exhibit mild aneuploidy. Otherwise, cells undergo multipolar mitosis, which leads 
to severe aneuploidy and poor survival2, 3. Survival of very few daughter cells that obtain an appropriate chromo-
some complement thereby contribute to clonal evolution of aneuploid cancer cells, which is linked to progressive 
development of invasive high-grade tumors4, 5. Therefore, the proper control of centrosome number and activity 
is essential for promoting faithful chromosome inheritance and genome stability6.

P53, a well-known tumor suppressor gene, is critical for centrosome duplication and regulation. 
Phosphorylation of p53 at serine 15 directs p53 to centrosome where p53 exerts mitotic checkpoint surveillance 
during mitosis. Serine 15 phosphorylation is essential for centrosomal p53-mediated mitotic checkpoint surveil-
lance during mitosis7, 8. The centrosomally localized p53 also participates in the regulation of centrosome duplica-
tion in addition to its transactivation-dependent regulation9. Loss of p53 causes centrosome amplification which 
results in multiple mitotic spindle poles and aberrant chromosome segregation10. Moreover, in cleavage failure 
and centrosome over-duplicated tetraploid cells, p53 abnormality impairs clustering of centrosomes and causes 
multipolar mitosis along with a high degree of aneuploidy11–13. Therefore, p53 acts as the guardian of the genome 
by regulating centrosome for accurate mitotic progression and actively preserving genome stability.
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Figure 1.  DDX3 localizes to the centrosome throughout the cell cycle and associates with p53 at centrosome 
during anaphase and telophase. HCT116 cells were immunostained with anti-DDX3 (red), anti-γ-tubulin 
(green), anti-p53 (blue) antibodies and DAPI (gray) during interphase (a-single centrosome; b-duplicated 
centrosomes), mitosis (c-metaphase; d-anaphase; e-telophase) and cytokinesis (f). Insets show higher 
magnifications of the centrosome (interphase, mitosis) and midbody (cytokinesis), respectively. Representative 
confocal images show colocalization of DDX3 with the centrosome in interphase and mitotic cells, and 
association of p53 with DDX3 and centrosome at anaphase and telophase. Additionally, DDX3 is concentrated 
at the midbody during cytokinesis. Scale bar = 5 μm.
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Figure 2.  Downregulation of DDX3 results in mitotic abnormalities, G2/M phase transition delay and 
increased cell death. (a) Mitotic-enriched cells were immunostained with anti-DDX3 (red), anti-α-tubulin 
(green) antibodies and DAPI (blue). Representative confocal images show the control mitotic cells with normal 
bipolar spindles (NB) and balanced chromosome segregation in metaphase (NB-M), anaphase (NB-A) and 
telophase (NB-T) while DDX3 knockdown promoted the abnormal mitosis such as chromosome misalignment 
(MisA) (arrow), chromosome segregation defect (arrowhead), lagging chromosome (Lag) and chromosome 
bridge (Bri) and multipolar mitosis (MuP-M, A, T). Scale bar = 5 μm. The percentage of aberrant mitosis in 
the control and DDX3-knockdown cells were analyzed. Data are shown as the average value ± S.D. calculated 
from three independent experiments. **P < 0.01; ***P < 0.001. (n), the number of cells analyzed. (b) (c). 
Histogram of cell cycle phase distribution in the control and DDX3-knockdown cells. DDX3 knockdown 
induced prolonged accumulation in G2/M phase at 12–16 hr after release from G1 (b) or S phase block (c). 
Cells were synchronized at G1 (b) or S (c) phase at 24 hr post-transfection and harvested at indicated time 
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The expression of p53 is tightly controlled through a variety of mechanisms, including transcriptional, epige-
netic and translational regulations14. The p53 promoter is regulated by the interplay of a number of transcription 
factors, including p53 itself15. Moreover, p53 promoter has a CTCF binding site which serves as a barrier against 
the binding of repressive histone marks, such as H3K9me3, H4K20me3 and H3K27me316, 17. Furthermore, by 
promoting auto-PARylation of PARP1 which in turn inhibits the DNA methyltransferase activity of DNMT1 via 
the ADP-ribose polymers, CTCF preserves the methylation-free status of CTCF-target sites18. The de novo DNA 
methyltransferase 3 A and 3B also participate in p53 gene regulation. DNMT3A suppresses the transcription of 
p53-target genes through interaction with p5319, while DNMT3B has been reported to mediate p53 DNA methyl-
ation20, 21. The p53 mRNA contains internal ribosome entry site (IRES) in the 5′UTR. The 3′UTR base pairs with 
the 5′UTR to form a steady RNA structure that is crucial for translational regulation of p53 mRNA22–24.

The DEAD-box RNA helicase DDX3 is involved in multiple biological pathways including immune response, 
viral replication, gene regulation and tumorigenesis25, 26. However, the role of DDX3 in tumorigenesis is con-
troversial27. Interestingly, DDX3 positively or negatively regulates cell cycle progression and cell motility in a 
cell-type-specific manner28–36. Several studies indicate that low expression of DDX3 is closely related to tumor 
malignancy and poor clinical outcomes30–32, 35, 36, suggesting a tumor suppressor role of DDX3. Notably, DDX3 
interacts with p53 and stimulates p53 accumulation37. Additionally, p53 positively regulates DDX336. The inter-
play between DDX3 and the tumor suppressor p53 also supports the tumor suppressive role of DDX3. Moreover, 
DDX3 is crucial for cell cycle G2/M progression in Drosophila38. Loss of DDX3 causes severe DNA damage along 
with cell growth retardation and also promotes apoptosis during mouse development39, 40, inferring that DDX3 
plays a role in mitosis and is essential for mitotic genome stability. Coincidently, DDX3 has been reported to pro-
mote chromosome condensation for accurate chromosome segregation during anaphase41.

In this study, we found that DDX3 localized to centrosome and colocalized with centrosome-associated p53 
during mitosis in p53 wild-type HCT116 and U2OS cells. DDX3 knockdown suppressed Ser15 phosphorylation 
of p53 and centrosomal targeting of p53. p53 itself is also required for centrosomal targeting of DDX3, which 
is independent of the centrosomal localization of p53. Depletion of DDX3 caused high incidence of multipo-
lar mitosis by impaired clustering and inactivation of extra centrosomes. Reintroduction of DDX3 reduced 
multipolar mitosis and cell death in the DDX3-knockdown cells. Furthermore, DDX3 positively modulated p53 
expression epigenetically and translationally. Our results demonstrate that DDX3 controls centrosome activity for 
accurate mitotic progression and the maintenance of genome stability through regulation of p53, thus providing 
new insight into the tumor-suppressive activity of DDX3.

Results
DDX3 localizes to the centrosome throughout the cell cycle and colocalizes with centro-
some-associated p53 during anaphase and telophase.  HCT116 is a p53 wild-type human colorectal 
cancer cell line that exhibits a near diploid phenotype42. Centrosome is the key regulator of mitosis and γ-tubulin 
is a centrosome marker. To explore the role of DDX3 in mitosis, we first investigated the subcellular localization 
of DDX3 through the cell cycle in HCT116 cells by immunofluorescence analysis with anti-DDX3 and anti-γ-tu-
bulin antibodies. In interphase cells, DDX3 was concentrated and closely associated with both the single and 
newly duplicated centrosomes (Fig. 1a,b), while located primarily at the proximal end of the separate duplicated 
centrosomes. Notably, DDX3 was associated with the mitotic centrosomes and spread around the centrosome 
during metaphase, anaphase and telophase (Fig. 1c–e). Furthermore, in view of the centrosomal localization of 
p53 during mitosis7, 8 and that DDX3 interacts with p5337, we examined if DDX3 colocalizes with p53 at centro-
some by immunofluorescence with anti-p53 antibody. DDX3 associated with p53 at centrosome during anaphase 
(Fig. 1d) and telophase (Fig. 1e). In cytokinesis, γ-tubulin has been reported to participate in the formation of 
midbody43, 44. We also found that DDX3 was condensed and overlapped with γ-tubulin at the midbody during 
cytokinesis (Fig. 1f). These observations demonstrate that DDX3 localizes to centrosome throughout the cell 
cycle and associates with p53 at centrosome during mitosis. Similar conclusion was also obtained in another p53 
wild-type U2OS cells (Supplementary Fig. S1).

