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Abstract

The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS) pattern associated
to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether
Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and
pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 36FLAG tag in wild type (wt)
and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS
pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed
from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces
wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction
between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results
would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits
between closely related bacterial serovars.
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Introduction

The lipopolysaccharide (LPS) is the most abundant component

of outer membrane of Gram negative bacteria which structure is

divided in three regions: O-antigen polysaccharide, core oligosac-

charide, and lipid A [1]. LPS synthesis is a complex process

involving various steps. In particular, O-antigen production and

assembly in Salmonella occurs by mechanisms that require Wzy

(polymerase of the repeating subunits), Wzx (flippase that

translocated subunit across the membrane) and Wzz (a chain

length determinant) (previously Cld or Rol) [1,2,3,4,5,6,7,8]. Even

though there is a significant amount of information on biochem-

istry and genetics of the LPS synthesis, the regulatory mechanisms

that modulate its production are complex and poorly understood.

However, it is known that LPS structure is dynamic, showing

changes in response to local microenvironment signal. Many of

these signals are detected as stimuli by signal transduction

cascades. Usually, these systems are composed by a histidine

kinase (HK) (sensor protein) that transmits the signal, through a

phosphorylation cascade, to a second component, named response

regulator [9,10,11,12,13,14,15]. Often, the response regulator is a

transcription factor, thereby the result of its phosphorylation is the

activation or repression of gene transcription which product is

involved in the adaptation to that given microenvironment. The

most important two-component regulatory systems involved in

LPS modification are PhoP/PhoQ, PmrA/PmrB and RcsC/

RcsD/RcsB. PmrA/PmrB and RcsC/RcsD/RcsB two-compo-

nent regulatory systems of Salmonella enterica serovar Typhimurium

(S. Typhimurium), each activated by different stimuli, indepen-

dently promote transcription of the wzz gene [16]. The expression

of wzz is also regulated by PhoP/PhoQ via PhoP-mediated

upregulation of PmrD, which binds to the phosphorylated form of

PmrA protecting it from dephosphorylation by PmrB [17,18].

In Salmonella, regulation of the long chain distribution of the O-

antigen contributes not only to an effective barrier [19] but also

affect serum resistance and entry into eukaryotic cells

[20,21,22,23,24]. Furthermore, O-antigen length can also mod-

ulate acquired immunity. Indeed, Phalipon and coworkers

demonstrated that in Shigella flexneri induction of an O-antigen-

specific antibody response depends on the length of the

polysaccharide chain [25]. Also, Helicobacter pylori alters its O-

antigen structure expressing O-antigen of high molecular weight in

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56474



response to acidic pH; an important adaptation that would

facilitate colonization of the acidic gastric environment [26].

In gammaproteobacteria the DNA adenine methyltransferase

(Dam) introduces a methyl group at the N6 position of the adenine

of GATC sequence in the newly synthesized DNA strand after

DNA replication, generating methylated DNA [27,28,29,30].

DNA methylation status can affect interactions between DNA

and proteins such as RNA polymerase or transcription factors [30]

that regulate (activate or repress) gene expression generating a

plethora of effects. Thus, Dam mutants of S. enterica have shown to

have many defects particularly in virulence and they have been

proposed as candidate vaccines [31,32,33,34,35,36,37,38]. We

have previously shown that a dam null mutant of S. Enteritidis

presents a reduced expression of wzz gene and a defective O-

antigen polysaccharide chain length distribution [39].

In this work we study the regulation of pmrA and rcsB expression

by Dam methylation in S. Enteritidis. In addition, we found that

both wzz regulators have a regulatory influence on each other.

Materials and Methods

Bacterial strains, plasmids, strain construction, and
growth conditions

Bacterial strains and plasmids used are listed in Table 1. S.

Enteritidis #5694 was kindly given by Dr. Anne Morris Hooke,

Miami University; originally from Dr. F. Collins’collection,

Trudeau Institute, Saranac Lake, New York. Strains #SS218,

#SS219 and #SS220 are S. Enteritidis isolates from poultry

collected from argentine farms. Wild type strains were used to

construct mutant strains listed in Table 1. Gene deletions were

performed as described by Datsenko and Wanner [40]. Addition

of a DNA fragment encoding 36FLAG epitope tag at the 39 end

of protein-coding DNA sequences was carried out as previously

described using plasmid pSUB11 as a template [41] and

oligonucleotides pmrA-36FLAG-59 and pmrA-36FLAG-39 for

PmrA, and rcsB-36FLAG-59 and rcsB-36FLAG-39 for RcsB.

The mutagenic primers used are listed in Table 2. S. Enteritidis

was transformed by electroporation as previously described [42].

