organic compounds

 $\mu = 1.95 \text{ mm}^{-1}$ T = 193 (2) K

 $R_{\rm int} = 0.064$

 $0.51 \times 0.38 \times 0.03 \text{ mm}$

3 standard reflections frequency: 60 min intensity decay: 2%

2672 independent reflections

2322 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2,3,5,6-Tetramethylbenzylsulfanyl)pyridine *N*-oxide

B. Ravindran Durai Nayagam,^a* Samuel Robinson Jebas,^b J. Jebaraj Devadasan^c and Dieter Schollmeyer^d

^aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, ^bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, ^cDepartment of Physics, Popes College, Sawyerpuram 628 251, Tamilnadu, India, and ^dInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany

Correspondence e-mail: b_ravidurai@yahoo.com

Received 5 September 2008; accepted 16 September 2008

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.145; data-to-parameter ratio = 15.2.

In the title compound, $C_{16}H_{19}NOS$, the durene ring and the oxopyridyl ring form a dihedral angle of 82.26 (7)°. The crystal structure is stabilized by intermolecular C-H···O hydrogen bonds, weak C-H··· π interactions and π - π interactions [centroid–centroid distance of 3.4432 (19) Å], together with intramolecular S···O [2.657 (2) Å] short contacts.

Related literature

For bond-length data, see: Allen *et al.* (1987). For biological activities of *N*-oxide derivatives see: Bovin *et al.* (1992); Katsuyuki *et al.* (1991). Leonard *et al.* (1955); Lobana & Bhatia (1989); Symons & West (1985). For related literature, see: Jebas *et al.* (2005); Ravindran Durai Nayagam *et al.* (2008).

Experimental

Crystal data $C_{16}H_{19}NOS$ $M_r = 273.38$ Monoclinic, $P2_1/c$

a = 16.601 (6) Åb = 9.1562 (8) Åc = 9.696 (4) Å

$\beta = 106.098 \ (16)^{\circ}$
V = 1416.1 (7) Å ³
Z = 4
Cu $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(CORINC; Dräger & Gattow,
1971)
$T_{\min} = 0.480, T_{\max} = 0.960$
2848 measured reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.050 & 176 \text{ parameters} \\ wR(F^2) = 0.144 & H\text{-atom parameters constrained} \\ S = 1.05 & \Delta\rho_{\max} = 0.36 \text{ e } \text{\AA}^{-3} \\ 2672 \text{ reflections} & \Delta\rho_{\min} = -0.34 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots O7^{i}$ $C2-H2\cdots Cg2^{ii}$	0.95 0.95	2.51 2.98	3.319 (3) 3.853 (3)	143 154

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$, (ii) $x, -y - \frac{1}{2}, z - \frac{3}{2}$. *Cg2* is the centroid of the C10–C15 ring.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CORINC* (Dräger & Gattow, 1971); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2262).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & &Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145– 150.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
- Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.
- Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
- Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.
- Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, 0409.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379– 381.

supplementary materials

Acta Cryst. (2008). E64, o1975 [doi:10.1107/S1600536808029747]

2-(2,3,5,6-Tetramethylbenzylsulfanyl)pyridine N-oxide

B. Ravindran Durai Nayagam, S. R. Jebas, J. Jebaraj Devadasan and D. Schollmeyer

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons *et al.*, 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki *et al.*, 1991; Bovin *et al.*, 1992). Pyridine N-oxides bearing a sulfur group in position two display significant antimicrobial activity (Leonard *et al.*, 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas *et al.*, 2005; Ravindran Durai Nayagam *et al.*, 2008). As an extension of our work on N-oxide derivatives, we report here the crystal structure of the title compound.

The asymmetric unit of (I) consists of one molecule of 2-(2,3,5,6-Tetramethylbenzylsulfanyl)pyridine N-oxide. The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas *et al.*, 2005) The N—O bond lengths are in good agreement with the mean value of 1.304 (15)Å reported in the literature for pyridine N-oxides (Allen *et al.*, 1987).

