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Abstract: Cancer-specific drug delivery represents an attractive approach to preventing undesirable
side effects and increasing the accumulation of the drug in tumors. The surface modification of
selenium nanoparticles (SeNPs) with targeting moieties thus represents an effective strategy for
cancer therapy. In this study, SeNPs were modified with folic acid (FA), whose receptors were
overexpressed on the surface of cancer cells, including human cervical carcinoma HeLa cells,
to fabricate tumor-targeting delivery carrier FA-SeNPs nanoparticles. Then, the anticancer drug
doxorubicin (DOX) was loaded onto the surface of the FA-SeNPs for improving the antitumor efficacy
of DOX in human cervical carcinoma therapy. The chemical structure characterization of FA-Se@DOX
showed that DOX was successfully loaded to the surface of FA-SeNPs to prepare FA-Se@DOX
nanoparticles. FA-Se@DOX exhibited significant cellular uptake in human cervical carcinoma HeLa
cells (folate receptor overexpressing cells) in comparison with lung cancer A549 cells (folate receptor
deficiency cells), and entered HeLa cells mainly by the clathrin-mediated endocytosis pathway.
Compared to free DOX or Se@DOX at the equivalent dose of DOX, FA-Se@DOX showed obvious
activity to inhibit HeLa cells’ proliferation and induce the apoptosis of HeLa cells. More importantly,
FA-Se@DOX could specifically accumulate in the tumor site, which contributed to the significant
antitumor efficacy of FA-Se@DOX in vivo. Taken together, FA-Se@DOX may be one novel promising
drug candidate for human cervical carcinoma therapy.
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1. Introduction

Human cervical cancer mainly resulted from human papillomavirus (HPV) is one of the most
popular cancers in women’s health worldwide, and it is the fifth leading cause of cancer deaths among
females [1]. Chemotherapy, photothermal therapy, and radiotherapy are the most common methods
for cancer treatments [2]. Chemotherapy is a predominant strategy for cancer treatments due to its
high efficacy in comparison with the other treatments [3]. Doxorubicin (DOX) is one very common and
effective chemotherapeutic drug for cancer therapy [4]. Nevertheless, clinical application of DOX is
limited by its poor water solubility and off-target side effects [5]. Recently, nanomedicine has attracted
increasing attention in cancer treatments to overcome the pharmaceutical challenges of hydrophobic
anticancer drugs, such as nonspecific biodistribution, off-target toxicity, and poor water solubility [6,7].
Thus, a number of strategies using nanoparticles have been developed for cancer therapy, and most
of these therapies are based on the enhanced permeation and retention (EPR) effect [8]. However,
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uncontrolled drug release and drug delivery to unintended sites may compromise the therapeutic
efficacy as well as toxic and side effects [9]. These side effects can be minimized by controlled targeted
drug delivery by nanocarriers [10]. Recently, folic acids (FA) have been widely used as active targeting
ligands in nanoscale drug delivery systems due to their high specific binding with folate receptors that
are overexpressed in various cancer cells, including human cervical carcinoma HeLa cells [11,12].

Selenium nanoparticles (SeNPs) as drug carriers have received a large amount of attention [13–15].
For one thing, selenium (Se) as a trace element is very important to human biological processes and
involves many physiological functions [16]. For another, Se plays a key role in cancer prevention and
immune response [17]. Moreover, SeNPs showed some other advantages, for example the controlled
size, potent drug-loading capacity, improved antitumor effect, and low cytotoxicity [18]. SeNPs are
regarded as superior to other selenium species owing to their low toxicity, high biological activity,
and optical and electronic properties, which have found their way into applications in cancer therapy
and diagnosis [19]. Thus, SeNPs gradually developed into one excellent anticancer drug carrier [20].
However, some deficiency, especially the lack of active tumor-targeted capacity, still existed in such
a delivery carrier [21]. To obtain a high targeting ability, a lot of tumor-targeted molecules, such as folate,
Arg-Gly-Asp (RGD) peptides, and hyaluronic acid, were used for decorating the nanoparticles [22–25].
Muangsin [23] reported that SeNPs modified with folic acid-N-trimethyl chitosan (TMC-FA) as
nanocarriers were used for the delivery of doxorubicin (DOX) to overcome drug-resistant cancer
cells, which could obviously enhance the activity of DOX compared to free DOX.