Gene deletion and the correct fusion of the ORF with 36FLAG

coding sequence were confirmed by sequencing (Macrogen Inc.),

and analyzed with Sequencher (Gene Codes Corporation) and

Vector NTI software. Bacteria were grown in Luria-Bertani (LB)

broth [43] supplemented, as required, with antibiotics at the

following final concentrations: ampicilin, 100 mg/ml; chloram-

phenicol, 30 mg/ml; kanamycin, 40 mg/ml; and tetracycline,

20 mg/ml. For PmrA and RcsB overproduction experiments

bacteria were grown at 37uC in N-minimal medium [44],

supplemented with 0.2% (w/v) glucose, 0.1 mg/ml casaminoacids,

2 mg/ml Vitamin B1 and 10 mM MgCl2 (high Mg2+ concentra-

tion) or 10 mM MgCl2 100 mM FeSO4 (low Mg2+ concentration

plus Fe3+) [16]. Dam mutants were evaluated, phenotypically,

determining the absence of methylated GATC sequences [39]. To

confirm pmrA deletion and ppmrA functionality, the resistance to

the antimicrobial peptide Polymyxin B assay was carried out as

previously described [45].

Molecular cloning of Salmonella pmrA and rcsB genes
DNA extracted from the parental strains of S. Enteritidis was

used as template for PCR reaction to amplify pmrA and rcsB genes.

PCR amplification was performed with either Pwo polymerase

(Roche) (for amplification cloning fragments) or Taq polymerase

(Qiagen). PCR fragments products were separated in agarose gels,

purified using a Gel Extraction kit (Qiagen), and then digested

using EcoRI restriction enzyme (Roche Diagnostics). Ligation with

T4 DNA ligase (Rapid Ligation kit, Roche Diagnostics) into

pUC18, also digested with EcoRI, and dephosphorylated with

shrimp alkaline phosphatase (Roche Diagnostics) was performed.

Competent E. coli DH5a cells were transformed with the ligation

mixture by the calcium chloride protocol [46]. Colonies with a

white color phenotype from plates with ampicillin and 0.2% (w/v)

X-Gal were pooled and screened by PCR using the primers

downlacz18 combined with rcsB-F and rcsB-R for rcsB, and pmrA-F

or pmrA-R for pmrA. Also, pooled colonies were screened by

restriction digestion to preliminary identify the orientation of the

inserts (with respect the plasmid promoter on sense or antisense).

The integrity of the inserts were confirmed by DNA sequencing

(Macrogen Inc.), using the sequencing primer M13 forward and

M13 reverse, and the inserts were analyzed with Sequencher

(Gene Codes Corporation) and Vector NTI software.

LPS analysis
LPS was extracted as described by Marolda et al [47]. Briefly,

from overnight plate culture, samples were adjusted to OD600 of

2.0 in a final volume of 100 ml. Then, samples were suspended in

lysis buffer containing proteinase K as described by Hitchcock and

Brown [48], followed by hot phenol extraction and a subsequent

extraction of the aqueous phase with ether. LPS was resolved by

electrophoresis in 14% polyacrylamide gels using a tricine-sodium

dodecyl sulfate (SDS) system [49,50] and visualized by silver

staining. Each well was loaded with the same LPS concentration

determined by the keto-deoxyoctulosonic (KDO) assay [51]. A

densitometry analysis was performed using ImageJ software. The

ratio of the relative intensity of the lipid A-core band to the

average intensity of the bands corresponding to total O-antigen

and core+n was calculated by quantifying the pixels in a narrow

window across the center of each lane. The densitometric analysis

was calibrated by determining the ratio of the relative intensity of

the lipid A-core region to the average intensity of the O-antigen

bands.

Reverse transcription-PCR and quantitative real-time PCR
Bacteria were grown at 37uC with agitation to an OD600 of 0.6.

Cells were lysed, and total RNA was isolated using Trizol reagent

(Invitrogen) according to the method described by the manufac-

turer. Contaminating DNA was digested with RNase-free DNase I

(Epicentre Biotechnologies), and the purity of all RNA prepara-

tions was confirmed by subjecting them to PCR analysis using

primers specific for the gene encoding the 16S rRNA (Table 2).

After inactivation of DNase, RNA was used as a template for

reverse transcription-PCR. Complementary cDNA was synthe-

sized using random hexamer primers (Invitrogen), deoxynucleo-

side triphosphates, and Moloney murine leukemia virus M-MLV

reverse transcriptase (Invitrogen). Relative quantitative real-time

PCR was performed with an appropriate primer set, cDNAs, and

Mezcla Real (Biodynamics) that contained nucleotides, polymer-

ase, reaction buffer, and Green dye, using a Rotor-Gene 6000

real-time PCR machine (Corbett Research). The amplification

program consisted of an initial incubation for 3 min at 95uC,

followed by 40 cycles of 95uC for 20 s, 60uC for 30 s, and 72uC
20 s. The primers used are depicted in Table 2. A no-template

control was included for each primer set. Melting curve analysis

verified that each reaction contained a single PCR product. For

the relative gene expression analysis, a comparative cycle threshold

method (DDCT) was used [52]. The number of copies of each

sample transcript was determined with the aid of the software.

Briefly, the amplification efficiencies of the genes of interest and

the 16S rRNA gene used for normalization were tested. Then each

sample was first normalized for the amount of template added by
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comparison to the 16S rRNA gene (endogenous control). The

normalized values were further normalized using the wild-type

sample (calibrator treatment). Hence, the results were expressed

relative to the value for the calibrator sample, which was 1.

Student’s t test was used to determine if the differences in

retrotranscribed mRNA content observed in different back-

grounds were statistically significant.