The pyridine ring and the durene rings are essentially planar with the maximum deviation from planarity being - 0.013 (2)Å for atom N6 and -0.011 (2)Å for atom C10 respectively. The dihedral angle formed by the pyridine ring (C1—C5/N6) with the durene ring (C10—C15) is 82.26 (7)°. The atom O7 attached at N6 of the pyridine ring is coplanar, the torsion angle being O7–N6–C5–C4=177.93 (19)°.

The crystal structure is stabilized by intermolecular C—H···O, C–H··· π interactions and π – π interactions with the cg1-cg1¹ distance of 3.4432 (19)Å (*Cg*1:C1—C5/N6) [symmetry code:(i) 1-*X*,1-Y,1-*Z*] together with intramolecular S···O [2.657 (2) Å] short contacts..

Experimental

A mixture of mono(bromomethyl)durene (0.227 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.149,1 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in chloroform-methanol (1:1 v/v) and allowed to undergo slow evaporation. Fine crystals were obtained after a week

Refinement

After checking for their presence in the Fourier map, all the hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms with the C—H = 0.95Å (aromatic); C—H = 0.99 Å(methylene) and C—H = 0.98Å (methyl) with $U_{iso}(H)$ in the range of $1.2U_{equ}(C) - 1.5U_{equ}(C)$ methyl and methylene.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. The crystal packing of the title compound, viewed down the b axis.

2-(2,3,5,6-Tetramethylbenzylsulfanyl)pyridine N-oxide

Crystal data	
C ₁₆ H ₁₉ NOS	$F_{000} = 584$
$M_r = 273.38$	$D_{\rm x} = 1.282 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 16.601 (6) Å	$\theta = 36-45^{\circ}$
b = 9.1562 (8) Å	$\mu = 1.95 \text{ mm}^{-1}$
c = 9.696 (4) Å	T = 193 (2) K
$\beta = 106.098 \ (16)^{\circ}$	Plate, colourless
V = 1416.1 (7) Å ³	$0.51\times0.38\times0.03~mm$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.064$
Monochromator: graphite	$\theta_{\text{max}} = 69.9^{\circ}$
T = 193(2) K	$\theta_{\min} = 2.8^{\circ}$
$\omega/2\theta$ scans	$h = -19 \rightarrow 20$
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971)	$k = -11 \rightarrow 0$
$T_{\min} = 0.48, \ T_{\max} = 0.96$	$l = -11 \rightarrow 0$
2848 measured reflections	3 standard reflections
2672 independent reflections	every 60 min
2322 reflections with $I > 2\sigma(I)$	intensity decay: 2%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.050$ H-atom parameters constrained $wR(F^2) = 0.144$ $w = 1/[\sigma^2(F_o^2) + (0.0919P)^2 + 0.3984P]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{max} < 0.001$ 2672 reflections $\Delta\rho_{max} = 0.36$ e Å⁻³176 parameters $\Delta\rho_{min} = -0.34$ e Å⁻³Primary atom site location: structure-invariant direct Γ direction endots