Downregulation of DDX3 results in mitotic abnormalities, G2/M phase transition delay and 
increased cell death.  To further examine the function of DDX3 in mitotic progression, control and 
DDX3-knockdown HCT116 cells were synchronized at mitosis and analyzed by immunofluorescence with 
anti-α-tubulin, the mitotic spindle marker and anti-DDX3 antibodies. Depletion of DDX3 caused an increase in 
aberrant chromosome segregation such as lagging and chromosome bridge from 6.9% to 16.4% and 9% to 17.8%, 
respectively, as compared to the control (Fig. 2a), which is consistent with the previous study41. Importantly, 
downregulation of DDX3 markedly enhanced the incidence of chromosome misalignment and multipolar 

points after release. Harvested cells were stained with propidium iodide and analyzed by flow cytometry. Results 
are representative data of two independent experiments. (d) Western blot analysis showing the expression 
of γH2AX, Ser345-phosphorylated CHK1, CHK1 kinase and Tyr15-phosphorylated CDK1 in the control and 
DDX3-knockdown cells. Depletion of DDX3 caused an increase of γH2AX, a double strand DNA break marker, 
and activation of CHK1 kinase, which led to accumulation of phosphorylated CDK1 and prevented G2/M 
transition. Original images of western blots were presented in Supplementary Fig. S3. (e) DDX3 knockdown 
increased the distribution of cells in the sub-G1 peak. The proportions of sub-G1 phase population of the 
control and DDX3-knockdown cells are shown as the average value ± S.D. calculated from three independent 
experiments. **P < 0.01.
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Figure 3.  DDX3 specifically prevents multipolar mitosis by clustering or inactivating extra centrosomes. (a) 
Representative confocal images showing bipolar and multipolar mitosis. Cells with more than two centrosomes 
can undergo multipolar mitosis or bipolar mitosis through inactivation (arrowheads) or coalescence (arrow) of 
the extra centrosomes. Cells were immunostained with γ-tubulin (green) and DNA (blue). Images are shown 
as the maximum projections of confocal Z stacks. Scale bar = 5 μm. (b) Depletion of DDX3 impaired the 
centrosome inactivation/coalescence and promoted multipolar mitosis in HCT116 cells. Confocal images of 
control or DDX3-knockdown mitotic cells classified as normal bipolar mitosis (N), pseudo-bipolar mitosis by 
centrosome inactivation/clustering (I/C) or multipolar mitosis (M). Each typical mitotic cell is shown at higher 
magnification in the right column. Cells were immunostained with DDX3 (red), γ-tubulin (green) and DNA 
(blue). Images are shown as the maximum projections of confocal Z stacks. Scale bar = 5 μm. The proportions of 
bipolar mitosis (two centrosomes), pseudo-bipolar mitosis (more than two centrosomes) and multipolar mitosis 
in the control and DDX3-knockdown cells were statistically analyzed (right panel). Data are shown as average 
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mitosis from 10% to 16.1% and 10.8% to 20.3%, respectively, as compared to the control (Fig. 2a), which results 
from dysfunction of supernumerary centrosomes in cancer cells.

In view that mitotic cell containing supernumerary centrosomes or other defects delays mitosis45, we exam-
ined the cell cycle progression by live imaging of HCT116 cells expressing GFP-H2B or mCherry-alpha-tubulin 
(Supplementary Fig. S2a,b). Knockdown of DDX3 induced multipolar mitosis and prolonged the progression 
of mitosis to more than 120 minutes from metaphase to separation of daughter chromosomes (Supplementary 
Fig. S2a) or to cytokinesis (Supplementary Fig. S2b) while the duration of mitosis was less than 60 minutes in 
the control. To further assess the mitotic delay induced by DDX3 depletion, control and DDX3-knockdown cells 
were collected every 4 hours for up to 16 hours after release from G1 or S phase synchronization. Only 22% of 
control cells remained in the G2/M phase while 47% of DDX3-knockdown cells were still trapped at G2/M phase 
16 hours after release from G1 arrest (Fig. 2b). Similarly, 21% of control cells remained in the G2/M phase while 
34% of DDX3-knockdown cells were still trapped at G2/M phase 16 hours after release from S block (Fig. 2c). 
Therefore, our results indicate that knockdown of DDX3 delays the G2/M transition. γH2AX is a marker for DNA 
double strand breaks. Ser345-phosphorylated CHK1 and Tyr15-phosphorylated CDC2 are negative regulators of 
G2/M transition and are activated in response to DNA damage46. To further confirm the critical roles of DDX3 in 
mitosis and G2/M transition, the expression of γH2AX, Ser345-phosphorylated CHK1 and Tyr15-phosphorylated 
CDC2 in control and DDX3 knockdown cells were examined. Knockdown of DDX3 increased γH2AX expres-
sion to 1.48-fold, indicating that knockdown of DDX3 increases DNA damage. Moreover, knockdown of DDX3 
induced a 3.83-fold activation of phosphorylation of CHK1 at Ser345 and also caused a 2.4-fold accumulation of 
Tyr15-phosphorylated CDC2 (Fig. 2d), which confirms that depletion of DDX3 results in G2/M phase arrest.

Since severe DNA damage elicits cell death to eliminate damaged cell47, we investigated the sub-G1 popula-
tion of the control and DDX3-knockdown cells. Downregulation of DDX3 resulted in a marked increase in the 
sub-G1 peak from 10% to 19% as compared to the control (Fig. 2e). Moreover, knockdown of DDX3 reduced cell 
proliferation rate as compared to the control (Supplementary Fig. S2d). Taken together, these results suggest that 
knockdown of DDX3 causes mitotic defects and DNA damage, leading to G2/M delay and cell death.

Downregulation of DDX3 leads to multipolar mitosis by impairing centrosome inactivation 
and clustering.  To get insights into how depletion of DDX3 promoted multipolar mitosis, mitotic cells were 
characterized as normal bipolar mitosis with two centrosomes, pseudo-bipolar mitosis by inactivation or coales-
cence of excess centrosomes, or multipolar mitosis by immunostaining with anti-γ-tubulin antibody (Fig. 3a). 
Knockdown of DDX3 significantly reduced the pseudo-bipolar mitosis (from 30.2% to 12.7%) and increased 
the multipolar mitosis by 17% (from 29.9% to 47.1%) as compared to the control (Fig. 3b). Reintroduction of 
DDX3 in DDX3-knockdown cells rescued the percentage of pseudo-bipolar mitosis (from 15.9% to 32.6%) and 
reduced the multipolar mitosis by 13% (from 43.5% to 30.5%) as compared with knockdown of DDX3 (Fig. 3c). 
Furthermore, live cell imaging reveals that knockdown of DDX3 increased the proportion of multipolar mitosis 
from 26% to 59% and also enhanced cell death from 9% to 35%, as compared to the control (Supplementary 
Fig. S2c). Reintroduction of DDX3 in DDX3-knockdown cells reduced the incidence of multipolar mitosis and 
cell death to 22% and 8%, respectively. These results demonstrate that DDX3 specifically suppresses multipolar 
mitosis by inactivation or coalescence of excess centrosomes and prevents cell death. Since DDX3 associates with 
p53 at centrosome (Fig. 1d,e), and p53 has been reported to be essential for centrosome clustering and preventing 
multipolar mitosis11–13, we examined whether DDX3 prevents multipolar mitosis via p53. DDX3 was depleted in 
p53−/− HCT116 cells and the mitotic cells were analyzed by immunofluorescence with anti-γ-tubulin antibody. 
Similar proportions of mitotic cells in the control and DDX3-knockdown p53−/− HCT116 cells were detected 
(38.7–39.1% with bipolar mitosis, 19.5–18.0% with pseudo-bipolar mitosis and 41.8–43.0% with multipolar mito-
sis) (Fig. 4a). However, reintroduction of p53 elicited no effect on the multipolar mitosis in the DDX3-knockdown 
HCT116 cells (36.1–37.7% with bipolar mitosis, 16.4–14.5% with pseudo-bipolar mitosis and 47.5–47.8% with 
multipolar mitosis) (Fig. 4b), demonstrating that reintroduction of p53 is insufficient to rescue the multipolar 
mitosis caused by depletion of DDX3.

Centrosomal localization of DDX3 requires p53 but is independent of the centrosomal local-
ization of p53.  Since DDX3 localizes to centrosome throughout the cell cycle and associates with p53 at 
centrosome (Fig. 1), we examined the interaction between DDX3, γ-tubulin and p53 by co-immunoprecipitation 
assay in HCT116 cell. γ-tubulin was co-immunoprecipitated with DDX3 in vivo (Fig. 5a). Coincident with the 
essential role of serine 15 phosphorylation of p537, DDX3 and γ-tubulin were specifically co-immunoprecipitated 
with Ser15-phosphorylated p53 but not total p53 in vivo (Fig. 5b,c). Immunofluorescence assay revealed that 
DDX3 was also colocalized with Ser15-phosphorylated p53 at centrosome during anaphase in HCT116 and U2OS 
cells (Fig. 5d). To examine the impact of p53 on DDX3 recruitment to centrosome, we estimated the degree of 
colocalization between DDX3 and γ-tubulin in parental and p53−/− HCT116 cells. Immunofluorescence staining 
of γ-tubulin was almost fully overlapped with that of DDX3 in parental HCT116 cells but only a limited overlap 

value ± S.D. calculated from two independent experiments. *P < 0.05; **P < 0.01. (n), the number of cells 
analyzed. (c) Reintroduction of shDDX3-resistant Flag-DDX3 rescued the centrosome inactivation/coalescence 
and prevented multipolar mitosis in the DDX3-knockdown HCT116 cells. Cells were immunostained with 
DDX3 (red), Flag (blue), γ-tubulin (green) and DNA (gray). Images are shown as the maximum projections 
of confocal Z stacks. Scale bar = 5 μm. The proportions of mitosis in the DDX3-knockdown and DDX3 
overexpressed DDX3-knockdown (si+FDR) cells were statistically analyzed (right panel). Data are shown as 
average value ± S.D. calculated from two independent experiments. *P < 0.05. (n), the number of cells analyzed.
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was detected in p53−/− HCT116 cells (Fig. 5e). Quantitative analysis showed that the percentage of γ-tubulin 
colocalized with DDX3 was significantly reduced from 80% to 18% in p53−/− HCT116 cells as compared to paren-
tal cells (Fig. 5f) while similar levels of expression of DDX3 in parental and p53−/− HCT116 cells were detected 
(Fig. 5g), suggesting that p53 is essential for DDX3 localization to centrosome. To further examine whether 
DDX3 is recruited to centrosome by p53, immunofluorescence analysis was performed on p53−/− HCT116 cells 
expressing p53 wild-type (WT) or centrosomal targeting-defective p53 mutant (S15A). p53 WT was colocalized 
with DDX3 and γ-tubulin while p53 S15A mutant concentrated in the nucleus without entering the centro-
some (Fig. 6a). Quantitative analysis showed that overexpression of p53 WT or p53 S15A mutant significantly 

