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Crossover designs are commonly applied in research due to efficiency and subject parsimony compared to parallel studies. Baseline
measurements would improve the power of comparison. For time to event outcomes, the sample size is reduced due to censorship,
if they are ignored; thus, applying traditional regression models will be limited. A logical solution is to impute the censored
observation and apply common analytical models for analyzing the data. Nevertheless, techniques to impute censored data in
time-to-event outcomes in crossover designs are not practiced as much. Accordingly, we propose a method to impute the
censored observation using median residual life regression and then analyze the data using analyses of covariance (ANCOVA),
considering the difference of period-specific baselines as covariate. We used simulation to show the favorable performance of
our method relative to a recently proposed method, multiple imputation with model averaging and ANCOVA (MIMI).
Specifically, the censored observations were multiply-imputed using prespecified parametric event time models, and then, the
methods were applied to a real data example.

1. Introductions

In clinical trial designs, to compare the effect of treatment on
the same subject over different treatment periods, crossover
designs are appropriate due to higher accuracy and subject
parsimony [1]. Two-treatment two-period crossover is the
simplest design with two treatments, A and B, where subjects
are randomly allocated to AB or BA sequences [2].

Based on previous studies, consideration of the baseline
measurement in the analysis of crossover design, which is
gathered before receiving treatment, can increase the power
of comparisons [3–5]. The literature suggests that the
analysis of covariance (ANCOVA), considering within
subject differences in baseline responses as a covariate, has
a good performance in crossover design [3, 4, 6–9].

Time-to-event endpoints in crossover clinical designs are
also commonly investigated. For example, in a crossover trial
of pregabalin for neurogenic claudication, the outcome vari-
able was “the time to first moderate pain symptoms during a

15-minute treadmill test.”Markman et al. studied the efficacy
of an oral spray involving treadmill exercise testing [10, 11].
In both mentioned studies, baseline measurements were
gathered, but not considered in the analysis. Xu et al. exam-
ined a crossover trial in a treadmill walking test. The
recorded time to a specific cardiopulmonary event was the
main outcome, and the participants who walked more than
10min were considered right censored observation. Every
participant had four responses: baseline and posttreatment
responses for periods 1 and 2. They applied analysis of
covariance (ANCOVA) to consider the baseline measure-
ments in estimating the drug effect [1].

For ethical reasons, it is essential to keep the number of
patients in a clinical trial as low as possible. As evidenced
by extensive research publications, crossover design can be
a useful and powerful tool to reduce the number of patients
required for a parallel group design [12, 13]. An explicit
statistical issue in regression modeling is that adequate
statistical power cannot be reached in a small sample size
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(which is a characteristic of crossover designs) [14].
Apparently, in time-to-event endpoints, censorship is inev-
itable; thus, ignoring censored responses can lead to fewer
sample sizes and critical conditions. The alternative is to
impute the censored values as real as possible before data
analysis.

Xu et al. incorporated multiple imputation (MI) of cen-
sored values and ANCOVA to consider baseline measure-
ments in analyzing 2 × 2 crossover studies with censored
time-to-event outcomes. The superiority of their method
over the hierarchical rank test was demonstrated through
simulations [1, 15]. Their imputation method was based on
fitting parametric models and using MI. Finally, they applied
Rubin’s rule to estimate the treatment effect. In spite of
satisfactory results, the computation and imputation process
was cumbersome and time-consuming [1].

Although matching is done in crossover design, there are
some variables that can affect the duration of a time-to-event
outcome before receiving any treatment. For example,
regardless of the study type, in a treadmill test, age is an effec-
tive factor on the walking duration. Hence, it would be ben-
eficial to apply a method that incorporates demographic
variables in the imputation step. In addition, imputation
would be more precise, if we consider the censored times
and use them as a predictive input when imputing them.
However, these were not included in the aforementioned
method.

The use of advanced statistical indices would improve
statistical analysis. The mean residual life function and the
quantile (median) residual life function are functional indices
that are usually applied to summarize the survival experience
of patients [16]. The mean residual life function has some
limitations, though. Firstly, it cannot be estimated reliably
in the presence of censored observation and secondly; as it
extremely depends on outliers, it is very unstable even in
completed data [16].