In this paper, FA was installed onto the surface of SeNPs to prepare tumor-targeted carrier
FA-SeNPs. Then, DOX was loaded onto FA-SeNPs nanoparticles to prepare functionalized antitumor
nanoparticles FA-Se@DOX (Scheme 1). FA-Se@DOX exhibited significant cellular uptake and the
controlled release of DOX in HeLa cells, and could suppress the proliferation, migration, and invasion
of HeLa cells in vitro. FA-Se@DOX could also induce the apoptosis of HeLa cells. It is worth noting that
FA-Se@DOX obtained more favorable antitumor efficacy in vivo in comparison with Se@DOX or DOX,
indicating that FA-Se@DOX holds great potential application in human cervical carcinoma therapy.
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Scheme 1. Schematic illustration of the formation of folic acid selenium (FA-Se)@doxorubicin
(DOX) nanoparticles.

2. Results and Discussion

2.1. Preparation and Characterizations of FA-Se@DOX

One tumor-targeting delivery system, FA-Se@DOX, was fabricated in this paper. The tumor-targeting
molecular folic acid (FA) was linked with selenium nanoparticles (SeNPs) to fabricate tumor-targeting
delivery carrier FA-SeNPs; then, the antitumor drug doxorubicin (DOX) was loaded to the surface of
the FA-SeNPs to prepare the tumor-targeting delivery system FA-Se@DOX. As shown in Figure 1A,
the average size of the FA-Se@DOX was 83 nm. The morphology of nanoparticles in the TEM image
presented spherical particles with size ranges of 40 nm to 110 nm (Figure 1B). Nanoparticles in the range
of 10–100 nm are considered ideal for biomedical use, as they are small enough to avoid uptake by the
reticuloendothelial system, but large enough to escape renal filtration. Thus, SeNPs with such sizes are
very beneficial for use as drug carriers [19]. The obvious signal of a Se atom and a typical Cl atom signal
of DOX·HCl appeared in elemental compositions of FA-Se@DOX (Figure 1C), indicating that DOX
were successfully loaded to the surfaces of SeNPs. The size distribution of FA-Se@DOX in Figure 1D
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showed that FA-Se@DOX were stable with small sizes (<100 nm) for 16 days. The above data indicated
that FA-Se@DOX were successfully synthesized and exhibited good stability in a water solution.
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The Fourier transform infrared (FTIR) spectrums of FA-Se@DOX, DOX, SeNPs, and FA are
shown in Figure 2; typical peak of SeNPs also appeared in the spectrum of FA-Se@DOX. The peaks
at 1695 cm−1 and 1606 cm−1 were corresponded to the carboxyl band of FA. After loading FA to
SeNPs, typical carboxyl bands (1697 cm−1 and 1607 cm−1) also appeared in spectrum of FA-Se@DOX,
indicating successful linking between SeNPs and FA via carboxyl bonds. The peak at ~3370 cm−1
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FA-Se@DOX, verifying effective linking between DOX and FA-SeNPs.
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2.2. Cellular Uptake Studies

The drug delivery efficiency is closely related to cellular uptake [26]. A high cellular uptake of
drugs can result in effective treatment efficacy. It has been reported that folate receptors (FAR) are
overexpressed in various cancers, including cervical cancer, breast cancer, brain cancer, and colon
cancer [27]. However, A549 cells were usually used as folate receptor-negative control cells [28]. Thus,
we aimed to detect the effects of FAR-mediated cellular uptake in HeLa cells and A549 cells. Selective
FAR-mediated cellular uptake of FA-Se@DOX between HeLa cells and A549 cells was confirmed
by fluorescence microscope. As shown in Figure 3A,B, the cellular uptake of FA-Se@DOX in HeLa
cells was stronger than that in A549 cells at the same condition, verifying a FAR-mediated specific
uptake between HeLa cells and A549 cells. Furthermore, the cellular uptake of free DOX, passive
tumor-targeting nanoparticles Se@DOX, and active tumor-targeting nanoparticles FA-Se@DOX were
quantificationally analyzed in HeLa cells using flow cytometry. As shown in Figure 3C, both Se@DOX
and FA-Se@DOX exhibited higher cellular uptake than free DOX, indicating that loading DOX onto
selenium nanoparticles improved the cellular uptake of DOX in HeLa cells. The uptake of DOX from
FA-Se@DOX is relatively higher than that from Se@DOX, which can be explained by FAR-mediated
targeting contributing to the improved cellular uptake of FA-Se@DOX in HeLa cells.
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cytometry. (D) Effects of endocytosis inhibitors and temperature on the internalization of FA-Se@DOX.
* p < 0.05, ** p < 0.01 vs. control group.