Figure 4.  Depletion of DDX3 in p53−/− HCT116 cells and reintroduction of p53 in the DDX3-knockdown 
HCT116 cells elicited no effect on the multipolar mitosis. (a) Depletion of DDX3 elicited no effect on the 
multipolar mitosis in p53−/− HCT116 cells. Confocal images of control or DDX3-knockdown mitotic cells 
classified as normal bipolar mitosis (N), pseudo-bipolar mitosis by centrosome inactivation/clustering (I/C) 
or multipolar mitosis (M). Each typical mitotic cell is shown at higher magnification in the right column. 
Cells were immunostained with DDX3 (red), γ-tubulin (green) and DNA (blue). Images are shown as 
the maximum projections of confocal Z stacks. Scale bar = 5 μm. The proportions of bipolar mitosis (two 
centrosomes), pseudo-bipolar mitosis (more than two centrosomes) and multipolar mitosis in the control 
and DDX3-knockdown cells were statistically analyzed (right panel). Data are shown as average value ± S.D. 
calculated from two independent experiments. (n), the number of cells analyzed. (b) Reintroduction of p53 
was insufficient to rescue the multipolar mitosis caused by knockdown of DDX3 in HCT116 cells. Cells were 
immunostained with DDX3 (red), p53 (blue), γ-tubulin (green) and DNA (gray). Images are shown as the 
maximum projections of confocal Z stacks. Scale bar = 5 μm. Data are shown as average value ± S.D. calculated 
from two independent experiments. (n), the number of cells analyzed.
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Figure 5.  p53 is essential for DDX3 localization at centrosome. (a) Western blot analysis showing co-
immunoprecipitation of γ-tubulin with DDX3 in HCT116 cells. Original images of western blots were 
presented in Supplementary Fig. S4a. (b) Western blot analysis showing that neither γ-tubulin nor DDX3 
co-immunoprecipitates with p53 in HCT116 cells. Original images of western blots were presented in 
Supplementary Fig. S4b. (c) Western blot analysis showing co-immunoprecipitations of γ-tubulin and 
DDX3 with Ser15-phosphorylated p53 in HCT116 cells. Original images of western blots were presented 
in Supplementary Fig. S4c. (d) Representative confocal images show colocalization of DDX3 with Ser15-
phosphorylated p53 in the centrosome at anaphase. HCT116 and U2OS cells were immunostained with anti-
DDX3 (red), anti-γ-tubulin (green), anti-Ser15-phosphorylated p53 (blue) antibodies and DAPI (gray). Insets 
show higher magnifications of the centrosome. Scale bar = 5 μm. (e) Representative confocal images showing 
the level of colocalization between DDX3 and γ-tubulin is significantly reduced in the absence of p53. WT and 
p53−/− HCT116 cells were immunostained with DDX3 (red), γ-tubulin (green) and DNA (blue). Insets and 
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enhanced the percentage of γ-tubulin colocalizing with DDX3 from 22% to 81% or 94%, respectively, as com-
pared to the control (Fig. 6b) while the overexpression level of p53 S15A mutant was higher than that of p53 WT 
in the p53−/− HCT116 cells (Fig. 6c). Our results demonstrate that centrosomal localization of DDX3 requires p53 
but not through association with p53 at centrosome.

Depletion of DDX3 suppresses the level of Ser15-phosphorylated p53 and its centrosomal local-
ization.  To elucidate the impact of DDX3 on p53 recruitment to centrosome, we examined colocalization 
between p53 and γ-tubulin in the control and DDX3-knockdown HCT116 and U2OS cells. Immunofluorescence 
staining of p53 was fully overlapped with that of γ-tubulin during anaphase in the control cells whereas knock-
down of DDX3 reduced the colocalization between p53 and γ-tubulin (Fig. 7a). Moreover, reintroduction of 
p53 in the DDX3-knockdown cells could not rescue the colocalization between p53 and γ-tubulin, indi-
cating that DDX3 is essential for p53 centrosomal localization. Since phosphorylation of p53 at Serine 15 is 
required for centrosomal targeting of p53, we further examined whether depletion of DDX3 affects the level of 
Ser15-phosphorylated p53 and ATM kinase, which phosphorylates p53 at Ser15. Knockdown of DDX3 suppressed 
the expression of Ser1981-phosphorylated ATM by 0.5-fold. Depletion of DDX3 also suppressed Ser15 phosphoryl-
ation of p53 to 0.16-fold while the total p53 was reduced to 0.28-fold (Fig. 7b). Therefore, our results demonstrate 
that depletion of DDX3 suppresses the centrosomal localization of p53 through inhibition of p53 expression, 
particularly the phosphorylation of p53 at Ser15 because DDX3 knockdown also induced the inhibition of ATM 
kinase.

Knockdown of DDX3 suppresses p53 expression by inhibiting p53 mRNA translation but not 
p53 stability.  To confirm the positive regulatory role of DDX3 in p53 expression, p53 protein levels were 
analyzed in DDX3-knockdown HCT116 colorectal cancer cells, human embryonic kidney 293T cells and oste-
osarcoma U2OS cells. Depletion of DDX3 suppressed p53 expression to 0.25–0.47-fold in HCT116, 293T and 
U2OS cells (Fig. 8a). Additionally, knockdown of DDX3 suppressed p53 expression in a dose-dependent manner 
in HCT116 and 293T cells, and also dose-dependently suppressed the expression of the p53 target gene, p21 in 
HCT116 cells (Fig. 8b). Ectopic expression of shDDX3-resistant Flag-tagged DDX3 partially rescued p53 expres-
sion in DDX3-knockdown HCT116 and 293T cells, as well as the p21 expression in DDX3-knockdown HCT116 
cells (Fig. 8c). These data reveal that p53 expression is specifically regulated by DDX3.

To verify whether DDX3 regulates p53 expression by stabilization of p5337, we measured the half-life of p53 in 
control and DDX3-knockdown HCT116 cells by treating cells with the protein synthesis inhibitor cycloheximide. 
The half-life of p53 was extended from 0.76 to 1.27 hour by knockdown of DDX3 in HCT116 cells (Fig. 8d), 
suggesting that the upregulation of p53 expression by DDX3 is not through stabilization of p53 in HCT116 cells. 
In view that DDX3 is involved in cellular mRNA translation and viral IRES-dependent translation48–50, we next 
examined whether DDX3 regulates translation of p53 mRNA by RNA reporter assay. To mimic cellular p53 mRNA 
structure, RNA reporter plasmids were constructed by inserting p53 5′UTR in the upstream and p53 3′UTR in the 
downstream of the control luciferase reporter gene. Then reporter RNAs, T7-pA, 5′+3′-pA, Cap-T7-pA and Cap-
5′ + 3′-pA were transcribed in vitro (Fig. 8e). Knockdown of DDX3 suppressed the Cap-T7-pA reporter activity 
to 0.72-fold while having no effect on the control T7-pA, indicating that DDX3 modulates general cap-dependent 
translation, which is consistent with previous studies29, 49. Knockdown of DDX3 further suppressed the Cap-
5′ + 3′-pA reporter activity to 0.53-fold, demonstrating that DDX3 specifically regulates p53 mRNA translation. 
Furthermore, depletion of DDX3 suppressed 5′ + 3′-pA reporter activity to 0.53-fold while it had no effect on the 
control T7-pA, implying that DDX3 modulates p53 IRES-mediated translation. Altogether, these results reveal 
that DDX3 positively regulates p53 expression through activating p53 mRNA translation but not p53 stability.

Downregulation of DDX3 inhibits p53 transcription through activation of DNMTs and hyper-
methylation of p53 promoter.  To explore whether DDX3 regulates p53 transcription, we detected the 
mRNA expression level of p53 by quantitative real-time RT-PCR. Depletion of DDX3 suppressed the mRNA 
expression of p53 (0.8-fold) as well as p53 downstream target gene p21, TP53I3, GADD45A and MDM2 (0.52–
0.6-fold) (Fig. 9a). Moreover, to examine whether DDX3 modulates p53 mRNA levels by regulating p53 mRNA 
stability, p53 mRNA level was assessed in control and DDX3-knockdown cells treated with transcription inhibi-
tor, actinomycin D for 4 or 8 hours. Our results show that depletion of DDX3 did not affect p53 mRNA stability 
(Fig. 9b), indicating that reduction of DDX3 suppresses p53 transcription.