In this paper, we develop a new approach that can be
used directly to infer the effect of covariates on the median
residual lifetime (MERL) at any specific time point, to predict
actual lifetimes more accurately.

After imputing the predicted censored observations in
crossover time-to-event data based on MERL regression
models, then, we apply ANCOVA to consider the baseline
measurements and treatment effect. Specifically, two
models will be discussed: (i) the imputation model which
is the main aim of this study which is applied for imput-
ing censored values and (ii) the analytical model,
ANCOVA, which is performed similar to the Xu et al.
study [1].

To impute the censored observations in the first part, we
applied the median residual life regression model, which has
not been used for this purpose in crossover designs and is free
from the mentioned limitations.

Section 2 presents details of the proposed method. In Sec-
tion 3, we contrast the numerical performance of our pro-
posed method with the multiple imputation method
through simulation studies. Section 4 presents the results
from applying the different methods to a real data example.
Section 5 deals with discussion.

2. Methods

We assumed a 2 × 2 crossover trial with two treatments (A
and B) and two sequences (AB or BA) with a wash-out period
between periods 1 and 2. The baseline and posttreatment
responses are indicated as bijk and Yijk, where i = 1, 2 repre-
sents periods; j = 1, 2,⋯, n denotes subjects; and k = 1, 2
shows sequences. It can be assumed that after logarithm trans-
formation, ðb1j1, Y1 j1, b2j1, Y2j1ÞT and ðb1j2, Y1j2, b2j2, Y2j2ÞT
follow a multivariate distribution with different means and
the same variance-covariance structure Σ. If a subject dose
not experience the event during the follow-up time, he will
be assumed as a censored observation at the end of period time
which is shown by time τ. Another assumption is that there is
no censoring observation at baseline.

In our method, first, the censored observations are
imputed by applying the predicted median residual life
regression added to the censored time, which is the main
objective of our study. Then, similar to Xu et al.’s study,
ANCOVA is done to estimate “the ratio of geometric means
of the event times for treatment relative to B,” which is repre-
sented by θ.

Next, the null hypothesisH0∶θ = 1 is tested. For symmet-
ric distributions (on the log scale), the geometric mean is
equivalent to the median. Thus, this parameter can be used
for estimating the ratio of median survival of the two treat-
ments, which is usually of interest in survival analysis.

2.1. Imputation Model

2.1.1. Imputing Censors by Median Residual Life Regression.
The median residual life function is as follows:

m t0ð Þ =median Ti − t0 ∣ Ti > t0ð Þ, ð1Þ

This is interpreted as “the remaining lifetimes among
survivors beyond time t0”.

To adjust for confounding variables and consider them as
covariates, regression modeling is a proper choice.

Suppose that z1i is a bivariate covariate that 0 and 1
are assigned to the control and treatment groups, respec-
tively. Applying the invariance property of the median,
the median residual life repression equation is written as
follows [16]:

Median Ti − t0 Ti > t0, z1ijð Þ = exp β
0ð Þ
t0

+ β
1ð Þ
t0
z1i

� �
: ð2Þ

Now, in our study, we impute the censored times
using median residual life regression. First, this is done
for the censored observations in period 1 and afterwards,
censored times in period 2.

We fit the above model and use baseline information in
period 1, age and treatment indicators as covariates, and then
compute the median residual life regression for every
censored observation:
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Median Ti − t0 ∣ Ti > t0, z1jk, age 1jk , b1jk

0
B@

1
CA

= exp β
0ð Þ
t0

+ β
1ð Þ
t0
z1ik + β

2ð Þ
t0
A1ik + β

3ð Þ
t0
b1ik

� �
, j = 1, 2,⋯, n, k = 1, 2

ð3Þ

where z1jk is the treatment indicator, A1ik represents the age
of each subject in period 1, and b1ik denotes the baseline
measurement of each subject. The corresponding complete
set of uncensored post treatment values in period 1 is
denoted by Y1jk:

After completing the censored time in period 1, the
censored values in period 2 are imputed by the regression
equation ahead:

Median Ti − t0 ∣ Ti > t0, z2jk, age 2jk , b2jk, Y1jk

0
B@

1
CA

= exp β
0ð Þ
t0

+ β
1ð Þ
t0
z2ik + β

2ð Þ
t0
A2ik + β

3ð Þ
t0
b2ik + β

3ð Þ
t0
b1ik + β

4ð Þ
t0
Y1jk

� �
:

ð4Þ

In addition to the mentioned variables, Y1jk also is added
to the equation. The corresponding complete set of uncen-
sored post treatment values in period 2 is represented by
Y2jk.