Protein extracts and Western blotting analysis
Total protein extracts were prepared from bacterial cultures

grown at 37uC in LB medium and harvested at an OD600 of 0.6.

Cells were pelleted by centrifugation and resuspended with

Laemmli buffer [53]. Three independent extractions for each

sample were added together to minimize differences in protein

recovery from sample to sample. For Western blot assays total

proteins were boiled for 5–10 min in Laemmli sample buffer, and

each lane was loaded with material from approximately 106 CFU

before resolved by 12% SDS-polyacrylamide gel electrophoresis

(PAGE) gel. Prestained SDS-PAGE standards (Bio-Rad) were used

as molecular weight markers (not shown). The gels were blotted

onto a Hybond-P membrane (GE Health-care, Madrid, Spain).

Ponceau S red staining was used as loading control before blocking

in 5% (w/v) dried skimmed milk in PBS. Finally, 36FLAG fusion

proteins were immunodetected using mouse-monoclonal anti-

FLAG M2-peroxidase (HRP) antibodies (1:5,000; Sigma, St Louis,

Table 1. Bacterial strains and plasmids used in this study.

Relevant characteristic(s) Reference/Source

Strain

S. enterica serovar Enteritidis

#5694 Wild type Dr. F. Collins collection

#SS218 Wild type Poultry isolate

#SS219 Wild type Poultry isolate

#SS220 Wild type Poultry isolate

SEDdam #5694 Ddam [39]

SEDrcsB #5694 DrcsB This work

SEDpmrA #5694 DpmrA This work

SEDrcsBDpmrA #5694 DrcsB DpmrA This work

SEDwzz #5694 Dwzzst [39]

SEpmrA36FLAG #5694 pmrA::36FLAG, Kmr This work

SEpmrA36FLAG Ddam #5694 pmrA::36FLAG Ddam, Kmr This work

SErcsB36FLAG #5694 rcsB::36FLAG, Kmr This work

SE218DrcsB #SS218 DrcsB This work

SE218DpmrA #SS218 DpmrA This work

SE219DrcsB #SS219 DrcsB This work

SE219DDpmrA #SS219 DpmrA This work

SE220DrcsB #SS220 DrcsB This work

SE220DpmrA #SS220 DpmrA This work

SErcsB36FLAG Ddam #5694 rcsB::36FLAG Ddam, Kmr This work

Escherichia coli K-12

DH5a F- w80lacZM15 endA recA hsdR(rK
2mK

2

) supE thi gyrA relA D(lacZYA-argF) U169
Laboratory stock

Plasmids

pCP20 FLP+, lcI857+, lpR Repts, Ampr, Cmr [40]

pIZ833 E. coli dam gene, Ampr [69]

pKD3 Template plasmid for mutagenesis, Ampr, Cmr [40]

pKD4 Template plasmid for mutagenesis, Ampr, Kmr [40]

pKD46 c, b, and exo from l phage, araC-ParaB, Ampr [40]

pSUB11 36FLAG FRT ahp FRT bla R6KoriV [41]

pUC18 High copy number cloning vector, Ampr GenBank/EMBL sequence accession number L09136

prcsB rcsB; Ampr (pUC18 backbone) This work

prcsBas rcsB cloned in antisense orientation to the Plac

promoter; Ampr (pUC18 backbone)
This work

ppmrA pmrA; Ampr (pUC18 backbone) This work

ppmrAas pmrA cloned in antisense orientation to the Plac

promoter; AmpR (pUC18 backbone)
This work

doi:10.1371/journal.pone.0056474.t001
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MO). The reacting bands were detected by enhanced chemilumi-

nescence (ECL) (Luminol, Santa Cruz Biotechnology, Santa Cruz,

CA) in an Image Quant 300 cabinet (GE Healthcare) following the

manufacturer instructions. Blots were photographed, and the

intensity of the signals expressed in arbitrary units was determined

by densitometry analysis using the public domain NIH Image J

software (http://rsb.info.nih.gov/nihimage/). We randomly se-

lected three different bands from the Ponceau S stained membrane

to normalize the intensity of the band of interest. Data were

analyzed for statistical significance using a nonparametric Mann-

Whitney test.

Results

Dam methylation participates in the regulation of pmrA
and rcsB genes

PmrA and RcsB two-component regulatory system are the only

two known wzz regulators described in S. Typhimurium. To

determine whether the LPS phenotype of the dam mutant of S.

Enteritidis (SEDdam) is related to a diminished expression of these

two regulators we analyzed the effect of overproduction of either

RcsB or PmrA on the LPS pattern in the dam background.

Recombinant plasmids containing the rcsB and pmrA genes cloned

into pUC18 were transferred by electroporation in SEDdam and

Table 2. Oligonucleotides primers used in this study.