Given that p53 transcription is mediated by epigenetic control17 and that DDX3 has been reported to regulate 
DNA methyltransferase 3 A expression and promoter methylation in HepG2 cells32, we determined the DNA 
methyltransferases (DNMTs) expression and methylation status of p53 promoter in DDX3-knockdown HCT116 
cells. Depletion of DDX3 stimulated the expression of DNMT1, DNMT3A and DNMT3B by 3.80-, 2.93- and 
4.73-fold compared with that of control cells, respectively (Fig. 9c). Additionally, knockdown of DDX3 slightly 
enhanced the mRNA expression of DNMT1, DNMT3A and DNMT3B by 1.1 to 1.3-fold as compared with the 

dashed outline show higher magnification of the centrosome. The colocalized area is displayed in white. Scale 
bar = 10 μm. (f) The percentage of γ-tubulin colocalized with DDX3 in p53−/− HCT116 cells is significantly 
reduced when compared with WT HCT116 cells. The colocalization of DDX3 and γ-tubulin was analyzed using 
Zeiss ZEN 2009 software and shown as average value ± S.D. calculated from three independent experiments. 
The value of 100 indicates perfect co-localization. ***P < 0.001. (n), the number of cells analyzed. (g) Western 
blot analysis showing no difference in DDX3 level between WT and p53−/− HCT116 cells. Original images of 
western blots were presented in Supplementary Fig. S4d.
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control (Fig. 9d), indicating that DDX3 negatively regulates protein and mRNA expression of DNMTs in HCT116 
cells. Furthermore, p53 promoter contains two CpG islands, R2 (−1009 to −586 bp) and R3 (−304 to + 198 bp) 
(Fig. 9e). Knockdown of DDX3 resulted in hypermethylation of p53 promoter region R2 but no DNA methyla-
tion was detected in region R2–3 and R3 by bisulfite sequencing PCR (Fig. 6e). Consistently, by using EpiMark 
methylated DNA enrichment kit, an approximately 12-fold increase in DNA methylation in region R2 and a 
2.4-fold increase in region R2–3 were detected in DDX3-knockdown HCT116 cells while no methylated DNA 
was detected in region R3 (Fig. 9f). These results demonstrate that knockdown of DDX3 suppresses p53 transcrip-
tion by increasing DNMTs expression and inducing p53 promoter hypermethylation.

Depletion of DDX3 enriches the binding of DNMTs and repressive histone marks to p53 pro-
moter.  To investigate which DNA methyltransferase is responsible for p53 promoter methylation, the bind-
ing activity of DNMTs, CTCF and PARP1 were analyzed by chromatin immunoprecipitation assay (ChIP) 
in DDX3-knockdown HCT116 cells. Depletion of DDX3 significantly enhanced the binding of DNMT1, 
DNMT3A, and DNMT3B to all three regions of p53 promoter (Fig. 10a–c). The binding of CTCF was not signif-
icantly changed but the binding of PARP1 was elevated in both region p2-3 and p3 in DDX3-knockdown cells 

Figure 6.  Overexpression of p53 rescues the centrosomal localization of DDX3 in p53−/− HCT116 cells. 
(a). Representative confocal images demonstrate that centrosomal localization of DDX3 is restored after 
introduction of p53 wild-type (WT) or p53 S15A mutant (S15A) in p53−/− HCT116 cells. The control, p53 
WT- or p53 S15A mutant-overexpressed p53−/− HCT116 cells were immunostained with anti-DDX3 (red), 
anti-γ-tubulin (green), anti-p53 (blue) antibodies and DNA (gray). Insets exhibit higher magnification of the 
centrosome. Scale bar = 5 μm. (b) Overexpression of p53 WT and p53 S15A mutant significantly enhances 
the percentage of γ-tubulin colocalizing with DDX3 in p53−/− HCT116 cells. The colocalization of DDX3 and 
γ-tubulin was analyzed using Zeiss ZEN 2009 software and shown as means ± S.D. from three independent 
experiments. The value of 100 indicates perfect co-localization. ***P < 0.001. (n), the number of cells analyzed. 
(c) Western blot analysis showing the level of DDX3 and p53 in the control, p53 WT- and p53 S15A mutant-
overexpressed p53−/− HCT116 cells. GAPDH was used as an internal control. Original images of western blots 
were presented in Supplementary Fig. S5a.
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(Fig. 10b,c), indicating that PARP1 preserves the methylation-free status in region p2-3 and p3 of p53 promoter. 
Furthermore, in view of bidirectional crosstalk between DNA methylation and histone modification51, we exam-
ined the binding of active and repressive histone marks on p53 promoter. Depletion of DDX3 reduced active 
mark H3K4me3 and enhanced repressive marks, H3K9me3, H4K20me3 and H3K27me3 binding to p53 pro-
moter (Fig. 10a–c). Moreover, knockdown of DDX3 diminished the binding of DDX3 and p53 to p53 promoter 
(Fig. 10a–c). Taken together, these findings demonstrate that knockdown of DDX3 suppresses p53 promoter by 
enhancing DNMTs and repressive histone marks binding to p53 promoter.

Figure 7.  Knockdown of DDX3 results in displacement of p53 from centrosome. (a) Representative confocal 
images demonstrate that DDX3 is required for p53 localization at centrosome in both HCT116 and U2OS cells. 
The control, DDX3-knockdown and p53-overexpressed DDX3-knockdown cells were immunostained with 
anti-DDX3 (red), anti-γ-tubulin (green), anti-p53 (blue) antibodies and DNA (gray). Insets exhibited higher 
magnification of the centrosome. Scale bar = 5 μm. (b) Western blot analysis showing DDX3 knockdown 
suppressed the expression of ATM, phosphor-Ser1981-ATM, phosphor-Ser15-p53 and p53. Original images of 
western blots were presented in Supplementary Fig. S5b.
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Figure 8.  Knockdown of DDX3 suppresses p53 expression by inhibiting p53 mRNA translation but not p53 
stability. (a) Western blot analysis reveals DDX3 knockdown repressed p53 expression in HCT116, 293 T 
and U2OS cells. Original images of western blots were presented in Supplementary Fig. S6a. (b) Western 
blot analysis reveals dose-dependent knockdown of DDX3 resulted in differential repression of p53 or p21 
in HCT116 and 293 T cells. Original images of western blots were presented in Supplementary Fig. S6b. (c) 
Western blot analysis reveals ectopic expression of shDDX3-resistant Flag-DDX3 partially rescued p53 or 
p21 in the DDX3-knockdown HCT116 and 293 T cells. Original images of western blots were presented in 
Supplementary Fig. S6c. (d) Western blot analysis reveals DDX3 depletion resulted in reduced p53 degradation. 
Control and DDX3-knockdown HCT116 cells were incubated with 40 μg/ml cycloheximide for indicated time 
points and the half-life of p53 was analyzed. Original images of western blots were presented in Supplementary 
Fig. S7a. (e) Schematic diagrams of luciferase reporter RNAs. T7-pA and 5′ + 3′-pA are uncapped reporter 
RNAs whereas Cap-T7-pA and Cap-5′ + 3′-pA are capped reporter RNAs. In the 5′ + 3′-pA and Cap-5′ + 3′-pA 
reporter RNAs, the p53 IRES (134 bp) is inserted upstream and p53 3′UTR (1.2k bp) is inserted downstream 
of the firefly luciferase gene (FL). Knockdown of DDX3 suppressed the p53 IRES-mediated translation and 
cap-dependent translation of reporter RNAs. Data are shown as average value ± S.D. calculated from three 
independent experiments performed in triplicate. **P < 0.01; *P < 0.05.
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Figure 9.  Knockdown of DDX3 inhibits p53 transcription through activation of the DNMTs and DNA 
hypermethylation. (a) Depletion of DDX3 suppressed the mRNA expression of p53 and target genes, p21, 
TP53I3, GADD45A and MDM2 in HCT116 cells. Quantitative real-time PCR analysis of p53 and p53 target 
genes were normalized to GAPDH and shown as average value ± S.D. calculated from three independent 
experiments. ***P < 0.001; **P < 0.01. (b) Analysis of the p53 mRNA stability in control and DDX3-
knockdown HCT116 cells by incubation with 10 μg/ml actinomycin D at indicated time periods. Data 
were normalized to GAPDH and shown as average value ± S.D. calculated from at least two independent 
experiments. (c) Western blot analysis reveals DDX3 knockdown promoted the expression of DNMT1, 
DNMT3A and DNMT3B in HCT116 cells. Original images of western blots were presented in Supplementary 
Fig. S7b. (d) Quantitative real-time PCR analysis reveals DDX3 depletion increased the mRNA expression of 
DNMT1, DNMT3A and DNMT3B in HCT116 cells. Data were normalized to GAPDH and shown as average 
value ± S.D. calculated from three independent experiments. ***P < 0.001; *P < 0.05. (e) Knockdown of 
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Discussion
DDX3 plays divergent roles in tumorigenesis25–27. Recent studies imply that DDX3 participates in mitosis 
and loss of DDX3 causes DNA damage and increases cell death38–40, but the underlying mechanism remains 
unclear. In this study, we provided evidence that DDX3 facilitates accurate mitotic progression and prevents 
mitotic DNA damages (Fig. 2) via localization at centrosome throughout the cell cycle and colocalization with 
centrosome-associated p53 during mitosis (Fig. 1). P53 is essential for DDX3 recruitment to centrosome (Figs 5 
and 6) where DDX3 promotes pseudo-bipolar mitosis by coalescence and inactivation of excess centrosomes to 
reduce severe aneuploidy (Figs 3–4). DDX3 is also required for centrosomal targeting of p53 through activation 
of ATM kinase and phosphorylation of p53 at Ser15 (Fig. 7). Depletion of DDX3 suppressed p53 mRNA trans-
lation (Fig. 8) and also inhibited p53 transcription by activation of DNMTs, hypermethylation of p53 promoter 
(Fig. 9) as well as increased repressive histone marks binding to p53 promoter (Fig. 10). Therefore, a molecular 
model for the role of DDX3 in inhibiting multipolar mitosis was proposed (Fig. 11). p53 is required for centroso-
mal localization of DDX3 which is mediated by transactivation-dependent regulation of p53 but is independent 
of the centrosomal localization of p53. DDX3 activates p53 expression through epigenetic transcriptional and 
translational control. Moreover, by activating expression of the ATM kinase, DDX3 promotes phosphorylation of 
p53 at Ser15, which leads to centrosomal localization of p53 with DDX3 at centrosome during mitosis, therefore 
inducing bipolar mitosis to maintain genome stability. However, DDX3 depletion suppresses p53 expression by 
activation of DNMTs and repressive histone marks binding to p53 promoter and also causes displacement of p53 
from the centrosome, eventually leading to multipolar mitosis and facilitating cell death.