For each censored value, t0 is set to the censorship time
itself as the idea is to find the residual life time after t0. After
computing the median residual time for every censored time,
the final imputed time is obtained through summing the
median residual life time and the censored time for that
person.

2.2. Analysis of Covariance. After imputing censored times,
ANCOVA is applied to the completed data on the log scale.
The difference between posttreatment event times Δjk = log
ðY1jkÞ − log ðY2jkÞ is regressed on the difference between
baseline values Djk = log ðb1jkÞ − log ðb2jkÞ and the sequence
indicator Qj:

Δjk = γ0 + γ1 Djk + γ2 Qj + εjk, εjk ∼N 0, η2
� �

: ð5Þ

The point estimator for the geometric mean for treat-

ment A relative to B is logbθ =cγ2 /2.
The P value for the hypothesis H0∶θ = 1 is obtained from

the P value of the testH0∶log cγ2 = 0 in the ANCOVA output.

3. Simulation

3.1. Simulation Set-Up. We carried out a simulation study to
compare the performance of our proposed and multiple
imputation method. Type 1 error and power are reported
for both methods. The bias and 95% confidence interval
coverage probability for θ are reported too.

The distributions considered for event time in the simu-
lations were Exponential, Weibull, and Gamma, which are
commonly applied for survival data.

Multivariate correlated event times from Exponential
were generated with mean ð:3, :3θ, :3, :3ÞT for AB sequence
and ð:3, :3, :3, :3θÞT for BA sequence with common
variance-covariance structure and correlation coefficients.

Weibull distribution with shape parameter s and decay
parameter d has the density of

f xð Þ = s × d × x s−1ð Þ × exp −d × xsð Þ,
For x ≥ 0 ; s, d > 0:

ð6Þ

For the Weibull distribution, the shape parameter was
ð0:95,0:95,0:95,0:95ÞT for both sequences and the decay
parameter was ð0:29,0:29θ, 0:29,0:29ÞT for AB sequence
and ð0:29,0:29,0:29,0:29θÞT for BA sequence [17].

The third distribution, Gamma, was generated for better
presenting the performance of our method. The correlated
event time for Gamma distribution was generated with the
same shape ð3:2, :3:2,3:2,3:2ÞT for both sequences and rate
ð:7, :7θ, :7, :7ÞT for AB sequence and ð:7, :7, :7, :7θÞT for BA
sequence with common variance-covariance structure and
correlation coefficients [17].

The parameters for generating multivariate distributions
were selected such that the generated data would be approx-
imately similar to the motivating data example in Xu et al.’s
study. They were selected such that the data would fall within
the range of 0-10 with a mean of about 5 for each period [1].

We considered the first-order autoregressive (AR(1)) for
the correlation structure as it is usually similar to the real data
correlation structure. The AR(1) correlation structure is as
follows:

1 ρ

ρ 1

ρ2 ρ3

ρ ρ2

ρ2 ρ

ρ3 ρ2

1 ρ

ρ 1

0
BBBBB@

1
CCCCCA
: ð7Þ

The mean correlation coefficient �ρ was considered 0.5
and 0.7: ρ = 0:7 for �ρ = 0:5 and ρ = 0:83 for �ρ = 0:7. These
are the same as Xu et al.’s study. These means of correlation
are used to keep a reasonable level of intersubject correlation
in the generated data.

We assumed that censorship did not occur at baseline
time and the case of censorship was right-censoring in the
posttreatment time at τ. The parameter of study, θ, is the
ratio of the geometric means of the event times for treatment
A and treatment B.

The performance of different models was compared in
distinct scenarios of sample size, correlation coefficients,
and percentage of censoring.