It has been reported that nanoparticles can enter the cells in an energy-dependent endocytotic
way [29]. The incubation of HeLa cells at 4 ◦C or pretreated with NaN3/DOG markedly
reduced the cellular uptake of nanoparticles (Figure 3D), indicating that the endocytosis of
FA-Se@DOX nanoparticles is an active energy-dependent process. The cells’ endocytosis mainly
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includes three pathways, including clathrin-mediated endocytosis, caveolae-mediated endocytosis,
and macropinocytosis. To examine the endocytosis mechanism of FA-Se@DOX in HeLa cells, different
endocytosis inhibitors were used to study the effects of FA-Se@DOX on cellular uptake. Amiloride,
nystatin, and chlorpromazine are usually used to inhibit micropinocytosis, caveolae-mediated
endocytosis, and clathrin-associated endocytosis, respectively. After pretreating with amiloride
or nystatin, the cellular uptake of FA-Se@DOX was decreased by 36.1% and 29%, respectively.
Nevertheless, pretreatments with chlorpromazine resulted in about a 57.2% decrease in the cellular
uptake of FA-Se@DOX, suggesting that clathrin-associated endocytosis mainly contributed to the
internalization of FA-Se@DOX.

2.3. In Vitro Release of DOX

The two types of pH values (pH 7.4 and 5.4) were used to simulate the normal physiological
environment and the cancer cell microenvironment, respectively [30]. The release profiles of DOX
from FA-Se@DOX nanoparticles were shown in Figure 4A; there was a noteworthy burst drug release
during the initial 4 h in both pH values. It was worth noting that FA-Se@DOX presented a faster
release of DOX in the acidic environment during the initial 30 h, which was up to 83.3%. However,
the release rate was just 47.8% in a normal physiological environment (pH 7.4). These acid-dependent
drug release features of FA-Se@DOX are very beneficial for drug delivery systems in cancer therapy.
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2.4. In Vitro Cytotoxicity Study

MTT assay was used to investigate the cytotoxicity of different formulations of DOX against
HeLa cells in vitro. Free DOX and passive targeting nanoparticle Se@DOX were set as negative control.
As shown in Figure 4B, the viability of HeLa cells exposed to various formulations of DOX gradually
declined with increasing DOX concentrations. For instance, free DOX, Se@DOX, and FA-Se@DOX at
the DOX concentration of 8 µg/mL obviously suppressed HeLa cells’ proliferation, and cell viability
rates were 58.3%, 44.5%, and 27.6%, respectively, suggesting that FA-Se@DOX exhibited greater
cytotoxicity in HeLa cells compared with free DOX and Se@DOX. The cell viability of HeLa cells was
significantly lower than 50% after treatment with FA-Se@DOX at the equivalent DOX dose of 4 µg/mL;
thus, such a dose was applied for further biological research. The proliferation inhibition of HeLa
cells treated with drug carrier FA-SeNPs at the used dose was not obvious (Figure S1), indicating
the low cytotoxicity of FA-SeNPs. The MTT results indicated that the delivery of DOX using active
tumor-targeted carrier FA-SeNPs could effectively enhance the anticancer activity of DOX.