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic o	or equivalent	t isotropic	displacement	<i>parameters</i>	$(Å^2$	')
				1	1	1	1	1	1	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.37023 (12)	0.4717 (2)	0.5511 (2)	0.0350 (4)
C2	0.34830 (13)	0.5167 (2)	0.4094 (2)	0.0410 (5)
H2	0.3054	0.4668	0.3400	0.049*
C3	0.38878 (15)	0.6342 (3)	0.3689 (3)	0.0482 (6)
Н3	0.3745	0.6647	0.2715	0.058*
C4	0.45024 (14)	0.7067 (2)	0.4716 (3)	0.0468 (5)
H4	0.4775	0.7892	0.4456	0.056*
C5	0.47167 (14)	0.6594 (2)	0.6111 (3)	0.0445 (5)
Н5	0.5141	0.7092	0.6814	0.053*
N6	0.43286 (11)	0.54200 (19)	0.65006 (19)	0.0382 (4)
07	0.45448 (11)	0.49322 (19)	0.78177 (17)	0.0531 (4)
S8	0.32907 (3)	0.32912 (5)	0.62989 (5)	0.0394 (2)
С9	0.24486 (13)	0.2652 (2)	0.4783 (2)	0.0392 (5)
H9A	0.2073	0.3471	0.4354	0.047*
H9B	0.2681	0.2226	0.4037	0.047*
C10	0.19752 (13)	0.1513 (2)	0.5361 (2)	0.0351 (4)
C11	0.13472 (12)	0.1944 (2)	0.5995 (2)	0.0381 (5)
C12	0.09035 (13)	0.0877 (3)	0.6508 (2)	0.0453 (5)
C13	0.11026 (15)	-0.0575 (3)	0.6389 (3)	0.0516 (6)
H13	0.0796	-0.1297	0.6733	0.062*
C14	0.17289 (15)	-0.1027 (2)	0.5791 (3)	0.0464 (5)
C15	0.21801 (13)	0.0032 (2)	0.5273 (2)	0.0389 (5)
C16	0.11488 (16)	0.3533 (3)	0.6159 (3)	0.0528 (6)
H16A	0.0581	0.3748	0.5559	0.079*

supplementary materials

H16B	0.1553	0.4146	0.5857	0.079*
H16C	0.1183	0.3736	0.7166	0.079*
C17	0.02163 (17)	0.1289 (4)	0.7180 (3)	0.0671 (8)
H17A	-0.0016	0.0403	0.7488	0.101*
H17B	-0.0228	0.1812	0.6475	0.101*
H17C	0.0447	0.1920	0.8013	0.101*
C18	0.1893 (2)	-0.2643 (3)	0.5698 (4)	0.0711 (8)
H18A	0.1825	-0.2913	0.4694	0.107*
H18B	0.1494	-0.3197	0.6072	0.107*
H18C	0.2466	-0.2866	0.6267	0.107*
C19	0.28812 (17)	-0.0409 (3)	0.4648 (3)	0.0552 (6)
H19A	0.2969	-0.1467	0.4750	0.083*
H19B	0.3397	0.0099	0.5158	0.083*
H19C	0.2733	-0.0147	0.3628	0.083*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0376 (10)	0.0298 (9)	0.0427 (11)	0.0045 (8)	0.0200 (8)	-0.0011 (8)
C2	0.0424 (11)	0.0396 (11)	0.0453 (12)	0.0042 (9)	0.0192 (9)	0.0034 (9)
C3	0.0505 (12)	0.0450 (12)	0.0568 (14)	0.0085 (10)	0.0277 (11)	0.0131 (11)
C4	0.0454 (12)	0.0355 (11)	0.0695 (15)	0.0044 (9)	0.0327 (11)	0.0055 (11)
C5	0.0434 (11)	0.0348 (11)	0.0628 (14)	-0.0024 (8)	0.0272 (11)	-0.0073 (10)
N6	0.0417 (9)	0.0343 (9)	0.0433 (9)	0.0019 (7)	0.0198 (8)	-0.0047 (7)
07	0.0648 (10)	0.0532 (10)	0.0401 (9)	-0.0085 (8)	0.0127 (8)	-0.0019 (7)
S8	0.0464 (3)	0.0368 (3)	0.0370 (3)	-0.0043 (2)	0.0148 (2)	0.00324 (19)
C9	0.0447 (11)	0.0371 (10)	0.0373 (11)	-0.0016 (9)	0.0136 (9)	0.0028 (8)
C10	0.0381 (10)	0.0317 (10)	0.0369 (10)	0.0011 (8)	0.0129 (8)	0.0012 (8)
C11	0.0357 (10)	0.0398 (11)	0.0387 (11)	0.0043 (8)	0.0102 (8)	-0.0032 (9)
C12	0.0383 (11)	0.0557 (13)	0.0437 (12)	-0.0067 (10)	0.0143 (9)	-0.0040 (10)
C13	0.0505 (13)	0.0501 (13)	0.0531 (14)	-0.0177 (10)	0.0128 (11)	0.0048 (11)
C14	0.0513 (13)	0.0323 (11)	0.0504 (13)	-0.0048 (9)	0.0054 (10)	0.0021 (9)
C15	0.0419 (10)	0.0345 (10)	0.0397 (11)	0.0052 (8)	0.0104 (9)	-0.0011 (8)
C16	0.0548 (13)	0.0453 (13)	0.0585 (15)	0.0141 (11)	0.0160 (12)	-0.0079 (11)
C17	0.0470 (13)	0.101 (2)	0.0612 (16)	-0.0133 (14)	0.0274 (12)	-0.0137 (16)
C18	0.084 (2)	0.0320 (12)	0.087 (2)	-0.0009 (12)	0.0070 (17)	0.0041 (13)
C19	0.0612 (14)	0.0486 (13)	0.0611 (15)	0.0143 (11)	0.0256 (12)	-0.0044 (12)