Gene Targeted Primera Sequenceb (59R39)

Gene deletion

dam dam::Cm (F) TTCTCCACAGCCGGAGAAGGTGTAATTAGTTAGTCAGCATGTGTGTAGGCTGGAGCTGCTTC

dam::Cm (R) GGCAATCAAATACTGTTTCATCCGCTTCTCCTTGAGAATTACATATGAATATCCTCCTTAG

pmrA pmrA: (F) GCCGCAGATGATATTCTGCAACCGTGCAGGAGACTAAGCGAATAAGTGTAGGCTGGAGCTGCTTCG

pmrA:: (R) GAAGGGTCATCGCTCTTCGCTGAAAACGCATCAGGCTCACCATATGAATATCCTCCTTAG

rcsB rcsB::Km (F) CCTACGTCAAAAGCTTGCTGTAGCAAGGTAGCCCAATACAGTGTAGGCTGGAGCTGCTTCG

rcsB::Km (R) ATAAGCGTAGCGCCATCAGGCTGGGTAACGTAAAAGTGATTTACATATGAATATCCTCCTTAG

Gene epitope tagging

pmrA pmrA-36FLAG-59 TCGCGGGTTTGGCTACATGCTGGTTGCCACTGAGGAAAGCGACTACAAAGACCATGACGGT

pmrA-36FLAG-39 GAAGGGTCATCGCTCTTCGCTGAAAACGCATCAGGCTCACCATATGAATATCCTCCTTAG

rcsB rcsB-36FLAG-59 CTATCTCTCTTCCGTCACCCTGAGTCCGACAGACAAAGAAGACTACAAAGACCATGACGGT

rcsB-36FLAG-39 ATAAGCGTAGCGCCATCAGGCTGGGTAACGTAAAAGTGATCATATGAATATCCTCCTTAG

Gene cloning

pmrA pmrA-F GATCGAATTCATGAAGATACTGATTGTTGAAGACGAC

pmrA-R GATCGAATTCTTAGCTTTCCTCAGTGGCAACC

rcsB rcsB-F GATCGAATTCCATGAACAATATGAACGTAATTATTG

rcsB-R GATCGAATTCTTATTCTTTGTCTGTCGGACTC

Verification of predicted construction

dam Rpe TACGACAACCTGAACGGTTG

damX GCAGCGTGCGGTCAACATG

pmrA pmrB CCTGCTCGAACAATTGGATT

yjdB AAAAACATGTCCCGATGCTC

rcsB yojN AGAGGTTGTATACTGAGGCGGC

rcsC CTGGCGGAAGAGAAACAACG

pUC18 downlacz18 CGTCAGCGGGTGTTGGCGG

Real-time PCR

16S rRNA gen q-16s-F GCCGCAAGGTTAAAACTCAA

q-16s-R AAGGCACCAATCCATCTCTG

rcsB q-rcsB-F ACCGCAGCATTAAGACCATC

q-rcsB-R CTCAGGGTGACGGAAGAGAG

pmrA q-pmrA-F AACCAGCATGTAGCCAAACC

q-pmrA-R AACCCTCGACCAACACTCTG

wzz q-wzz-F CGTCGCTTCGTTCTGTATCA

q-wzz-R AGGATGTTACCCAGGACACG

Primers were purchased from Invitrogen Inc. and were designed according to the DNA sequence information available for the S. Enteritidis strain (Salmonella spp.
comparative sequencing blast server BLAST Server Database at www.sanger.ac.uk).
aF, forward primer; R, reverse primer.
bUnderlined nucleotides indicate the sequence homologous to pKD3, pKD4 or pSUB11. Underlined and italicized nucleotidic regions indicate the restriction
endonuclease enzyme cut sites (EcoRI)) incorporated into the primer sequence.
doi:10.1371/journal.pone.0056474.t002
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wild type strains. As we previously described, the LPS pattern of

the dam mutant showed many more visible bands in the

intermediate region of the gel (Fig. 1, lane 2) compared with the

banding pattern of the wild-type LPS (Fig. 1, lane 1). The LPS O-

antigen profiles of the transformed strains were analyzed in

bacteria cultured in LB and under growing conditions known to

activate the PmrA/PmrB two-component regulatory system.

Results are depicted in Fig. 1. Regardless the culture media used,

high Mg2+ or low Mg2+ + Fe3+, we found that RcsB overexpres-

sion in SEDdam mutant (Fig. 1A, lanes 4 and 7) generates an LPS

banding pattern comparable to that of the wild type (Fig. 1A, lanes

1 and 5). Similar results were observed when bacteria were

cultured in LB medium (not shown). It seems that the presence of

high amounts of RcsB in a dam background reduces the

intermediate region bands observed for SEDdam mutant (Fig. 1A,

lanes 2 and 6). On the contrary, no changes were evident in the

LPS pattern of SEDdam mutant overexpressing PmrA regardless

the growth environmental condition, high Mg2+ or low Mg2++Fe3+

(Fig. 1B, lanes 4 and 7). ppmrA plasmid functionality was confirmed

by Polymyxin B resistance assay as described in materials and

methods (data not shown). Again, similar results for LPS pattern

were obtained when bacteria were cultured in LB medium (data

not shown). Transformation with plasmids bearing the genes

cloned in antisense orientation to the Plac promoter; (ppmrAas,

prcsBas), or with empty plasmid vector (pUC18) produced no

changes in the O-antigen LPS pattern of any strain studied (data

not shown). These data would indicate that the dam mutant

produces a reduced amount of RcsB protein, suggesting that rcsB

gene expression is up-regulated by Dam.