2.5. FA-Se@DOX Suppress the Migration and Invasion of HeLa Cells

Cell wound-healing assay was utilized to assess whether FA-Se@DOX could effectively inhibit
the migration of cancer cells. As shown in Figure 5A, the wound-healing assay results showed that
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FA-Se@DOX decreased the migration of HeLa cells over a 12-h interval. Meanwhile, the invasion
of HeLa cells was also strongly inhibited by FA-Se@DOX (Figure 5C). Furthermore, FA-Se@DOX
exhibited slightly higher activity to inhibit HeLa cell migration and invasion in comparison with
free DOX or Se@DOX (Figure 5B,D), indicating that FA-Se@DOX is superior to DOX and the passive
targeting delivery system Se@DOX to inhibit the motility and migration of HeLa cells.
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2.6. FA-Se@DOX Induces the Apoptosis of HeLa Cells

DOX is a very effective antitumor drug and can induce cancer cell apoptosis [31]. Thus,
flow cytometry was used to test whether FA-Se@DOX could exhibit greater activity to induce HeLa cells
apoptosis compared with free DOX or Se@DOX. In this study, apoptosis cells with DNA fragmentations
were reflected as Sub-G1 peaks. Figure 6A showed that the Sub-G1 apoptosis peak of cells in the
FA-Se@DOX-treatment group was stronger (29.58%) than that of the DOX-treatment group (13.69%)
and the Se@DOX-treatment group (19.01%), indicating that FA-Se@DOX exhibited a stronger capacity
to induce HeLa cells’ apoptosis in comparison with free DOX or Se@DOX. However, there was no
obvious difference in the cell cycle distribution among the different treatment groups. To further detect
the apoptosis of HeLa cells treated with various formulations of DOX, the cells were analyzed via
Annexin V-FITC/PI dual staining. As shown in Figure 6B, FA-Se@DOX-treatment obviously induced
HeLa cells’ apoptosis and resulted in higher cell apoptosis rates (24.77%) compared with the cells
treated with DOX (10.48%) and Se@DOX (19.48%). These results indicated that FA-Se@DOX could
enhance the anticancer activity of DOX to induce HeLa cells’ apoptosis by loading DOX onto the
surface of active tumor-targeting carrier FA-SeNPs.
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2.7. In Vivo Biodistribution of Nanoparticles

As effective active tumor-targeting delivery carriers, carriers should be selectively capable
of delivering antitumor drugs to tumor sites for acquiring enhanced antitumor activity. Thus,
the biodistribution of cy5.5-loaded FA-Se@DOX in the tumors and main organs of mice were observed
by the ex vivo fluorescence imaging after 3 h or 6 h of intravenous injection. As shown in Figure 7,
cy5.5-loaded FA-Se@DOX mainly accumulated in tumors in comparison with other organs. Compared
with 3 h of intravenous injection, fluorescence signals became stronger after 6 h intravenous injection of
cy5.5-loaded FA-Se@DOX. This result indicated that cy5.5-loaded FA-Se@DOX could achieve effective
tumorous accumulation following systemic administration because of the combined contributions of
EPR effects and FA-FAR specific binding.
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2.8. In Vivo Antitumor Efficacy

HeLa tumor xenograft was used to assess the antitumor efficacy of FA-Se@DOX. The mice
were randomly assigned to four groups and then intravenously injected with FA-Se@DOX, Se@DOX,
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free DOX, and saline, respectively. Tumor volumes and the body weights of mice were tested every
other day for up to 21 days. As shown in Figure 8A, compared to the saline-treated control group,
FA-Se@DOX-treatment obviously suppressed tumor growth during the treatment time. Moreover,
FA-Se@DOX was more effective in suppressing tumor growth in comparison with free DOX or
Se@DOX at the same dose of DOX, proving the good antitumor efficacy of FA-Se@DOX. In addition,
the body weight of mice exhibited a slight increase during the treatment period, indicating that
FA-Se@DOX had no obvious side effects at the tested dose (Figure 8B). Histological studies were
carried out to further elaborate the action mechanism of the enhanced anticancer ability caused
by FA-Se@DOX. Cell proliferation and apoptosis in tumors were studied by Ki67, pp53, caspase-3,
and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining after treatment
with FA-Se@DOX (Figure 9). Compared to the saline-treatment group, FA-Se@DOX-treatment
obviously decreased Ki67-positive cancer cells, indicating that the proliferation of cancer cells was
inhibited by FA-Se@DOX. As expected, the results of pp53, caspase-3, and TUNEL assays showed that
FA-Se@DOX could exhibit obvious activity to induce cancer cells apoptosis in comparison with the
free DOX or Se@DOX groups. The above results indicated that FA-Se@DOX presented a great potential
in cervical cancer treatments via suppressing the proliferation of cervical cancer cells and inducing the
apoptosis of cervical cancer cells.
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To further assess the in vivo toxicity of FA-Se@DOX on main organs, an histological analysis
of organs’ tissue sections was carried out via Hematoxylin and Eosin (H&E) staining. No distinct
difference was found among the various treatment groups in comparison with the saline-treatment
group (Figure 10), indicating that FA-Se@DOX was well tolerated at the tested dose in vivo. Analyzing
these issues, the tumor-targeted delivery system FA-Se@DOX has a significant potential for effective
human cervical carcinoma therapy with low systemic toxicity.
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3. Materials and Methods

