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A key aim of serosurveillance during the coronavirus disease 
2019 (COVID-19) pandemic has been to estimate the preva-
lence of prior infection, by correcting crude seroprevalence 
against estimated test performance for polymerase chain reac-
tion (PCR)-confirmed COVID-19. We show that poor general-
izability of sensitivity estimates to some target populations may 
lead to substantial underestimation of case numbers.
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BACKGROUND

During the current severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) pandemic, public health agencies have 
used serology to investigate the clinical spectrum, distribution, 
and determinants of coronavirus disease 2019 (COVID-19) 
across time and place to inform a range of interventions [1]. 
Serology is the preferred method for determining past infection 
with SARS-CoV-2 because pathogen-specific antibodies are de-
tectable in serum long after clearance of viral RNA or antigen 

from accessible sites [1]. The prevalence of prior infection (PPI) 
has been estimated from cross-sectional sero-surveys, corrected 
for test sensitivity and specificity against polymerase chain re-
action (PCR)-confirmed infection [2]. However, there are 2 ob-
vious limitations of this approach.

First, serological assay sensitivity estimates have primarily 
been derived using samples obtained from symptomatic—usu-
ally hospitalized—patients [3–6]. Yet a large proportion of cases 
have only mild illness, and more than one-third remain asymp-
tomatic [7]. Given the strong correlation between COVID-19 
severity and magnitude of antibody response [8, 9], sensitivity 
estimates derived from moderately and severely ill patients may 
not represent the broader SARS-CoV-2-infected population.

Second, most sensitivity estimates are based on samples 
obtained in early convalescence [3–5], yet serum antibodies 
have been shown to decline substantially within a few months 
of infection [10]. The kinetics of antibody decay may differ be-
tween mild and severely ill patients. Nevertheless, antibody 
decay is not considered in most published seroprevalence 
estimates.

In light of these limitations, we hypothesized that estimates 
from seroprevalence studies would underestimate PPI because 
of differences between test sensitivity in target populations and 
sensitivity estimates used for correction. To assess the possible 
magnitude of this bias, we investigated the longitudinal trend 
in results of one commercial serological assay in a cohort of in-
dividuals with mild and asymptomatic COVID-19 over 1 year, 
and modelled changes in sensitivity.

ESTIMATION OF TEST SENSITIVITY OVER TIME

The cohort consisted of 48 older adults (median age 67 years, 
range 36–81), recruited from a previously described group 
exposed to SARS-CoV-2 on an Antarctic cruise [11], with 
SARS-CoV-2 infection confirmed by PCR and/or serology 
(Supplementary Table 2). Notably, 21/48 (44%) remained 
asymptomatic during 14 days of active monitoring. We col-
lected 207 serum samples between 16 April 2020 and 14 April 
2021; after excluding 3 samples collected after COVID-19 vac-
cination, 204 samples were available for analysis (median per 
participant: 4.5; range: 1–5). All participants provided informed 
consent. The study was approved by the Human Research Ethics 
Committee of the Department of Health and Human Services, 
Victoria (HREC 05-20).

Longitudinal analysis of antibody data requires estimating 
time since infection or disease onset, a challenging prospect for 
asymptomatic individuals. This cohort were almost certainly 
all exposed to SARS-CoV-2 over a 4-week period, between 
boarding the ship on 15 March 2020 and entering a managed 
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quarantine facility in Australia on 12 April 2020 [11]. All symp-
tomatic participants became ill between 20 March and 3 April 
2020, with the median date of onset 24 March (Figure 1A). For 
symptomatic participants we considered date of disease onset 
to be the same as symptom onset. For asymptomatic partici-
pants we set the date of disease onset to the median date of 
symptom onset, an assumption which is necessarily imprecise 

at the individual level but which we expected, on average, to 
hold true for the cohort.

We tested samples using the EUROIMMUN (EI) Anti-
SARS-CoV-2 enzyme-linked immunosorbent assay (ELISA) 
kit for the detection of immunoglobulin G (IgG), as per the 
manufacturer’s instructions. The EI kit uses recombinant S1 do-
main of SARS-CoV-2 spike as antigen [3]. Results are expressed 

Figure 1. Estimation of the impact of antibody decay on assay sensitivity. A, Distribution of symptom onset in 27 symptomatic participants, vertical dashed line shows the 
median date of onset used to infer disease onset in the remaining 21 asymptomatic participants. B, OD ratios obtained using the EUROIMMUN Anti-SARS-CoV-2 IgG kit on 
samples from all 48 SARS-CoV-2 infected participants. C, OD ratios for a simulated population of 1000 infected individuals. Thick line shows the median, with the shaded 
region showing the corresponding 95% confidence bands. D, Test sensitivity of the EUROIMMUN kit in the simulated population (line) with 95% confidence band (shaded 
region). Horizontal dashed lines in panels B and C show the test positivity threshold (1.1). Vertical dashed lines in panels C and D are drawn at 1 year, the approximate time 
from which ongoing estimates are based on assumed ongoing exponential decay. Abbreviations: IgG, immunoglobulin G; OD, optical density; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2.
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as the ratio of the measured optical density (OD) for the sample 
to that of a supplied calibrator, with ratios ≥1.1 considered pos-
itive. Published sensitivity estimates for samples obtained >14 
days after symptom onset range from about 70–100%, and spec-
ificity 97–100% [3–6].