Next, we analyzed LPS pattern in the absence of RcsB and

PmrA. For this purpose we constructed rcsB and pmrA deletion

mutants of S. Enteritidis (SEDrcsB and SEDpmrA strains, respec-

tively) using the lambda Red recombination system. As shown in

Fig. 2A, the LPS phenotype of SEDrcsB is similar to that observed

in SEDdam mutant (lanes 2 and 3, respectively). Complementation

with the plasmid bearing the rcsB gene restored LPS pattern to that

found in the wild type strain of S. Enteritidis (Fig. 2A, lane 4). The

lack of pmrA did not modify LPS pattern in S. Enteritidis. As shown

in Fig. 2B, deletion mutant SEDpmrA (lane 2) presents an LPS

pattern similar to that of the wild type strain (lane 1). Collectively,

these experiments indicate that the reduced wzz gene expression

observed in SEDdam mutant correlates with a diminished

expression of rcsB rather than pmrA.

In silico analysis has shown the presence of GATC motifs in the

coding sequence and/or surrounding nucleotides of pmrA and rcsB

genes [39]. Then we investigated whether Dam methylation

regulates the expression of pmrA, rcsB or both by analyzing the

transcription of these genes in the dam mutant and the parental

strain of S. Enteritidis grown to exponential phase in LB medium.

By real-time quantitative PCR, the relative expression of both

pmrA and rcsB genes in SEDdam is reduced (56% and 59%,

respectively) compared with the parental strain (Fig. 3). Comple-

mentation of dam mutation with plasmid pIZ833 restored the

expression of pmrA, rcsB and wzz genes to wild type levels (Fig. 3).

Thus, a functional Dam results in upregulation of the expression of

pmrA and rcsB genes in S. Enteritidis. To analyze whether the

reduction in the amount of pmrA and rcsB mRNA observed in the

absence of Dam correlated with the amount of proteins, we

quantified PmrA and RcsB in SEDdam mutant. Because murine

anti PmrA or anti RcsB antibodies are not commercially available,

we constructed SEDdam mutants harboring either pmrA::36Flag or

rcsB::36Flag transcriptional fusions in the chromosome. Total

Figure 1. LPS analysis of S. Enteritidis strains overexpressing RcsB (A) or PmrA (B) protein. Equal amount of LPS was loaded in each lane
and analyzed by Tricine/SDS-PAGE on a 14% (w/v) acrylamide gel followed by silver staining. The concentration of LPS was determined by measuring
KDO using the purpald assay. A. Lanes 1–4: bacteria grown in N-minimal medium containing 10 mM MgCl2; lanes 5–8: bacteria grown in N-minimal
medium containing 10 mM MgCl2 100 mM FeSO4. B. Lanes 1–4: bacteria grown in N-minimal medium containing 10 mM MgCl2; lanes 5–7: bacteria
grown in N-minimal medium containing 10 mM MgCl2 100 mM FeSO4. Plasmids pIZ833, prcsB and ppmrA bears the dam, rcsB and pmrA genes
respectively.
doi:10.1371/journal.pone.0056474.g001
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bacterial proteins were extracted and the relative amount of PmrA

and RcsB was determined by Western blot developed with anti-

FLAG antibodies (Fig. 4). Densitometry analysis showed that the

amount of PmrA produced by the dam mutant (as well as the

complemented strains) was similar to that produced by the wild

type strain (Fig. 4A). On the other hand the relative amount of the

RcsB produced by the dam mutant was significantly reduced to

63% compared with that of the parental strain (Fig. 4 B).

RcsB induces the expression of wzz and pmrA, whereas
PmrA represses the expression of wzz and rcsB

Next we analyzed to what extent the expression of wzz was

reduced in the absence of its two regulators in S. Enteritidis. To do

that, real-time quantitative PCR was performed using mRNA

obtained from knockout rcsB and pmrA mutants and from wild type

strains grown in LB medium. As shown in Fig. 5A, the expression

of wzz was reduced to 29% in SEDrcsB mutant compared with the

wild type (strain #5694). In contrast, we observed 50% increased

expression of wzz in SEDpmrA with respect to the wild type (strain

#5694) (Fig. 5A). These features would not be exclusive to wild

type strain #5694, since similar results were found using pmrA and

rcsB mutants constructed from clinical isolates of S. Enteritidis

(data not shown).

These findings prompted us to investigate whether an interac-

tion exists between both wzz regulators. Therefore, we determined

the expression of rcsB in the absence of pmrA (SEDpmrA) and the

Figure 2. LPS analysis of rcsB (A) and pmrA (B) mutants of S.
Enteritidis strains. Equal amount of LPS was loaded in each lane and
analyzed by Tricine/SDS-PAGE on a 14% (w/v) acrylamide gel followed
by silver staining. The concentration of LPS was determined by
measuring KDO using the purpald assay. Plasmids prcsB and ppmrA
bears the rcsB and pmrA genes respectively.
doi:10.1371/journal.pone.0056474.g002