As noted, the role of DDX3 in colorectal cancer is controversial27. Our study provides new insight into a novel 
role of DDX3 as a tumor suppressor by ensuring proper mitotic progression and maintenance of genome stability 
through the interplay with tumor suppressor p53 in HCT116 cells. Consistently, DDX3 has been reported to reg-
ulate the Snail/E-cadherin pathway to prevent cell migration and invasion in HCT116 cells, which also supports 
the tumor suppressive role of DDX335. HCT116 is a colorectal cancer cell line that harbors β-catenin mutant but 
possesses wild-type p53. In contrast, DDX3 has been reported to be positively correlated with β-catenin expres-
sion and to promote cell invasion in a subset of colorectal cancer cell lines containing wild-type β-catenin but 
mutant p53, therefore functioning as an oncogene33, 34, 52. Apparently, oncogenic role of DDX3 in colorectal cancer 
may be attributed to p53 mutations in various cell lines.

Accumulated evidence indicates the bidirectional regulation between DDX3 and p53. For example, p53 acti-
vates DDX3 expression in lung cancer cells36. Additionally, DDX3 has been reported to interact with p53 and 
promote p53 accumulation in response to DNA damage in MCF-7 cells37. In our study, DDX3 specifically pre-
vents multipolar mitosis by localizing at centrosome and promoting the expression as well as centrosomal local-
ization of p53. p53 is required for centrosomal localization of DDX3, which is mediated by the transactivation 
regulation of p53 but is independent of the centrosomal localization of p53 (Figs 5–6). Moreover, knockdown 
of DDX3 elicited no effect on the mitotic defects in the p53−/− HCT116 cells due to loss of centrosomal local-
ization of DDX3 in the p53−/− HCT116 cells (Figs 3–5). Notably, DDX3 depletion suppressed the p53 expres-
sion and also suppressed the transactivation regulation of p53 (Figs 8–9a). Furthermore, knockdown of DDX3 
inhibited ATM kinase-mediated phosphorylation of p53 at Ser15, which results in displacement of p53 from the 
centrosome (Fig. 7). However, the level of DDX3 in p53−/− HCT116 cells was similar to that in parental HCT116 
cells (Fig. 5g). Overexpression of p53 WT and p53 S15A mutant had no effect on DDX3 expression in p53−/− 
HCT116 cells (Fig. 6c), indicating that DDX3 expression is not modulated by p53 in HCT116 cells. Moreover, 
DDX3 was co-immunoprecipitated with Ser15-phosphorylated p53 but not total p53 in HCT116 cells (Fig. 5b,c). 
Taken together, the mutually relied centrosomal localization of DDX3 and p53 is independent of the DDX3-p53 
interaction.

DDX3 positively regulates the expression of ATM kinase and phosphor-Ser15-p53 (Fig. 7b), revealing that 
DDX3 activates the p53 response to DNA damage, which is consistent with the previous study37. Posttranslational 
modifications on p53 regulate its transactivation, DNA-binding ability and protein stability55. For example, phos-
phorylation of p53 at serine 15 increases interaction with coactivator CBP/p300 which stimulates p53-dependent 
transactivation of p53 responsive promoters55. Consistently, in our study, knockdown of DDX3 inhibited mRNA 
expression of p53 target genes, p21, TP53I3, GADD45A as well as MDM2 (Fig. 9a) and diminished the binding of 
p53 to p53 promoter (Fig. 10). Furthermore, MDM2 is the primary ubiquitin ligase for p53 and promotes proteas-
omal degradation of p53. Phosphorylation of p53 at serine 15 attenuates MDM2 binding to p53 and thus promotes 
p53 stability55. However, DDX3 has been reported to activate MDM2 expression through interaction with Sp136. 
These reports indicated that DDX3 positively regulates p53 and MDM2 while p53 and MDM2 form a negative 
feedback loop. In this study, we observed that knockdown of DDX3 suppressed p53 expression (Fig. 8a–c) and 
caused a reduction in MDM2 mRNA level (Fig. 9a) as well as a delay in p53 protein degradation in HCT116 cells 
(Fig. 8d). This finding implies that knockdown of DDX3 delays p53 degradation likely due to the decreased negative 
feedback regulation by MDM2. Moreover, we have demonstrated that DDX3 modulates p53 expression through 
translational (Fig. 8e) and epigenetic (Figs 9–10) regulations but not p53 stability (Fig. 8d) in HCT116 cells.

DDX3 induced p53 promoter (R2) hypermethylation detected by bisulfide sequencing PCR analysis. Schematic 
representation of p53 promoter harboring two CpG islands R2 (from -1009 to −586 bp) and R3 (from −304 
to + 198 bp) relative to transcription start site (TSS) (+1). Open circles denote unmethylated CG sites, filled 
circles are methylated CG sites. Ten independent clones were sequenced in each case. (f) DDX3 deficiency 
induced hypermethylation in p53 promoter (R2) detected using EpiMark methylated DNA enrichment kit. Data 
are shown as average value ± S.D. calculated from at least two independent experiments. **P < 0.01; *P < 0.05.
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Figure 10.  Depletion of DDX3 enriches the binding of DNMTs and repressive histone marks to p53 promoter. 
(a–c) Schematic representation of p53 promoter containing CTCF-DNMT1-PARP1 complex binding sites in 
region p2-3 (from −628 to −259 bp)18 and p53 binding site in region p3 (from −165 to + 196 bp)15, respectively. 
DDX3 knockdown enhanced the binding abilities of DNMT1, DNMT3A, DNMT3B and repressive histone 
marks on p53 promoter and reduced the binding of p53 and active H3K4me3 histone mark. For chromatin 
immunoprecipitation assay, immunoprecipitates were analyzed by quantitative real-time PCR with specific 
primers for region p2 (a) p2-3 (b) and p3 (c) on p53 promoter. The relative binding activity of each protein on 
p53 promoter was normalized with input DNA and present as relative fold change against control rabbit IgG. 
Data are shown as average value ± S.D. calculated from at least two independent experiments. ***P < 0.001; 
**P < 0.01; *P < 0.05.
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In this study, we found that DDX3 activates p53 transcription through modulation of DNMTs (Fig. 9a,c,d). 
Knockdown of DDX3 enhanced DNMTs expression but only slightly increased the mRNA level of DNMTs 
(Fig. 9c,d). DNMTs mRNA overexpression is transcriptionally regulated by activation of Sp1 or loss of suppres-
sion of p5356. DDX3 not only cooperates with Sp1 to activate downstream target genes31, 36 but also controls p53 
expression (Fig. 8). Consequently, the slightly increased mRNA level of DNMTs (Fig. 9d) in DDX3-knockdown 
cells may be the result of removal of repression by p53 coupled with low activation of Sp1. Additionally, it has 
been reported that binding of DNMT3A/3B to methylated DNA helps stabilize DNMT3A/3B57. We found that 
depletion of DDX3 activated DNMTs binding to p53 promoter (Fig. 10) and thus significantly enhanced DNMTs 
expression (Fig. 9c). Although knockdown of DDX3 activated DNMTs binding to p53 promoter, DNA methyl-
ation was only detected in region R2 of p53 promoter (Fig. 9e,f). By chromatin-immunoprecipitation assay, we 
observed that the binding of PARP1 was activated in region p2-3 and p3 when DDX3 was silenced (Fig. 10b,c). 
PARP1, an inhibitor of DNMT1, prevents the DNA methyltransferase activity of DNMT118 and thus preserved 
the methylation-free status in region R2-3 and R3 of p53 promoter while DNMT1 cooperated with DNMT3A 
or DNMT3B for de novo methylation in region R2 in DDX3-knockdown cells (Fig. 9e). DNA methylation and 
histone modification are linked to each other51. For example, methylated DNA and methylated DNA binding 
proteins may recruit histone deacetylase (HDAC) and histone methyltransferase proteins for subsequent histone 
modification. In addition, histone methyltransferases have been shown to interact with DNMTs and facilitate 
de novo DNA methylation at target loci51. Histone methylation causes temporal and reversible gene silencing 
while DNA methylation leads to stable gene inactivation51. In our study, knockdown of DDX3 promoted DNA 
methylation of p53 region R2 (Fig. 9e,f) and enhanced the binding of DNMTs as well as repressive histone marks 
to region p2 of p53 promoter (Fig. 10a). Moreover, knockdown of DDX3 suppressed p53 promoter by increasing 
the binding of repressive histone marks and DNMTs to p53 promoter region p2-3 and p3 (Fig. 10b,c) even though 
DNA methylation was not detectable in region R2-3 and R3 (Fig. 9e,f).

DDX3 has emerged in the last few years, as a new potential therapeutic target for cancer treatment52–54. 
Inhibition of DDX3 in a variety of cancers results in a reduction of tumor cell growth and increases apoptosis. Our 
study demonstrates that knockdown of DDX3 promotes multipolar mitosis along with severe aneuploidy, leading 
to cell cycle delay and cell death (Fig. 2), supporting the aforementioned notion. Furthermore, our study reveals a 
novel role of DDX3 in the maintenance of genome stability through association with tumor suppressor p53 at cen-
trosome during mitosis (Figs 1, 3–7) and modulation of p53 expression (Figs 8–10), which strengthens the tumor 
suppressive potential of DDX3 and may be helpful for future development of new strategies in cancer therapy.