Geometric parameters (Å, °)

C1—N6	1.365 (3)	C12—C13	1.383 (4)
C1—C2	1.382 (3)	C12—C17	1.510 (3)
C1—S8	1.745 (2)	C13—C14	1.387 (4)
C2—C3	1.382 (3)	С13—Н13	0.9500
С2—Н2	0.9500	C14—C15	1.401 (3)
C3—C4	1.382 (4)	C14—C18	1.511 (3)
С3—Н3	0.9500	C15—C19	1.509 (3)
C4—C5	1.370 (3)	C16—H16A	0.9800
C4—H4	0.9500	C16—H16B	0.9800

C5—N6	1.360 (3)	C16—H16C	0.9800
С5—Н5	0.9500	C17—H17A	0.9800
N6—O7	1.306 (2)	C17—H17B	0.9800
S8—C9	1.821 (2)	С17—Н17С	0.9800
C9—C10	1.505 (3)	C18—H18A	0.9800
С9—Н9А	0.9900	C18—H18B	0.9800
С9—Н9В	0.9900	C18—H18C	0.9800
C10-C11	1,406 (3)	С19—Н19А	0.9800
C10—C15	1.406 (3)	С19—Н19В	0.9800
C11-C12	1.395 (3)	C19—H19C	0.9800
C11—C16	1.510 (3)		
N6	119 84 (19)	C12—C13—C14	123 1 (2)
$N_{0} = C_{1} = C_{2}$	111.06 (15)	C12 - C13 - C14	123.1 (2)
$C_2 = C_1 = S_2$	129 10 (17)	C12-C13-H13	118.4
$C_{2} = C_{1} = 50$	129.10(17) 120.0(2)	$C_{14} = C_{15} = 1115$	110.7
$C_{3} = C_{2} = C_{1}$	120.0 (2)	$C_{13} = C_{14} = C_{13}$	110.7(2) 110.1(2)
$C_{1} = C_{2} = H_{2}$	120.0	$C_{13} = C_{14} = C_{18}$	119.1(2) 122.2(2)
$C_1 = C_2 = C_1^2$	120.0	$C_{13} = C_{14} = C_{18}$	122.2(2) 118.0(2)
$C_2 = C_3 = C_4$	119.5 (2)	$C_{14} = C_{15} = C_{10}$	110.9(2) 120.5(2)
$C_2 = C_3 = H_2$	120.4	$C_{14} = C_{15} = C_{19}$	120.3(2)
$C_{4} = C_{3} = H_{3}$	120.4	C10 - C15 - C19	120.0 (2)
$C_5 = C_4 = C_5$	119.8 (2)	C11_C16_U16P	109.5
C_{3} C_{4} H_{4}	120.1		109.5
C3-C4	120.1	$\begin{array}{cccc} \mathbf{H} \mathbf{I} \mathbf{O} \mathbf{A} & \mathbf{U} \mathbf{I} \mathbf{O} \mathbf{D} \\ \mathbf{O} \mathbf{I} \mathbf{I} & \mathbf{O} \mathbf{I} \mathbf{O} & \mathbf{U} \mathbf{I} \mathbf{O} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} & \mathbf{O} \mathbf{I} \mathbf{O} & \mathbf{U} \mathbf{I} \mathbf{O} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} & \mathbf{O} \mathbf{I} \mathbf{O} & \mathbf{U} \mathbf{I} \mathbf{O} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \\ \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	109.5
NG-C5-U5	120.7 (2)		109.5
N0-C3-H3	119.0	H10A - C16 - H16C	109.5
C4—C5—H5	119.0	H10B-C10-H10C	109.5
$0/-N_0$	121.28 (19)	C12 - C17 - H17A	109.5
$0/-N_0$	118.40 (17)		109.5
C_{5} N6- C_{1}	120.32 (19)	HI/A—CI/—HI/B	109.5
CIS8C9	101.13 (10)		109.5
C10-C9-S8	106.60 (14)		109.5
C10—C9—H9A	110.4	H1/B—C1/—H1/C	109.5
S8—C9—H9A	110.4	C14—C18—H18A	109.5
C10—C9—H9B	110.4	C14—C18—H18B	109.5
S8—C9—H9B	110.4	H18A—C18—H18B	109.5
Н9А—С9—Н9В	108.6	C14—C18—H18C	109.5
CII—CI0—CI5	121.22 (19)	H18A—C18—H18C	109.5
C11—C10—C9	119.71 (19)	H18B—C18—H18C	109.5
C15—C10—C9	119.07 (19)	С15—С19—Н19А	109.5
C12—C11—C10	119.2 (2)	С15—С19—Н19В	109.5
C12-C11-C16	119.0 (2)	Н19А—С19—Н19В	109.5
C10-C11-C16	121.7 (2)	С15—С19—Н19С	109.5
C13—C12—C11	118.7 (2)	Н19А—С19—Н19С	109.5
C13—C12—C17	120.2 (2)	H19B—C19—H19C	109.5
C11—C12—C17	121.1 (2)		
N6—C1—C2—C3	-1.1 (3)	C15—C10—C11—C16	177.1 (2)
S8—C1—C2—C3	179.56 (16)	C9—C10—C11—C16	-1.9 (3)
C1—C2—C3—C4	-0.9 (3)	C10-C11-C12-C13	0.6 (3)