The sample size per sequence was considered N = 12, 24
, 48, and the percentage of censoring was 30% and 50% for
the total sample. Each scenario was repeated 1000 times:
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θ = 1, under the null hypothesis. Under the alternative
hypothesis, the value of θ was chosen such that the power
was about 80% for the multiple imputation method proposed
by Xu et al. in different scenarios of simulations [1]. The true
θ values used in the simulation are shown in Table 1. All
analyses and data generation were done in R software. lcmix
package was applied for generating correlated multivariate
datasets. In this package, the construction of multivariate
distributions from univariate marginal distributions using
normal copulas is discussed.

3.2. Simulation Results. Type 1 error for the proposed and
multiple imputation method is shown in Table 2. The errors
in all scenarios for the two methods were less than 5% and
well controlled. Obviously, the Weibull distribution
controlled the error more than Exponential.

For the Gamma distribution, the type one errors had a
noticeable reduction in comparison to the Exponential and
Weibull distribution, especially in 30% censoring.

Powers of the mentioned methods are shown in Table 2.
In all distribution, powers of the proposed method were
more or equal to the multiple imputation method. On aver-
age, the power of our proposed method was 11% more than
the multiple imputation method in each mean pairwise cor-
relation, irrespective of sample size, percentage of censoring,
and distribution. When censoring was 30%, the average
power of our method was 12% more than multiple imputa-
tion, irrespective of sample size, distribution, and mean pair-
wise correlation. This figure was 14% and 12% for the
Gamma and Weibull distribution, respectively, irrespective
of other scenarios of simulation.

For our proposed method, in each percentage of censor-
ing, the power increased with increase in the sample size. The
power for the Gamma distribution was greater than that of
the other two distributions. Further, the power was higher
when the mean pairwise correlation was 0.7 in comparison
to 0.5 and the percentage of censoring was 30% in compari-
son to 50%.

The percentage of bias under the null and alternative
hypothesis and 95% confidence interval (C.I.) coverage
probability for log (θ) under the alternative hypothesis are
reported in Table 3. The bias was not larger than 10% in all
scenarios and was ignorable in all scenarios.

Further, the 95% C.I. coverage probability was kept at or
more than the nominal level in every scenario.

4. Data Application

The type of data in this study is rare; hence, finding a suitable
data that fulfills the condition of crossover design (time to
event outcome) is very limited. Thus, we applied the data
set from Xu et al.’s study [1]. This dataset is a 2 × 2 crossover
clinical trial, where the effect of a drug was investigated in a
treadmill test as discussed in the introduction. The data and
its details are presented in Table 4.

The sample size was 40 in total, of which 20 were ran-
domly allocated to the placebo-drug sequence and the other
20 to drug-placebo sequence, which was a treadmill walking
test. Also, the time until an event related to cardio was con-
sidered the outcome. The follow-up time was 10min. The
baseline measurements were performed for each participant
before receiving any treatment in both periods. The raw data
have been presented in Xu et al.’s article [1]. After imputing
the censored data by our proposed method and applying
ANCOVA, there was a significant difference between the
drug and placebo group (P value = 0.004). Our results were
in line with the multiple imputation method (P value =
0.005). In addition, the ratio of geometric mean of time to
the mentioned event (θ) was 1.78 (SE = 0:16), with 95% C.I.
of (1.47, 2.09). This ratio was 1.67 (SE = 0:25), with 95%
C.I. of (1.18, 2.35) in Xu et al.’s study [1].

Table 5 outlines the estimated survival time and standard
errors (SE) of the censored observations in the treadmill test
for the multiple imputation method and the proposed
method with and without adding age as a covariate. The esti-
mates for our method are more accurate than the multiple
imputation method. Also, adding age to the model led to
enhanced accuracy.

5. Discussion

To our knowledge, methods for imputing censored observa-
tions in time-to-event outcomes in small sample size data
have been seldom discussed in the literature. One discussed
method for imputing censored observation in time-to-event
outcomes is restricted mean survival time. For example, Liu
et al. as well as Grover and Gupta proposed a method based
on multiple imputations to impute censored outcomes, using
restricted mean survival time in small sample size data. Their
method was similar, but the superiority of the second one was
that the upper limit for imputation of censored survival time
was taken as the highest survival time within the study, where

Table 1: True θ values used in simulation study under the alternative hypothesis for each combination of distribution, mean pairwise
correlation coefficient, percentage of censoring, and sample size.