We modeled OD ratios obtained using the EI IgG kit in a 
hierarchical mixed-effects framework, using a nonlinear model 
proposed by Simonsen et al [12]. The model accommodates an 
initially rapid but gradually diminishing increase in antibody 
from disease onset, followed by exponential decay toward a 
steady state level [12]. To simulate the longitudinal trend in test 
sensitivity, we used parameter estimates from the fitted model 
to construct a hypothetical population of 1000 infected individ-
uals. We simulated OD ratios for these individuals over a 3-year 
period from disease onset, and calculated sensitivity as the pro-
portion of individuals with an OD ratio ≥1.1. We constructed 
95% confidence intervals (CI) by repeating the model fitting 
and simulation procedures on 1000 bootstrap resamples of the 
original data set. Additionally, we investigated trends in sensi-
tivity under simulated epidemic scenarios. Details of this anal-
ysis, as well as model specification, fit, and simulation methods, 
are provided as Supplementary Material.

Figure 1B shows the observed OD ratios in our sample. Our 
simulation procedure and data were compatible with a max-
imum sensitivity of 81% (95% CI: 74–84%) 40 days post-disease 
onset in the simulated population (Figure 1C–1D). Simulated 
sensitivity declined to 76% at 3 months (95% CI: 69–79%) and 
53% at 1 year (95% CI: 47–57%). Based on extrapolation of ex-
ponential decay, our simulation was consistent with a decline in 
sensitivity to 37% at 3 years (95% CI: 27–42%).

EXAMPLE APPLICATION TO SEROSURVEILLANCE

When the proportion of previously infected individuals in the 
target population is high, correction based on biased sensi-
tivity estimates may have a non-negligible effect on estimated 
PPI and, by extension, decisions affecting public health. We 
used Murhekar et al [13] to demonstrate this problem. They 
conducted a serosurvey of 28  598 individuals between 18 
December 2020 and 6 January 2021, to estimate the proportion 
of the Indian population previously infected with SARS-CoV-2. 
Their population-weighted, but unadjusted, seroprevalence 
was 21.7% using the Siemens S1-RBD IgG assay, with a PPI of 
21.5% after correcting for the manufacturer-reported sensitivity 
of 100%, and specificity of 99.9% [13]. Based on this adjusted 
seroprevalence, they estimated the true number of infected in-
dividuals in the Indian population to be 242 124 000, indicating 
that there had been 23.8 infected individuals for each reported 
case as of 19 December 2020 [13].

In order to roughly estimate the possible degree of bias in 
these findings, we considered the following simplistic assump-
tions: (1) All infected individuals had onset of disease on 15 

September 2020, the date of peak reported cases in India’s first 
wave [14]. (2) All individuals in the study were sampled on 24 
December, 100 days later. (3) The temporal profiles of the true 
sensitivities of the EI and Siemens assays were equivalent. (4) 
The reported specificity for the Siemens assay was generalizable 
to the target population.

Our simulation was compatible with a true sensitivity of 74% 
100 days post-disease onset. Correcting the crude seropreva-
lence for this value and the reported specificity of the Siemens 
assay gave a PPI of 29.0% (equation 3 in the Supplementary 
Material), equivalent to 326 426 000 infected individuals, or an 
infection-case ratio of 32.1, 1.35 times higher than the initial 
estimate. Interestingly, Murhekar et al noted that seropositivity 
among a subgroup of 664 participants who reported testing 
positive for SARS-CoV-2 by PCR was only 64%, a finding they 
suggested might be due to antibody decay [13].

Limitations

Our study had several limitations. The age and sex structure 
of our cohort differed substantially from most serosurveillance 
target populations. We have previously discussed the possibility 
of selection bias due to differential participation based on symp-
toms [11]. However, given population estimates of a relatively 
low infection: hospitalization ratio [15], and high asymptomatic 
proportion [13], we believe our sample to be more applicable 
to seroprevalence studies than most others used to derive es-
timates of serological assay sensitivity. Longitudinal trends in 
sensitivity may vary depending on the assay and target antigen. 
Our model has not been validated and relies on unverified as-
sumptions including multivariate log-normality in parameter 
distribution, and continuing exponential decay past one year. 
Consequently, we intended to illustrate the potential for bi-
ased incidence estimates arising from serosurveillance studies, 
rather than to provide a precise quantification of this bias or a 
specific correction method.

CONCLUSION: IMPROVING THE UTILITY OF 
SEROSURVEILLANCE FOR COVID-19

In attempting to infer population prevalence of prior COVID-
19 from seroprevalence studies, careful consideration should be 
given to bias due to non-generalizability of assay sensitivity esti-
mates to target populations, leading to substantial underestima-
tion. The effect of this bias increases with time from infection 
to sampling.

At a minimum, seroprevalence studies seeking to estimate 
SARS-CoV-2 infection should include sensitivity analyses al-
lowing for much lower test sensitivity than those reported by 
kit manufacturers. The utility of seroprevalence surveys to infer 
patterns of COVID-19 might be further improved by the ap-
plication of methods to recover incidence by applying models 
of test kinetics to cross-sectional data [12, 16]. Such methods 
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currently require either: (1) Single cross-sectional surveys using 
multiple assays with distinct kinetics, with results reported on 
continuous rather than binary scales, coupled with longitudinal 
models of test kinetics derived from population-representative 
cohorts [16] or (2) multiple cross-sectional surveys coupled 
with accurate mortality data [17, 18]. Studies seeking to esti-
mate infection rather than population immunity must now 
distinguish between vaccine- and infection-induced antibody 
responses. This might be achieved by the development of new 
multiplex assays, but in the interim may require collection of 
vaccination status for sensitivity analyses [19].

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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