supplementary materials

C2—C3—C4—C5	1.6 (3)	C16-C11-C12-C13	-178.4 (2)
C3—C4—C5—N6	-0.3 (3)	C10-C11-C12-C17	-179.2 (2)
C4—C5—N6—O7	177.93 (19)	C16-C11-C12-C17	1.8 (3)
C4—C5—N6—C1	-1.7 (3)	C11-C12-C13-C14	0.5 (4)
C2-C1-N6-07	-177.22 (18)	C17—C12—C13—C14	-179.7 (2)
S8—C1—N6—O7	2.2 (2)	C12—C13—C14—C15	-0.4 (4)
C2-C1-N6-C5	2.5 (3)	C12-C13-C14-C18	-179.5 (2)
S8—C1—N6—C5	-178.13 (14)	C13-C14-C15-C10	-0.8 (3)
N6—C1—S8—C9	176.64 (14)	C18-C14-C15-C10	178.2 (2)
C2—C1—S8—C9	-4.0 (2)	C13—C14—C15—C19	178.5 (2)
C1—S8—C9—C10	-173.92 (14)	C18-C14-C15-C19	-2.5 (4)
S8—C9—C10—C11	83.9 (2)	C11-C10-C15-C14	2.0 (3)
S8—C9—C10—C15	-95.2 (2)	C9-C10-C15-C14	-178.98 (19)
C15-C10-C11-C12	-1.9 (3)	C11-C10-C15-C19	-177.3 (2)
C9—C10—C11—C12	179.06 (19)	C9-C10-C15-C19	1.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4···O7 ⁱ	0.95	2.51	3.319 (3)	143
C2—H2···Cg2 ⁱⁱ	0.95	2.98	3.853 (3)	154
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$; (ii) x , $-y-1/2$	2, <i>z</i> -3/2.			