Figure 3. Relative expression of pmrA rcsB, and wzz mRNA determined by real-time quantitative PCR. Total mRNA was harvested from
cultures of SEDdam, S. Enteritidis #5694 (wild type) and complemented strains. The relative mRNA amount was determined by reverse transcription
real-time quantitative PCR and related to mRNA levels in wild type strain, set as 1. Values are means 6 SD of five independent mRNA extractions
performed in triplicates. Plasmid pIZ833 bears the dam gen. * significant difference p,0.01 with respect to wild type strain.
doi:10.1371/journal.pone.0056474.g003

Figure 4. Synthesis of RcsB (A) and PmrA (B) protein in S.
Enteritidis dam mutant. Western blot analysis of total proteins from
S. Enteritidis #5694 wild type strain and dam mutant strains harboring
an rcsB::36FLAG (A) or pmrA::36FLAG (B) transcriptional fusion in the
chromosome grown in LB medium and harvested at an OD600 of 0.6.
Protein loading was normalized to 106 CFU. Blots were probed with
anti-FLAG antibodies. Band intensity was determined by densitometry;
relative intensities are presented in arbitrary units (a.u.). Panel A. wt:
wild type strain #5694 SErcsB::36FLAG; dam: dam mutant strain
SErcsB::36FLAG. Panel B. wt: wild type strain #5694 SEpmrA::36FLAG;
dam: dam mutant strain SEpmrA::36FLAG. Plasmid pIZ833 bears the
dam gene. * Significant difference p,0.05. Data are expressed as means
6 SD of percent change in band intensity relative to wild type of five
independent experiments performed in duplicates.
doi:10.1371/journal.pone.0056474.g004
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expression of pmrA in the absence of rcsB (SEDrcsB). As shown in

Fig. 5B, the expression of rcsB in the mutant lacking pmrA was

increased by 24% with respect to the parental strain cultured in

LB medium. In contrast, deficiency in rcsB diminished the

expression of pmrA to 30% compared with the wild type strain

grown in the same medium (Fig. 5C). The expression of rcsB and

pmrA was restored in complemented strains (data not shown). To

further investigate these interactions, we analyzed wzz expression

in the wild type, rcsB and pmrA mutants grown in conditions that

stimulate or repress pmrA. As shown in Fig. 5D, similar patterns in

the expression of wzz were found between bacteria cultured under

conditions known to activate (low Mg2+; low Mg2++Fe3+) or

repress (high Mg2+) pmrA. We found that regardless the culture

media utilized, wzz expression was reduced in SEDrcsB mutant

Figure 5. Relative expression of wzz, rcsB and pmrA mRNA in pmrA and rcsB mutant by real-time quantitative PCR. Total mRNA was
harvested from cultures of SEDrcsB, SEDpmrA and S. Enteritidis wild type #5694 (wild type) grown in LB medium (A,B,C) or grown in low Mg2+, low
Mg2++Fe3+ and high Mg2+ (D). The relative amount of wzz mRNA was determined by reverse transcription real-time quantitative PCR and related to
mRNA levels in wild type strain #5694 (A,B,C) or in wild type strain #5694 grown in low Mg2+ (D), set as 1. Values are means 6 SD of five
independent mRNA extractions performed in triplicates. * significant difference p,0.01 with respect to wild type strain #5694 grown in the same
media; 1 significant difference p,0.01 with respect to the same strain grown in pmrA-inducing conditions (low Mg2+ and low Mg2++Fe3+ ); ¥
significant difference p,0.05 with respect to the same strain grown in pmrA-inducing conditions (low Mg2+ and low Mg2++Fe3+).
doi:10.1371/journal.pone.0056474.g005
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and increased in SEDpmrA mutant compared with the parental

strain. Interestingly, when the wild type strain was cultured under

conditions that repress pmrA (high Mg+2), the expression of wzz was

3 or 2 fold higher compared with the wild type grown in low Mg+2

or low Mg+2+Fe3+, respectively. This increase was even higher in

the absence of the pmrA gene for any culture medium tested

(Fig. 5D). Additional experiments revealed that concurring with

the augmented expression of wzz (Fig. 5D), the wild type strain

increased the expression of rcsB and reduced the expression of

pmrA in high Mg+2 compared with low Mg+2 (data not shown).

These results confirm that wzz expression is induced by RcsB and

repressed by PmrA. In all cases, the expression of wzz was restored

in complemented strains (data not shown).

Is there a third regulator of wzz in S. Enteritidis?
Results presented in Fig. 5D also show that the expression of

wzz is induced in the absence of rcsB by high Mg+2 (pmrA repressive

condition). This finding is interesting since it suggests the existence

of another wzz regulator; therefore, we decided to investigate the

expression of wzz in a double mutant of S. Enteritidis lacking pmrA

and rcsB genes (SEDrcsBDpmrA strain). As shown in Fig. 6A and B,

this double mutant was able to express wzz mRNA. We found that

regardless the culture condition used the expression of wzz was

decreased significantly in the double mutant compared with the

parental strain. Nevertheless, it is worth noting that for the double

mutant the expression of wzz was 2.5 fold higher in high Mg2+

than in low Mg2+ (Fig. 6B). Moreover, LPS analysis showed that -

concomitantly with the expression of wzz- the double mutant was

capable to synthesize O-antigen (Fig. 6C, lane 3). Note that in the

absence of Wzz, S. Enteritidis (SEDwzz mutant) is unable to

generate O-antigen (Fig. 6B, lane 2). Altogether, our results

indicate that, in addition to PmrA and RcsB, another regulator(s)

of wzz exists in S. Enteritidis.