3.1. Materials

Folic acid, doxorubicin hydrochloride (DOX·HCl), sodium selenite (Na2SeO3), dimethyl
sulfoxide (DMSO), ascorbic acid (Vc), Annexin V-fluorescein isothiocyanate (FITC)/PI kit,
4,6-diamino-2-phenyl indole (DAPI), and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide, thiazolyl blue tetrazolium bromide (MTT) were purchased from Sigma-Aldrich Chemicals
(Scotland, UK). The antibody was obtained from Cell Signaling Technology (Danvers, MA, USA).
Penicillin-streptomycin, fetal bovine serum (FBS), and Dulbecco’s modified eagle’s medium (DMEM)
medium were obtained from Gibco BRL/Life Technologies (Paisley, UK).

3.2. Preparation and Characterization of FA-Se@DOX Nanoparticles

SeNPs were prepared as previously reported with partial modification [32]. Briefly, 0.25 mL
of Na2SeO3 (0.1 M) solution and 2 mL of vitamin C (Vc, 0.5 mM) solution were slowly added into
22.75 mL of Milli-Q water in a 50-mL beaker. Then, the solution mixtures were magnetically stirred
for 30 min at room temperature to manufacture selenium nanoparticles (SeNPs). Then, folate was
coated to the surface of SeNPs, and redundant components were eliminated via dialyzing for 12 h.
After that, 2 mg of DOX·HCl was dissolved in 5 µL of DMSO, and then added into FA–SeNPs solutions
for 8 h. At last, the high-purity FA-Se@DOX was obtained via dialyzing reaction solutions for 4 h.
To investigate the in vivo biodistribution of FA-Se@DOX, a fluorescent dye cy5.5 at a final concentration
of 5 µg/mL was mixed with the FA-Se@DOX solution to form cy5.5-loaded FA-Se@DOX. The chemical
structures of nanoparticles were characterized by transmission electronic microscopy (TEM), dynamic
light scattering (DLS) analysis, energy dispersive X-ray (EDX), and Fourier transform infrared (FTIR).
The sizes of nanoparticles in the water solution were continually observed over 16 days.
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3.3. Cell Culture

Human lung epithelial carcinoma A549 cells (folate receptor deficiency cell line) and human
cervical carcinoma HeLa cells (folate receptor overexpressing cell line) were purchased from ATCC
and were cultivated in DMEM with 10% FBS at 37 ◦C with 5% CO2.

3.4. Cellular Uptake Study

HeLa cells (5 × 104 cells/well) were seeded in a 24-well plate and incubated for 12 h. Then,
HeLa cells were exposed to FA-Se@DOX at a DOX dose of 4 µg/mL for 1 h, 2 h, and 4 h, respectively.
Then, the cells were washed with PBS and stained with DAPI for 15 min. Subsequently, the cells were
washed with PBS three times, and the cells were photographed by fluorescence microscope (Leica
DMi8, Wetzlar, Germany). The cellular uptake of FA-Se@DOX in A549 cells was investigated the same
way as above. The quantitative cellular uptake of DOX in various formulations was carried out by
flow cytometer. Briefly, HeLa cells (5 × 104 cells per well) were incubated in 12-well plates for 24 h.
Then, cells were co-cultured with free DOX, Se@DOX, and FA-Se@DOX at a DOX dose of 4 µg/mL for
8 h, respectively. The cells were rinsed three times with PBS and examined by flow cytometer (FCM,
BD FACSAria, San Jose, CA, USA).