Mean pairwise correlation �ρ = 0:5 �ρ = 0:7
Percentage of censoring 30% 50% 30% 50%

N
12 24 48 12 24 48 12 24 48 12 24 48

Dist

Exp 2.33 1.59 1.6 2.3 1.8 1.5 2.1 1.7 1.5 2 1.52 1.35

Weibull 2.3 1.93 1.68 2.3 1.69 1.51 2 1.78 1.56 2 1.64 1.28

Gamma 2.1 1.4 1.3 1.95 1.65 1.2 2 1.4 1.24 2.1 1.3 1.14
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Liu et al. set the upper limit as some reasonable value [18, 19].
Based on Liu et al.’s simulations, their method was much
better than its competitor in respect of bias and efficiency.
Survival estimates of restricted lifetime model parameters
and marginal survival estimates had better precision.

Based on Grover’s method, the estimates were better and
the standard errors were smaller in comparison to the analy-
sis of the data having censored observations in outcome but
ignoring cases with missing covariates and censored out-
comes. In both mentioned studies, the final achievements
were similar to ours in terms of reducing bias and increasing
precision, but there are some weakness, although statistical

inferences based on mean survival time are appealing, but
as discussed before, it has some limitations. Another aspect
that should be noted is that if the observed survival time is
too long or the follow-up time is very short, the mean sur-
vival time is not a good choice [20]. Multiple imputation
leads to more complicated computation and work. Obvi-
ously in regression modeling, using covariates that are cor-
related to the response variable leads to the improvement
of predictions [18]. Although, in these studies, demo-
graphic information was imbedded in the model of impu-
tation, the superiority of our new method has been use of
median residual life time instead of mean residual life time

Table 2: Type 1 error (target is 5%) and power (%) for the multiple imputation with model averaging and analysis of covariance (MIMA) and
our proposed method (1000 simulations).

Mean pairwise correlation �ρ = 0:5 �ρ = 0:7
Censoring percentage 30% 50% 30% 50%

Distribution
N/seq

12 24 48 12 24 48 12 24 48 12 24 48
Method

Exp

Error
MIMA 4.8 4 4.9 5 4.5 5 4.5 4.6 4.9 4.8 5 5

MERL 4.6 4 4.8 4.9 4.1 5 3.9 4 4.4 3.8 4.1 4.5

Power
MIMA 78 80 81 69 79 80 81 79 84 78 80 81

MERL 81 87 91 78 80 83 82 94 85 84 86 87

Weibull

Error
MIMA 3.8 4 4.3 4 5 4 4.1 3 4.9 4.2 3.4 4.8

MERL 3.5 4.1 4 4.2 4 4.3 3.8 3.1 4 4 3.5 4.2

Power
MIMA 79 80 81 72 80 81 79 80 78 81 79 80

MERL 85 90 91 75 81 90 89 95 96 89 90 91

Gamma

Error
MIMA 1.3 1.5 2.7 4.5 3.1 4.6 2.2 2.9 3.4 1.8 2.4 4.1

MERL 1 1.2 2.1 4.1 4.1 5 1.9 2 3.4 2 2.1 3.9

Power
MIMA 77 80 79 75 78 80 81 81.9 79 81 83 82

MERL 88 95 93 80 90 95 90 95 96 88 92 94

Table 3: Percentage of bias (%) under the null and alternative hypothesis and 95% confidence interval coverage probability under the
alternative hypothesis H1:θ ≠ 1 for estimating logθ for our proposed method when the covariance structure is AR (1) and the distributions
are exponential (E), Weibull (W), and Gamma (G).