Figure 11.  A proposed model illustrates that DDX3 prevents multipolar mitosis through regulation of p53. 
(a) In addition to activation of p53 expression by DDX3 through epigenetic transcriptional and translational 
regulation, DDX3 promotes phosphorylation of p53 at Ser15 by activation of ATM kinase, leading to 
centrosomal localization of p53. p53 also facilitates the centrosomal localization of DDX3. DDX3 and p53 
localizing to centrosome during mitosis promotes centrosome clustering and induces bipolar mitosis to 
maintain genome stability. (b) Knockdown of DDX3 suppresses ATM kinase and phosphorylation of p53 
at Ser15, resulting in displacement of p53 from the centrosome. Moreover, DDX3 depletion suppresses p53 
expression epigenetically by activation of DNMTs and repressive histone marks binding to p53 promoter, 
eventually leading to multipolar mitosis and facilitating cell death. (RH, repressive histone marks).
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Materials and Methods
Cell culture and transfection.  HCT116 and p53−/− HCT116 were cultured in McCoy’s 5A medium sup-
plemented with 10% fetal bovine serum (FBS). HEK293T and U2OS were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% FBS. Transient transfection of HCT116, p53−/− HCT116 and U2OS 
cells was performed using lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction or the 
calcium phosphate precipitation method in HEK293T.

Plasmids.  For knockdown of DDX3, cells were transfected with psiDDX3-433 derived from pSUPER plas-
mid as described previously30. Plasmid Flag-DDX3R, which is a siDDX3-resistant Flag-DDX3 expressing con-
struct, was generated as described previously58. Plasmid pCMV-p53 WT and pCMV-p53 S15A mutant were 
gifts from Dr. Sheau-Yann Shieh (Institute of Biomedical Sciences, Academia Sinica, Taiwan). Plasmid pcD-
NA3-mCherry-α-tubulin was a gift from Dr. Tang K. Tang (Institute of Biomedical Sciences, Academia Sinica, 
Taiwan). Plasmid GFP-H2B was a gift from Dr. Jun-Yi Chien (Institute of Microbiology and Immunology, 
National Yang-Ming University, Taipei, Taiwan). Plasmid 5′ + 3′-pA, which directs the expression of reporter 
RNA, was generated by inserting HindIII/BamHI-treated PCR amplified p53 5′UTR (spanning from −134 to 
−1 related to translation start site)24 into HindIII/BamHI-treated Luciferase T7 Control DNA vector (Promega 
Corporation) and then the SacI-digested PCR amplified p53 3′UTR (spanning from 1183 to 2369 related to 
translation start site)22 was further ligated with SacI-digested p53 5′UTR-Luciferase T7 Control DNA plasmid.

In vitro RNA synthesis and RNA transfection.  Capped reporter RNAs were transcribed in vitro using 
the mMESSAGE mMACHINE T7 Kit (Ambion) or un-modified reporter RNAs were transcribed using the 
MEGAscript High-Yield Transcription kit (Ambion) followed by polyadenylation using the poly(A) Tailing kit 
(Ambion). Synthesized RNAs were further purified using the MEGAclear kit (Ambion). Reporter RNAs were 
transfected with Lipofectamine 2000 (Invitrogen).

Antibodies and reagents.  The primary antibodies used for immunoprecipitation, immunofluorescence 
or western blotting were rabbit anti-DDX331, 39, mouse anti-p53 (Calbiochem), mouse anti-p53 (IgG2b) (Santa 
Cruz Biotech.), rabbit anti-phospho-p53 (Ser15) (Cell Signaling Technology), mouse anti-phospho-p53 (Ser15) 
(IgG1) (Cell Signaling Technology), rabbit anti-phospho-ATM (Ser1981) (Cell Signaling Technology), rab-
bit anti-ATM (Cell Signaling Technology), mouse anti-GAPDH (Sigma-Aldrich), mouse anti-p21 (Santa Cruz 
Biotech.), goat anti-DDDDK (Abcam), mouse anti-α-tubulin (Santa Cruz Biotech), mouse anti-γ-tubulin (IgG1) 
(Sigma-Aldrich), rabbit anti-γ-tubulin Alexa Fluor 488 (Abcam), mouse anti-γH2AX (Ser139) (Millipore), rab-
bit anti-phospho-Chk1 (Ser345) (Cell Signaling Technology), mouse anti-CHK1 (Santa Cruz Biotech), rabbit 
anti-phospho-cdc2 (Tyr15) (Cell Signaling Technology), rabbit anti-cdc2 (Santa Cruz Biotech), goat anti-CTCF 
(Santa Cruz Biotech), goat anti-DNMT1 (Santa Cruz Biotech), rabbit anti-DNMT3A (Santa Cruz Biotech), mouse 
anti-DNMT3B (Santa Cruz Biotech), mouse anti-PARP1 (Santa Cruz Biotech), rabbit anti-trimethyl-Histone H3 
(Lys4) (Millipore), rabbit anti-trimethyl-Histone H3 (Lys9) (Millipore), rabbit anti-trimethyl-Histone H4 (Lys20) 
(Millipore), rabbit anti-trimethyl Histone H3 (Lys27) (Millipore). Secondary antibodies used for immunofluores-
cence were anti-mouse IgG2b Alexa Fluor 488, anti-rabbit Alexa Fluor 555 (Molecular Probes, Invitrogen) and 
anti-mouse IgG1 DyLight649 (Jackson ImmunoResearch Laboratories) antibodies. Cycloheximide, actinomycin 
D, thymidine, nocodazole and L-mimosine were purchased from Sigma-Aldrich; DAPI was purchased from Roche.

RNA extraction and quantitative real-time RT-PCR.  Total RNA was extracted using TRI rea-
gent (Invitrogen), and first-strand cDNA were synthesized using RevertAid First Strand cDNA Synthesis 
Kit (Fermentas) with an oligo(dT)18 primer. Real-time PCR was performed using SYBR® Green PCR 
Master Mix (Applied Biosystems) and StepOnePlus™ RealTime PCR System (Applied Biosystems). 
Primers for quantitative real-time RT-PCR were as follows: p53 (F: 5′-GTTCCGAGAGCTGAATGAGG-3′; 
R: 5′-TCTGAGTCAGGCCCTTCTGT-3′), p21 (F: 5′-TTAGCAGCGGAACAAGGAGTCA-3′ ;  R: 
5′-TTACAGGAGCTGGAAGGTGTTTGG-3′), TP53I3 (F:5′-GCTTCAAATGGCAGAAAAGC-3′; R: 
5′-AACCCATCGACCATCAAGAG-3′), GADD45A (F: 5′-AACGGTGATGGCATCT GAATGA-3′; R: 
5′-TTCCTTCCTGCATGGTTCTTTGT-3′), MDM2 (F: 5′-ATGT CTGTACCTACTGATGGTGCTG-3′; 
R: 5′-TCAAAAGCAATGGCTTTGGTCT-3′), DNMT1 (F: 5′-TACCTGGACGACCCTGACCTC-3′; R: 
5′-CGTGGCATCAAGATGGACA-3′), DNMT3A (F: 5′-TATTGATGAGCGCACAAGAGAGC-3′; R: 
5′-GGGTGTTCCAGGGTAACATTGAG-3′), DNMT3B (F: 5′-GGCAAGTTCTCCGAGGTCTCTG-3′; 
R: 5′-TGGTACATGGCTTTTCGATAGGA-3′), GAPDH (F: 5′-CACCCACTCCTCCACCTTT-3′; R: 
5′-TCCACCACCCTGTT GCTGTAG-3′).

Reporter assay.  For RNA reporter assay, cells were transfected with either psiDDX3-433 or parental vector 
pSuper. At 4 hr post-transfection, cells were washed and incubated for another 48 hr and then transfected with 4 
μg purified reporter RNA using Lipofectamine 2000 (Invitrogen). After incubation for 4 hr, cells were harvested 
for luciferase activity assay.

Mitotic enrichment and immunofluorescence.  The M phase synchronization was performed as previ-
ously described59. In brief, HCT116 cells were treated with 3 mM thymidine for 24 hr, released in fresh medium 
for 9 hr and then incubated with 0.3 μM nocodazole for 4 hr. Mitotic cells were washed and collected by mitotic 
shake-off, re-suspended in complete medium and seeded on sterile glass slides. After incubation for 40 min, cells 
were fixed with −20 °C-stored methanol/acetone (1:1) and subsequently probed with primary and secondary 
antibodies. Images were acquired with a Zeiss LSM700 confocal microscope using Plan-Apochromat 63x/1.40 
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Oil DIC M27 objective. 0.5-μm optical sections in the z-axis were collected. The percentage of colocalization was 
analyzed using Zeiss Zen 2009 light edition software.

Co-immunoprecipitation.  HCT116 cells were lysed with ice-cold PBS containing 0.5% NP-40 and 1x pro-
tease inhibitor cocktail. Cell extracts (500 μg) were pre-incubated with protein G-sepharose (GE Healthcare) 
for 1 hr at 4 °C. Pre-cleaned cell extracts were then incubated with anti-DDX3 antibody, anti-p53 antibody, 
anti-phospho-Ser15-p53 antibody or control IgG at 4 °C overnight, followed by addition of 10 μl BSA-blocked 
protein G-Sepharose beads and incubated for additional 1 hr at 4 °C. Beads were then washed three times with 
ice-cold PBS, proteins were eluted and subjected to western blotting with anti-γ-tubulin, anti-DDX3, anti-p53 
and anti-phospho-Ser15-p53 antibodies.