The HeLa cells model was used to research the cellular uptake mechanism. Briefly, 0.5 mL of HeLa
cells’ suspension at a density of 5 × 105 cells/mL was incubated at 37 ◦C for 24 h. After that, cells were
exposed to FA-Se@DOX at a DOX dose of 4 µg/mL for 4 h in the absence of an inhibitor at 4 ◦C, or with
50 mM of 2-deoxy-d-glucose (DOG) and 3 mg/mL of NaN3 or various cellular uptake inhibitors
chlorpromazine (2 µg/mL), amiloride (5 µg/mL), or nystatin (4 µg/mL), at 37 ◦C, respectively. Then,
cells were washed with PBS and gently collected. The collected cells were measured by flow cytometer
(BD Bioscience, San Jose, CA, USA).

3.5. In Vitro Release of DOX

For in vitro release detection, 5 mg of FA-Se@DOX nanoparticles were dispersed in 5 mL of PBS
solution, and then placed into a pre-swelled dialysis bag (3.5 kDa molecular weight cutoff). Then,
the sealed dialysis bag was immersed into 40 mL of PBS (pH 7.4 or 5.4) with gentle agitation at 37 ◦C.
Then, a 1-mL sample was withdrawn at different time intervals and then replaced with an equal
volume of PBS. The concentration of DOX was tested by UV-vis spectroscopy.

3.6. MTT Assay

MTT assays were performed to test the cellular cytotoxicity of nanoparticles [33]. HeLa cells
(2 × 104 cells/mL) were added to a 96-well culture plate and incubated for 24 h at 37 ◦C. Then,
cells were exposed to free DOX, Se@DOX, and FA-Se@DOX (various equivalent DOX concentrations)
or with various concentrations of FA-SeNPs at 37 ◦C for 48 h, respectively. Then, the medium was taken
away, and 100 µL of medium containing 20 µL of MTT (0.5 mg/mL) was gently added to each well,
followed by incubation for another 4 h. Then, the medium was taken away, and 200 µL of dimethyl
sulfoxide was added to each well. The culture plate was incubated for another 0.5 h. The absorbance
of each well was tested at 570 nm by a microplate reader (Bio-Rad Laboratories, Hercules, CA, USA).

3.7. Wound Healing Assay

The cell migration was examined via wound-healing assay [34]. In brief, HeLa cells (5× 104 cells/well)
were incubated in a 24-well plate and cultured in complete medium to reach full confluence.
The monolayer cells were scratched using a sterile 10-µL pipette tip. Then, the medium was taken
away and fresh DMEM containing 2% FBS were added to each well. Afterwards, HeLa cells were
co-cultured with DOX, Se@DOX, and FA-Se@DOX, at a DOX equivalent concentration of 4 µg/mL,
respectively, and incubated at 37 ◦C for 24 h. The scratch closure of the scratched monolayer cells
was observed and photographed at 0 h and 12 h. The average scratched width between the sides of
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the wound was measured at three random areas. The migration rate was calculated according to the
following equation: cell motilities (%) = [1 − (distance of scratched area at 12 h/distance of scratched
area at 0 h)] × 100%.

3.8. Transwell Assay

Cell invasion was analyzed by Transwell chamber (8 µm). In brief, 300 µL of complete medium
was added to the bottom chamber, and then, HeLa cells (1 × 105 cells/mL) were seeded into the
upper chambers of 24-well Transwell plates. Then, HeLa cells were incubated with DOX, Se@DOX,
and FA-Se@DOX at equivalent DOX concentrations of 4 µg/mL for 24 h, respectively. After 24 h,
the filter was taken away from the plate and the cells remaining on the upper filter were wiped gently.
The cells that migrated to the bottom chamber were fixed with methanol and stained with crystal
violet for 2 min. The average migrating cells in six independent views were photographed using
a microscope.