Mean pairwise
correlation

�ρ = 0:5 �ρ = 0:7

Percentage of
censoring

30% 50% 30% 50%

Dist N /seq 12 24 48 12 24 48 12 24 48 12 24 48

E

Bias H0ð Þ −3 × 10-5 −4 × 10-5 3 × 10-5 −2 × 10-5 −3 × 10-5 −3 × 10-5 45 × 10-5 −5 × 10-5 71 × 10-5 2 × 10-5 2 × 10-5 −3 × 10-5

Bias H1ð Þ 0.80 1 0.6 3 3.1 2.9 1.6 1.7 1.2 3 5 4.9

Coverage 94.5 94.9 95 97 95 94.4 95.3 95 96.5 96 95.5 97

W

Bias H0ð Þ 4 × 10-5 3 × 10-5 68 × 10-6 −1 × 10-5 −2 × 10-5 3 × 10-5 4 × 10-5 −3 × 10-5 5 × 10-5 5 × 10-5 2 × 10-5 −2 × 10-5

Bias H1ð Þ 0.6 0.82 0.5 2.5 2.7 2.9 1.5 1.7 1.3 2.8 4.9 5

Coverage 95 95.1 96 96 96.7 95 96 97 96.7 97 96 94.5

G

Bias H0ð Þ 1 × 10-5 2 × 10-5 −3 × 10-5 −5 × 10-5 1 × 10-5 4 × 10-5 2 × 10-5 −2 × 10-5 5 × 10-5 0 × 10-5 0 × 10-5 3 × 10-5

Bias H1ð Þ -6.1 -5.5 -4.9 -8.2 -6.5 -5.5 -5.4 -4.1 -3.5 -7.9 -8.5 -9

Coverage 95.1 94 95 95.3 94.2 95.1 95.5 94.4 95.2 96 95.3 95.1
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which is more robust. [16]. Additionally, the other advan-
tage of our proposed method has been applying the infor-
mation of censoring time, which was ignored in the
mentioned studies.

We proposed a new method to impute censored observa-
tion in time-to-event outcomes in crossover designs. To our

knowledge, this is the first study in which the median residual
life regression has been applied to impute censored survival
data based on correlated covariates. Our proposed method,
median residual life regression, is free of the stated limita-
tions. In addition to resolving the mentioned limitations,
our method has two additional advantages. It considers the

Table 4: Event times (min) for a 10min treadmill test in a 2 × 2 crossover clinical trial.

Placebo-drug sequence Drug-placebo sequence
Period 1
(placebo)

Period 2 (drug) Period 1 (drug)
Period 2
(placebo)

Subject (age) X1 Y1 X2 Y2 Subject (age) X1 Y1 X2 Y2

1 (52.91) 1.5 1 1 1.5 2 (65) 1 1 1 2.5

3 (45.79) 6 4 3.5 >10 4 (40) 6 >10 2.5 2.5

5 (64.37) 1 1 1.5 4.5 6 (59.08) 3 2 1 .5

7 (54.13) 3.5 1.5 .5 3 8 (63.46) 2.5 2.5 1.5 2

9 (61.14) .5 1 3.5 8 10 (51.78) 2 2.5 2.5 3

11 (47.59) 6 10 6 >10 12 (58.59) 1.5 4.5 2.5 1

13 (70) .5 .5 1 >10 14 (55.08) 3.5 5.5 4.5 9.5

15 (57.28) 1 1 1 2.5 16 (65.16) 1 2 2 >10
17 (59.75) 1.5 1 .5 .5 18 (41.34) 6 >10 5 3.5

19 (67.77) 1 1.5 2 4 20 (59.44) 2 3 1.5 1.5

21 (42.91) 5 5.5 3 1.5 22 (65.54) 1.5 2.5 1.5 .5

23 (50.72) 2.5 5 6 4.5 24 (70) 1.5 3.5 2.5 3

25 (47.01) 5 5.5 4.5 6 26 (55.63) 3.5 9 6 6

27 (62.26) 1 2 2.5 8.5 28 (62.93) 2 5.5 3.5 8

29 (40) 5 5.5 3.5 2 30 (56.67) 2.5 2.5 1 .5

31 (66.27) .5 1 2 7.5 32 (63.13) 2.5 3.5 2.5 4

33 (48.16) 5 4 2 2 34 (41.62) 5.5 3 1 .5

35 (65.04) .5 .5 1 1.5 36 (55.70) 3 5.5 5 .5

37 (66.49) 1.5 2 3 3 38 (66.62) .5 1 1 5.4

39 (43.19) 6 4 1.5 .5 40 (53.10) 2.5 5 2.5 .5

Median 1.5 1.75 2 3.5 Median 2.5 3.25 2.5 2.5

X1: baseline response in period 1; Y1: posttreatment response in period 1; X2: baseline response in period 2; Y2: posttreatment response in period 2.