Cell cycle synchronization and flow cytometry.  For synchronization of HCT116 cells at G1 or S phase, 
cells were treated with 3 mM thymidine for 17 hr at 4 hr post transfection. Cells were then washed twice with PBS 
and released into normal fresh medium for 12 hr at 37 °C. Cells were then enriched in G1 phase by incubation 
with 0.5 mM L-minosine for 15 hr or in S phase by incubation with 3 mM thymidine for additional 17 hr. Cells 
were then released and collected at the indicated time points. For flow cytometry analysis, cells were treated with 
trypsin, re-suspended in 1x PBS and fixed with chilled 70% ethanol at − 20 °C overnight. Resuspended cells were 
stained with 20 μg/ml propidium iodide (Sigma) solubilized in PBS containing 0.1% Triton X-100 and 200 μg/ml 
DNase-free RNase A for 30 min in dark at room temperature. Stained cells were analyzed using FACSCalibur™ 
flow cytometer (BD Biosciences) and ModFit LT software.

Bisulfite sequencing PCR.  Genomic DNA was extracted using QIAamp® DNA Mini Kit (Qiagen) 
and the extracted DNA was bisulfite treated using EZ DNA Methylation-Lightning Kit (Zymo Research). 
The bisulfite converted p53 promoter region R2, R2-3 and R3 were amplified with the primer sets: F (R2) 
5′-GTGTTTTTTTTTTTTTTTGGGAGTAGGTAGAAG-3′, R (R2) 5′-AACCTAAAAAATAAAATAC 
AAAAAAAATACAAAACCTACT-3′, F (R2-3) 5′-GTAGGTTTTGTATTTTTTTGTATTTTATTTTTTAGG-3′,  
R (R2-3) 5′-CTCATCAATTAAAATATCATTTTTTAAAAAAACTTTCC-3′,F (R3) 5′-TTAATTGATGAGAA 
GAAAGGATTTAGTTGAGAG-3′, R (R3) 5′-TCATCAAATTCAATCAAAAACTTACCCAATCCA-3′. The PCR 
products were purified using illustra™ GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare). Purified 
PCR products were used for TA cloning into pT&ATM vector (Yeastern Biotech). Ten independent clones in each 
case were sequenced.

Methylated DNA enrichment assay.  Genomic DNA was extracted using QIAamp® DNA Mini Kit 
(Qiagen) and sheared with the Bioruptor® UCD-200 Sonication System. Fragmented DNA was subjected to 
methylated DNA enrichment reaction using EpiMARK Methylated DNA Enrichment Kit according to man-
ufacturer’s instruction (New England BioLabs). DNA methylation status of the p53 promoter region R2, R2-3 
and R3 were analyzed by qRT-PCR using the primer sets: F (R2) 5′-TCCCGGGAGGAGAGGCGAAC-3′, 
R (R2) 5′-GCGGGACTCGGTAGGGGGAG-3′, F (R2-3) 5′-CGCAGCAGGTCTTGCACCTC-3′, R (R2-
3) 5′-GCTTTTGCGTTTGCTCTCAGC-3′, F (R3) 5′-TTTCCACCCCAAAATGTTAGTA-3′, R (R3) 
5′-ATCAAGTTCAGTCAGGAGCTTA-3′.

Chromatin immunoprecipitation (ChIP) assay.  ChIP assay was performed as described previously60. 
The DNA-protein complexes were decrosslinked and DNA fragments were purified using QIAquick PCR purifi-
cation kit (Qiagen). Purified DNAs were subjected to qRT-PCR. The specific primers for the p53 promoter region 
p2, p2-3 and p3 are identical to the primer sets for p53 promoter region R2, R2-3 and R3 in EpiMARK methylated 
DNA enrichment assay.

Statistical analysis.  The statistical analysis was conducted with one-tailed Student’s t test.

References
	 1.	 Hinchcliffe, E. H. & Sluder, G. “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell 

cycle. Genes Dev 15, 1167–81 (2001).
	 2.	 Cosenza, M. R. & Krämer, A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic 

issues. Chromosome Res. 24, 105–26 (2016).
	 3.	 Marthiens, V., Piel, M. & Basto, R. Never tear us apart–the importance of centrosome clustering. J Cell Sci 125, 3281–92 (2012).
	 4.	 Gisselsson, D. et al. When the genome plays dice: circumvention of the spindle assembly checkpoint and near-random chromosome 

segregation in multipolar cancer cell mitoses. PLoS One 3, e1871, doi:10.1371/journal.pone.0001871 (2008).
	 5.	 Brinkley, B. R. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11, 18–21 

(2001).
	 6.	 Lerit, D. A. & Poulton, J. S. Centrosomes are multifunctional regulators of genome stability. Chromosome Res. 24, 5–17 (2016).
	 7.	 Tritarelli, A. et al. p53 localization at centrosomes during mitosis and postmitotic checkpoint are ATM-dependent and require serine 

15 phosphorylation. Mol Biol Cell. 15, 3751–7 (2004).
	 8.	 Ciciarello, M. et al. p53 displacement from centrosomes and p53-mediated G1 arrest following transient inhibition of the mitotic 

spindle. J Biol Chem. 276, 19205–13 (2001).
	 9.	 Shinmura, K., Bennett, R. A., Tarapore, P. & Fukasawa, K. Direct evidence for the role of centrosomally localized p53 in the 

regulation of centrosome duplication. Oncogene 26, 2939–44 (2007).
	10.	 Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. 

Science 271, 1744–7 (1996).
	11.	 Borel, F., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic 

centrosome clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci USA 99, 9819–24 (2002).
	12.	 Yi, Q. et al. p53 dependent centrosome clustering prevents multipolar mitosis in tetraploid cells. PLoS One 6, e27304, doi:10.1371/

journal.pone.0027304 (2011).

http://dx.doi.org/10.1371/journal.pone.0001871
http://dx.doi.org/10.1371/journal.pone.0027304
http://dx.doi.org/10.1371/journal.pone.0027304


www.nature.com/scientificreports/

1 9SCIeNTIfIC Reports | 7: 9411  | DOI:10.1038/s41598-017-09779-w

	13.	 Vitale, I. et al. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. EMBO J. 29, 1272–84 (2010).
	14.	 Ricardo, S. M. & Félix, R. T. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6, 1068–1077 

(2011).
	15.	 Wang, S. & El-Deiry, W. S. p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res. 66, 

6982–9 (2006).
	16.	 Soto-Reyes, E. & Recillas-Targa, F. Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in 

transformed cell lines. Oncogene 29, 2217–27 (2010).
	17.	 Su, C. H., Shann, Y. J. & Hsu, M. T. p53 chromatin epigenetic domain organization and p53 transcription. Mol Cell Biol. 29, 93–103 

(2009).
	18.	 Zampieri, M. et al. ADP-ribose polymers localized on Ctcf-Parp1-Dnmt1 complex prevent methylation of Ctcf target sites. Biochem 

J. 441, 645–52 (2012).
	19.	 Wang, Y. A. et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther. 4, 

1138–43 (2005).
	20.	 Zhou, W. et al. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated 

promoter hypermethylation. Oncotarget 7, 20691–703 (2016).
	21.	 Cao, C. et al. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells 

proliferation induced by homocysteine. Exp Cell Res. 347, 95–104 (2016).
	22.	 Chen, J. & Kastan, M. B. 5′-3′-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction 

after DNA damage. Genes Dev. 24, 2146–56 (2010).
	23.	 Yang, D. Q., Halaby, M. J. & Zhang, Y. The identification of an internal ribosomal entry site in the 5′-untranslated region of p53 

mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 25, 4613–9 (2006).
	24.	 Ray, P. S., Grover, R. & Das, S. Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep. 7, 404–10 

(2006).
	25.	 Ariumi, Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 5, 423, 

doi:10.3389/fgene.2014.00423 (2014).
	26.	 Shih, J. W. & Lee, Y. H. Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 436, 45–58 

(2014).
	27.	 Zhao, L. et al. Multifunctional DDX3: dual roles in various cancer development and its related signaling pathways. Am J Cancer Res 

6, 387–402 (2016).
	28.	 Botlagunta, M. et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27, 3912–22 (2008).
	29.	 Lai, M. C., Chang, W. C., Shieh, S. Y. & Tarn, W. Y. DDX3 regulates cell growth through translational control of cyclin E1. Mol Cell 

Biol 30, 5444–53 (2010).
	30.	 Chang, P. C. et al. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is 

involved in cell growth control. Oncogene 25, 1991–2003 (2006).
	31.	 Chao, C. H. et al. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity 

of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 66, 6579–88 (2006).
	32.	 Li, H. K. et al. DDX3 represses stemness by epigenetically modulating tumor-suppressive miRNAs in hepatocellular carcinoma. Sci 

Rep 6, 28637, doi:10.1038/srep28637 (2016).
	33.	 Wu, D. W. et al. DDX3 enhances oncogenic KRAS‑induced tumor invasion in colorectal cancer via the β‑catenin/ZEB1 axis. 