Discussion

We have reported earlier that the absence of Dam in S.

Enteritidis causes a defect in the O polysaccharide chain length

distribution associated to reduced wzz gene expression. Here we

investigated whether Dam regulates wzz gene expression through

its two known regulators, PmrA and RcsB. We found that Dam

regulates the expression of both rcsB and pmrA genes; nevertheless,

the dam LPS phenotype of S. Enteritidis is only associated with

RcsB. The fact that SEDdam mutant exhibits reduced levels of rcsB

mRNA and a diminished amount of RcsB indicates that the

expression of rcsB gene is controlled (directly or indirectly) by Dam

methylation. The lack (SEDrcsB mutant) or even a diminished

amount (SEDdam strain) of RcsB resulted in an increased amount

of shorter polysaccharide chains similar to the dam LPS phenotype.

Furthermore, we found that overproduction of RcsB in SEDdam

mutant restores the O-antigen LPS pattern back to that of S.

Enteritidis wild type. The involvement of RcsB in the regulation of

polymerization was reported earlier in S. Typhimurium [16]. It

was shown that the lack of RcsB affects the mobility in those bands

containing 6–10 and 16–22 O-antigen subunits. Unlike serovar

Enteritidis, no increase in the amount of shorter polysaccharides

was reported for the rcsB mutant of S. Typhimurium. These subtle

differences in the regulation of the O-antigen chain length

between two serovars of Salmonella enterica would allow them to

colonize specific ecological and immunological niches [54].

Figure 6. Relative expression of wzz mRNA (A and B) and LPS analysis (C) of rcsB pmrA double mutant. A,B. Total mRNA was harvested
from cultures of SEDrcsBDpmrA double mutant and S. Enteritidis wild type #5694 grown in LB media (A) or grown in low Mg2+, low Mg2++Fe3+ and
high Mg2+ (B). The relative mRNA amount was determined by reverse transcription real-time quantitative PCR and related to mRNA levels in wild type
strain (A) or in wild type strain grown in low Mg2+ (B), set as 1. Values are means 6 SD of five independent mRNA extractions performed in triplicates.
* significant difference p,0.01 with respect to wild type strain grown in the same media; { significant difference p,0.05 with respect to same strain
grown in pmrA-inducing conditions (low Mg2+ and low Mg2++Fe3+). C. Equal amount of LPS was loaded in each lane and analyzed by Tricine/SDS-
PAGE on a 14% (w/v) acrylamide gel followed by silver staining. The concentration of LPS was determined by measuring KDO using the purpald
assay.
doi:10.1371/journal.pone.0056474.g006
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In S. Typhimurium, PmrA not only stimulates wzz expression,

regulating the O-antigen chain length, but also participates in core

and lipid A modifications [16,55,56,57,58,59,60]. Therefore, it

would be reasonable to expect a direct participation of PmrA in

the O polysaccharide chain length phenotype of S. Enteritidis; we

found, however, that the absence of PmrA does not cause

alterations in the LPS pattern. This is in agreement with the fact

that overproduction of PmrA in the dam mutant does not restore

the defective LPS pattern. On the other hand, our data indicate

that Dam methylation (directly or indirectly) does modulate pmrA

expression. Indeed, pmrA mRNA was reduced in the dam mutant.

This finding is in agreement with microarray analysis data

reported by Balbontin et al. in S. Typhimurium dam mutants

[31]. Interestingly, despite the diminished amount of pmrA mRNA

found in the dam mutant, PmrA levels remained unchanged.

Discrepancies between mRNA transcription and protein transla-

tion have been reported earlier [61,62,63]. In this regard, different

mechanisms related to mRNA stability have been proposed to play

a critical role in this phenomenon. Therefore, we conclude that, in

S. Enteritidis, a functional Dam is required for adequate levels of

pmrA and rcsB gene expression. Also, the diminished amount of

RcsB in SEDdam strain could explain the reduced wzz gene

expression found earlier in this mutant [39]. We also analyzed the

individual participation of PmrA and RcsB in the expression of

wzz gene in S. Enteritidis. As expected, we found that the relative

amount of wzz is reduced in rcsB mutant, indicating that RcsB

induces wzz gene expression. Surprisingly, in pmrA deletion mutant

the amount of wzz mRNA was higher than in the wild type,

indicating that, unlike RcsB, PmrA represses wzz gene expression.

This finding could explain the normal LPS phenotype of SEDpmrA

(this mutant would not lack Wzz protein).

In order to investigate a putative regulatory effect between both

wzz regulators, we determined the expression of rcsB in a pmrA

mutant, and pmrA expression in an rcsB mutant. We found that

both regulators affect each other expression. The relative

expression of pmrA mRNA decreases in the absence of rcsB,

whereas in the absence of pmrA, the relative amount of rcsB mRNA

increases. These results would indicate that, under the growth

conditions used, RcsB stimulates pmrA whereas PmrA represses

rcsB. Also, these findings could explain the elevated expression of

wzz found in the pmrA mutant; in the absence of PmrA, RcsB is

derepressed and therefore wzz is induced. Regulatory interactions

between two-component regulatory systems, coordinating respons-

es to diverse stimuli, have been described. The mechanisms

involved in these regulations include phosphatases interrupting

phosphoryl transfer in phosphorelays and transcriptional and post-

transcriptional modifications [64,65,66,67,68]. Then, it is possible

that an interaction between both PmrA/PmrB and RcsC/RcsD/

RcsB two-component regulatory systems would exist in S.