Table 5: Estimated survival time of censored observations in treadmill test for the multiple imputationmethod, the proposedmethod, and the
proposed method by adding age to the model.

Placebo-drug sequence Drug-placebo sequence

Model Subject (age)
Period 2 (drug)

Subject
Period 1 (drug) Period 2 (placebo)

Y2 Y1 Y2

Multiple imputation

3 14:14 ± 0:35 4 14:41 ± 0:39 _

11 21:46 ± 0:40 16 _ 10:63 ± 0:37

13 10:62 ± 0:41 18 23:34 ± 0:51 _

MERL

3 15 ± 0:30 4 15:1 ± 0:33 _

11 23 ± 0:38 16 _ 11:47 ± 0:32

13 11:5 ± 0:40 18 24:58 ± 0:48 _

MERL (adding age)

3 (45.79) 16:1 ± 0:28 4 (40) 16:1 ± 0:31 _

11 (47.58) 24 ± 0:31 16 (65.16) _ 12:5 ± 0:30

13 (70) 12:2 ± 0:35 18 (41.34) 25:1 ± 0:43 _

Y1: posttreatment response in period 1; Y2: posttreatment response in period 2.
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effect of censored time when imputing the life times for cen-
sored observations, by adding the time of censoring to the
predicted median residual life, as well as its simplicity.

We showed that our method generated more efficient
results in comparison to the recently presented method
“multiple imputation” by Xu et al. [1], through different
combinations of sample size, percentage of censoring, distri-
bution, and mean pairwise correlation coefficient.

Based on our simulations, we found that our method had
equal or higher power than the multiple imputation method
proposed by Xu et al. In addition, there were no inflated type
1 errors and the entire bias was negligible under the null and
alternative hypothesis. This is a notable achievement of our
study. The reason is that Xu et al.’s method is based on
considerable computation and multiple imputations. Fur-
thermore, they applied complicated rules to combine the
datasets in imputation steps, while our proposed method is
straightforward and not that time-consuming. In addition,
we pointed out some practical issues, which were ignored in
the mentioned study. First of all, consideration of the con-
founding and effective factors in computing the median
residual life might lead to a more accurate prediction of the
censored observations. As there are many effective factors, a
penalized method [21] can be applied to select the most
important variables. Another advantage of our method is
that the imputed time is added to the censored time, but
the role of censoring time is not considered in the multiple
imputation method.

The comparison of our study results with the results of
multiple imputation method [1] showed that the results of
both methods were almost the same and the P value of both
methods when testing the effect of treatment was significant.
The estimation of the parameters for both methods was close
to each other, but the estimates from our method had less
standard error and were more accurate. The comparison of
imputed times for censored observations revealed that the
imputation method based on our proposed model which
used the age variable in imputation was more accurate than
the multiple imputation model. It was even more accurate
than our proposed method regardless of age and led to more
accurate predictions.

Crossover designs can be performed in small sample
sizes, such as 4 or 6. One limitation in our method is that it
cannot be converged in the mentioned sample sizes, similar
to Xu et al.’s method. Additionally, we considered 30% and
50% of censoring, while in real data a higher censoring
percentage can be encountered. Another issue that should
be pointed out is that censoring was independent of covari-
ates in our study. Further studies are warranted to evaluate
the performance of the discussed methods at higher percent-
ages of censoring, for censoring which is not independent of
covariates and for evaluating median residual life regression
in imputing censors in all survival studies besides crossover
designs.

6. Conclusion

Our proposed method outperformed the multiple imputa-
tion method. All the powers were greater than 80%, and

there was no bias in estimating the parameter of interest.
In addition, all type 1 errors were less than 5%. Thus, it
is suggested for imputing censored observations given its
simplicity and not very heavy computational work as well
as its efficiency.
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