Oncotarget 7, 22687–99 (2016).
	34.	 He, T. Y. et al. DDX3 promotes tumor invasion in colorectal cancer via the CK1ε/Dvl2 axis. Sci Rep 6, 21483, doi:10.1038/srep21483 

(2016).
	35.	 Su, C. Y. et al. DDX3 as a strongest prognosis marker and its downregulation promotes metastasis in colorectal cancer. Oncotarget 6, 

18602–12 (2015).
	36.	 Wu, D. W. et al. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor 

patient outcome in non-small-cell lung cancer. Oncogene 33, 1515–26 (2014).
	37.	 Sun, M., Zhou, T., Jonasch, E. & Jope, R. S. DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys 

Acta 1833, 1489–97 (2013).
	38.	 Kotov, A. A., Olenkina, O. M., Kibanov, M. V. & Olenina, L. V. RNA helicase Belle (DDX3) is essential for male germline stem cell 

maintenance and division in Drosophila. Biochim Biophys Acta 1863, 1093–1105 (2016).
	39.	 Chen, C. Y. et al. Targeted inactivation of murine Ddx3x: essential roles of Ddx3x in placentation and embryogenesis. Hum Mol 

Genet 25, 2905–2922 (2016).
	40.	 Li, Q. et al. DDX3X regulates cell survival and cell cycle during mouse early embryonic development. J Biomed Res 28, 282–91 

(2014).
	41.	 Pek, J. W. & Kai, T. DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome 

segregation. Proc Natl Acad Sci USA 108, 2007–12 (2011).
	42.	 Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–7 (1997).
	43.	 Julian, M. et al. gamma-Tubulin participates in the formation of the midbody during cytokinesis in mammalian cells. J Cell Sci 105, 

145–56 (1993).
	44.	 Shu, H. B., Li, Z., Palacios, M. J., Li, Q. & Joshi, H. C. A transient association of gamma-tubulin at the midbody is required for the 

completion of cytokinesis during the mammalian cell division. J Cell Sci 108, 2955–62 (1995).
	45.	 Yang, Z., Loncarek, J., Khodjakov, A. & Rieder, C. L. Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat 

Cell Biol 10, 748–51 (2008).
	46.	 Wang, Y. et al. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer. 8, 8, 

doi:10.1186/1476-4598-8-8 (2009).
	47.	 Borges, H. L., Linden, R. & Wang, J. Y. DNA damage-induced cell death: lessons from the central nervous system. Cell Res. 18, 17–26 

(2008).
	48.	 Shih, J. W., Tsai, T. Y., Chao, C. H. & Wu Lee, Y. H. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-

dependent translation by acting as an eIF4E inhibitory protein. Oncogene 27, 700–14 (2008).
	49.	 Geissler, R., Golbik, R. P. & Behrens, S. E. The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic 

Acids Res 40, 4998–5011 (2012).
	50.	 Liu, J., Henao-Mejia, J., Liu, H., Zhao, Y. & He, J. J. Translational regulation of HIV-1 replication by HIV-1 Rev cellular cofactors 

Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol 6, 308–21 (2011).
	51.	 Kondo, Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 50, 455–63 

(2009).
	52.	 Heerma van Voss, M. R. et al. Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer. 

Oncotarget 6, 28312–26 (2015).
	53.	 Bol, G. M. et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med 7, 648–69 (2015).
	54.	 Xie, M. et al. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA 

helicase DDX3. Oncotarget 6, 29901–13 (2015).

http://dx.doi.org/10.3389/fgene.2014.00423
http://dx.doi.org/10.1038/srep28637
http://dx.doi.org/10.1038/srep21483
http://dx.doi.org/10.1186/1476-4598-8-8


www.nature.com/scientificreports/

20SCIeNTIfIC Reports | 7: 9411  | DOI:10.1038/s41598-017-09779-w

	55.	 Meek, D. W. & Anderson, C. W. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect 
Biol. 1, a000950 (2009). 10.1101/ cshperspect.a000950.

	56.	 Lin, R. K. & Wang, Y. C. Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci 
4, 46, doi:10.1186/2045-3701-4-46 (2014).

	57.	 Sharma, S., De Carvalho, D. D., Jeong, S., Jones, P. A. & Liang, G. Nucleosomes containing methylated DNA stabilize DNA 
methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 7, e1001286, doi:10.1371/journal.pgen.1001286 
(2011).

	58.	 Shih, J. W. et al. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress 
response. Biochem J. 441, 119–29 (2012).

	59.	 Matsui, Y., Nakayama, Y., Okamoto, M., Fukumoto, Y. & Yamaguchi, N. Enrichment of cell populations in metaphase, anaphase, and 
telophase by synchronization using nocodazole and blebbistatin: a novel method suitable for examining dynamic changes in 
proteins during mitotic progression. Eur J Cell Biol 91, 413–9 (2012).

	60.	 Tsai, T. Y. et al. RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer 
protein by interacting with HNF4 and SHP. Sci. Rep 7, 41452, doi:10.1038/srep41452 (2017).

Acknowledgements
We thank Drs. Tsung-Sheng Su, Tzu-Hao Cheng, Li-Ru You, Chun-Ming Chen and Ru-Tsun Mai for their 
critical comments and helpful discussions on this work. We are grateful to Dr. Li-Li Li for careful reading of this 
manuscript and useful suggestions. We also thank the Imaging Core Facility of Nanotechnology of the University 
System of Taiwan-National Yang-Ming University (UST-YMU) for confocal microscopy technical services. We 
thank Dr. Sheau-Yann Shieh (Institute of Biomedical Sciences, Academia Sinica, Taiwan) for kindly providing 
pCMV-p53 and pCMV-p53 S15A mutant as gifts. We also thank Dr. Tang K. Tang (Institute of Biomedical 
Sciences, Academia Sinica, Taiwan) for kindly providing mCherry-α-tubulin constructs as a gift. We appreciate 
Dr. Jun-Yi Chien (Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan) 
for conducting live cell imaging. This work was supported by grants from the National Health Research Institute 
(NHRI-EX98-9501BI and NHRI-EX99-9501BI), the Ministry of Science and Technology (NSC95-2320-B-
010-049-MY3, NSC96-2320-B-010-007, NSC98-2320-B-009-003-MY3, NSC101-2320-B-009-001-MY3 and 
MOST105-2320-B-009-001) and the “Aim for the Top University Program (104W945, 105W945 and 106W945)” 
of the National Chiao-Tung University and the Ministry of Education, Taiwan, Republic of China, to Dr. Yan-Hwa 
Wu Lee.

Author Contributions
W.-J.C. was responsible for experiment design, data collection as well as analysis and manuscript writing. W.-
T.W., T.-Y.T. and H.-K.L. participated in data interpretation and discussion. W.-T.W. revised the manuscript. Y.-
H.W.L. supervised the experiment design, data interpretation, manuscript preparation and edition. All authors 
reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-09779-w
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1186/2045-3701-4-46
http://dx.doi.org/10.1371/journal.pgen.1001286
http://dx.doi.org/10.1038/srep41452
http://dx.doi.org/10.1038/s41598-017-09779-w
http://creativecommons.org/licenses/by/4.0/

	DDX3 localizes to the centrosome and prevents multipolar mitosis by epigenetically and translationally modulating p53 expre ...
	Results

	DDX3 localizes to the centrosome throughout the cell cycle and colocalizes with centrosome-associated p53 during anaphase a ...
	Downregulation of DDX3 results in mitotic abnormalities, G2/M phase transition delay and increased cell death. 
	Downregulation of DDX3 leads to multipolar mitosis by impairing centrosome inactivation and clustering. 
	Centrosomal localization of DDX3 requires p53 but is independent of the centrosomal localization of p53. 
	Depletion of DDX3 suppresses the level of Ser15-phosphorylated p53 and its centrosomal localization. 
	Knockdown of DDX3 suppresses p53 expression by inhibiting p53 mRNA translation but not p53 stability. 
	Downregulation of DDX3 inhibits p53 transcription through activation of DNMTs and hypermethylation of p53 promoter. 
	Depletion of DDX3 enriches the binding of DNMTs and repressive histone marks to p53 promoter. 

	Discussion

	Materials and Methods

	Cell culture and transfection. 
	Plasmids. 
	In vitro RNA synthesis and RNA transfection. 
	Antibodies and reagents. 
	RNA extraction and quantitative real-time RT-PCR. 
	Reporter assay. 
	Mitotic enrichment and immunofluorescence. 
	Co-immunoprecipitation. 
	Cell cycle synchronization and flow cytometry. 
	Bisulfite sequencing PCR. 
	Methylated DNA enrichment assay. 
	Chromatin immunoprecipitation (ChIP) assay. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 DDX3 localizes to the centrosome throughout the cell cycle and associates with p53 at centrosome during anaphase and telophase.
	Figure 2 Downregulation of DDX3 results in mitotic abnormalities, G2/M phase transition delay and increased cell death.
	Figure 3 DDX3 specifically prevents multipolar mitosis by clustering or inactivating extra centrosomes.
	Figure 4 Depletion of DDX3 in p53−/− HCT116 cells and reintroduction of p53 in the DDX3-knockdown HCT116 cells elicited no effect on the multipolar mitosis.
	Figure 5 p53 is essential for DDX3 localization at centrosome.
	Figure 6 Overexpression of p53 rescues the centrosomal localization of DDX3 in p53−/− HCT116 cells.
	Figure 7 Knockdown of DDX3 results in displacement of p53 from centrosome.
	Figure 8 Knockdown of DDX3 suppresses p53 expression by inhibiting p53 mRNA translation but not p53 stability.
	Figure 9 Knockdown of DDX3 inhibits p53 transcription through activation of the DNMTs and DNA hypermethylation.
	Figure 10 Depletion of DDX3 enriches the binding of DNMTs and repressive histone marks to p53 promoter.
	Figure 11 A proposed model illustrates that DDX3 prevents multipolar mitosis through regulation of p53.