3.9. Flow Cytometry Assay

The cell cycle distributions were tested by flow cytometry (BD Biosciences, San Jose, CA, USA).
Briefly, HeLa cells were exposed to DOX, Se@DOX, and FA-Se@DOX at equivalent DOX concentrations
of 4 µg/mL for 24 h, respectively, and washed twice with cold PBS. The pre-cooled 75% ethanol was
added to the collected cells for fixation at −20 ◦C overnight and then stained with PI in a dark place
for 30 min. The DNA contents were analyzed by Modfit software (Verity Software House, Topsham,
ME, USA). Flow cytometry was also utilized to examine the effect of FA-Se@DOX on the apoptosis of
HeLa cells. Briefly, HeLa cells were exposed to DOX, Se@DOX, or FA-Se@DOX at equivalent DOX
concentrations of 4 µg/mL, and washed twice with PBS. Then, cells were collected and then stained
with Annexin V-FITC/PI for 30 min in the dark. Finally, the stained cells were examined by flow
cytometry, and the data were analyzed by FlowJo software (Treestar, Ashland, OR, USA).

3.10. In Vivo Biodistribution of FA-Se@DOX

The in vivo biodistribution of FA-Se@DOX was assessed in a subcutaneous human cervical
carcinoma model in BALB/c nude mice (eight weeks old). Briefly, HeLa cells (1.5 × 107 cells for
each mice) were injected in tumor-bearing mice. After the volume of the tumors reached ~400 mm3,
the mice were injected with cy5.5-loaded FA-Se@DOX (at an equivalent DOX of 2 mg/kg) intravenously.
After 3 h or 6 h of administration, the tumors and main organs (including liver, spleen, heart, kidney,
and lung) were stripped from mice, and fluorescence imaging of tumors and organs were captured by
an IVIS imaging system (Xenogen, Alameda, CA, USA).

3.11. Xenograft Mouse Model

BALB/c nude mice (about eight weeks old) were applied to study the antitumor efficacy of
FA-Se@DOX in vivo. HeLa cells (1.5 × 107 cells/150 µL) were injected in the abdomens of mice
subcutaneously. The mice were randomly categorized into four groups (n = 6) after volumes of
tumors reached ~100 mm3. Subsequently, saline (control group), DOX, Se@DOX, and FA-Se@DOX (at
an equivalent DOX of 2 mg/kg; the dose range of selenium is about 2.5 mg/kg) were intravenously
injected into tumor-bearing mice once every other day, respectively. The overall treatment time was 21
days. Tumor volumes were calculated by the following formula: tumor volumes (mm3) = 1

2 × length
× width2.

3.12. Hematoxylin and Eosin (H&E) Analysis

Tumors and organs were fixed with 3.7% paraformaldehyde, and then tissues were sectioned into
six-µm slices. Histologic sections were prepared for H&E staining. The expression of Ki67 protein
related with tumor cell growth and apoptosis-related proteins pp53 and caspase-3 was tested via
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immunohistochemistry. The apoptosis of tumor cells was detected by a TUNEL assay kit. The imaging
of each section was photographed by a Leica DMi8 digital microscope. All of the animal experiments
were carried out according to the guidelines of the Experimental Animal Center of Guangzhou Medical
University and approved by Ethics Committee of Guangzhou Medical University (No 2018-274,
12 January 2018).

3.13. Statistical Analysis

All of the data represented mean ± standard deviations (SD). The differences between the two
groups were compared using one-way analysis of variance (ANOVA). The differences were judged to
be significant and highly significant at * p < 0.05 and ** p < 0.01, respectively.

4. Conclusions

One novel active tumor-targeting selenium nanoparticles FA-Se@DOX was successfully
synthesized to deliver DOX for human cervical carcinoma treatment. FA-Se@DOX showed excellent
cellular uptake in human cervical carcinoma HeLa cells, resulting in significant anticancer efficacy.
FA-Se@DOX could obviously inhibit HeLa cells proliferation, and induce HeLa cells apoptosis
in vitro. Furthermore, FA-Se@DOX exhibited obvious antitumor efficacy in vivo during the treatment.
In addition, FA-Se@DOX showed no obvious toxicity in the main organs of tumor-bearing mice. Taken
together, the tumor-targeting delivery system FA-Se@DOX provides a new strategy for human cervical
carcinoma therapy.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/11/
3582/s1.
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Abbreviations

DLS Dynamic light scattering
DOG 2-deoxy-D-glucose
DOX doxorubicin
EDX Energy dispersive X-ray
FTIR Fourier transform infrared
FA Folic acid
FA-Se@DOX Selenium nanoparticles linked with folic acid and doxorubicin
Se@DOX Selenium nanoparticles linked with doxorubicin
TEM Transmission electronic microscopy
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