Enteritidis. In favor of a direct RcsB-mediated regulation of pmrA,

alignment analysis revealed a potential RcsB protein binding site

in pmrA gene of S. Enteritidis (see Fig. S1 for the bioinformatics

analysis performed). Similar results were obtained when the

alignment analysis was performed between the conserved regula-

tory sequences of PmrA binding sites and a putative PmrA binding

motif found in rcsB gene (supplemental data). Altogether these

results would indicate a direct regulation of PmrA protein on rcsB

gene and RcsB protein on pmrA gene. The balance between the

expression and repression of pmrA and rcsB in response to

environmental signals suggests a fine tuning of selective genes

required for the adaptation to a specific niche.

The experiments performed using double mutant rcsB pmrA of S.

Enteritidis indicate that wzz gene is expressed even in the absence

of both regulators. Early studies on serovar Typhimurium showed

that in the absence of rcsB and pmrA genes (both wzz inducers), the

activity of the wzz promoter is barely detected and consequently

the O-antigen is not synthesized. In fact, the LPS phenotype of

rcsB pmrA double mutant of S. Typhimurium closely resembles that

of a wzz mutant [16]. On the contrary, our experiments

demonstrate that the LPS pattern of S. Enteritidis lacking both

rcsB and pmrA genes (wzz inducer and repressor, respectively) does

conserve O-antigen. These results indicate that, in S. Enteritidis,

full expression of wzz would not depend exclusively on PmrA and

RcsB. Although the wzz mRNA amount found in rcsB pmrA double

mutant could be related to a basal expression of wzz (but still

enough to allow the synthesis of O-antigen), the induction of wzz

by high Mg2+ observed in rcsB mutant as well as in rcsB pmrA

Figure 7. Schematic diagram of the proposed regulatory network of wzz gene expression in S. Enteritidis. The regulatory cascade for
wzz gene expression involves Dam methylation, PmrB/PmrA and RcsC/RcsD/RcsB two-component regulatory system and a putative third regulator
(X). Proteins are indicated by ovals, whereas genes are symbolized by block arrows. Black dots indicate methylation sites (59-GATC-39 sequences).
Dashed lines indicate direct interactions demonstrated in S. Typhimurium. Positive regulation (induction) is labeled with q and (+), whereas negative
regulation (repression) is labeled with H and (2). The question mark indicates a putative regulation.
doi:10.1371/journal.pone.0056474.g007
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double mutant strongly support the possibility of a third gene

regulating wzz expression in S. Enteritidis.

In summary, we showed that in S. Enteritidis Dam methylation

regulates wzz expression through rcsB and pmrA genes; whereas

RcsB induces wzz gene expression PmrA represses it. We also

present evidence that rcsB and pmrA genes regulate each other;

RcsB stimulates the expression of pmrA and PmrA represses rcsB

gene expression. Finally, our results support the existence of a

third gene regulating wzz expression in S. Enteritidis, that can be

induced when bacteria is grown in high Mg2+. The regulatory

network of wzz gene expression proposed, including the involve-

ment of the hypothetical third wzz regulator, is shown in Fig. 7.

Thereby, results presented here would be an example of

differential regulation of orthologous genes expression providing

differences in phenotypic traits between closely related bacterial

serovars.

Supporting Information

Figure S1 Bioinformatics analysis. A. Conserved sequence

of PmrA-binding motif. The conserved nucleotides of the

sequences corresponding to PmrA binding motif are boxed. B.

Molecular analysis of rcsB gene region. Diagram of the DNA

sequence corresponding to rcsB region based on Refseq

NC_011294 sequence of S. enterica serovar Enteritidis. Alignment

analysis performed between the conserved regulatory sequences of

PmrA motif and the potential PmrA protein binding site sequences

found in rcsB gen region are depicted in the correspondent

localization. The two know rcsB promoters PrcsB (located within

rcsD coding region) and PrcsDB (located at 232 pb upstream of the

rcsD ORF) are marked with arrows. C. Alignment analysis of one

of the potential RscB-binding motifs found in pmrA gene region

with the reported RcsB-dependent regulatory sequences of

different enterobacteria. Homologous sequences of the potential

RcsB-binding site found in comparison with the reported RcsB

motif are in bold. D. Molecular analysis of pmrA gene region.

Diagram of the DNA sequence corresponding to pmrA region

based on Refseq NC_011294 sequence of S. enterica serovar

Enteritidis. Potential RcsB protein binding site sequences found in

pmrA gen are depicted in the correspondent localization. Next to

each potential sequence is indicated the orientation (direct, + or

complementary, 2), the position relative to the ATG sequence of

the gene and the amount of mismatches found in the alignment

(mm).

(TIF)
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