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Ultrafast, portable, and inexpensive molecular diagnostic platforms are critical for clinical
diagnosis and on-site detection. There are currently no available real-time polymerase
chain reaction (PCR) devices able to meet the demands of point-of-care testing, as the
heating and cooling processes cannot be avoided. In this study, the dual temperature
modules were first designed to process microfluidic chips automatically circulating
between them. Thus, a novel ultrafast molecular diagnostic real-time PCR device
(approximately 18 and 23min for DNA and RNA detection, respectively) with two
channels (FAM and Cy5) for the detection of 12 targets was developed. The device
contained three core functional components, including temperature control, optics, and
motion, which were integrated into a portable compact box. The temperature modules
accurately control temperature in rapid thermal cycles with less than ±0.1 °C, ±1 °C and
±0.5 °C for the temperature fluctuation, uniformity, and error of indication, respectively. The
average coefficient of variation (CV) of the fluorescence intensity (FI) for all 12 wells was
2.3% for FAM and 2.7% for Cy5. There was a good linear relationship between the
concentrations of fluorescent dye and the FIs of FAM and Cy5(R2 = 0.9990 and 0.9937),
and the average CVs of the Ct values calculated by the embedded software were 1.4% for
FAM and Cy5, respectively. The 100 double-blind mocked sputum and 249 clinical stool
samples were analyzed by the ultrafast real-time PCR device in comparison with the DAAN
Gene SARS-CoV-2 kit run on the ABI 7500 instrument and Xpert C. difficile/Epi,
respectively. Among the 249 stool samples, the ultrafast real-time PCR device
detected toxigenic C. difficile in 54 samples (54/249, 21.7%) with a specificity and
positive predictive values of 99.0 and 96.3%, which were higher than the Xpert C.
difficile/Epi values of 94.4 and 88.1% (p > 0.05). The ultrafast real-time PCR device
detected 15 SARS-CoV-2 positive samples, which has a 100% concordance with that
obtained by the DAAN Gene SARS-CoV-2 kit. This study demonstrated that the ultrafast
real-time PCR device integrated with microfluidic chips and dual temperature modules is
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an ultrafast, reliable, easy-to-use, and cost-effective molecular diagnostic platform for
clinical diagnosis and on-site testing, especially in resource-limited settings.

Keywords: molecular diagnostic, ultrafast, microfluidic chip, dual temperature modules, performance evaluation

INTRODUCTION

Molecular diagnostics plays a crucial role in the early diagnosis of
infectious diseases, genetic diseases, and tumors by analyzing
gene- or protein-based biomarkers (Biswas, 2016). The
immunoassays remain some limitations such as cross
reactions, false positive IgM, and the window period at the
early stage of infection (Benzigar et al., 2021). Owing to their
high sensitivity and specificity, gene diagnostics have been widely
used for the rapid diagnosis of infectious pathogens including
SARS-CoV-2 (Go et al., 2017; Chen H et al., 2019; Li et al., 2020).
Polymerase chain reaction (PCR) tests, especially real-time PCR,
have become a popular technology in gene diagnostics (Rödiger
et al., 2017). However, the slowdown in PCR tests comes from the
time it takes to repeat the heating and cooling processes (Lee et al.,
2020).

Based on PCR technology, heating media can be categorized
into three types: water bath (Chan et al., 2016), air heated (Qiu
et al., 2017), and metal heating block (You et al., 2020). Water
bath-based PCR has been abandoned because of its low degree of
automation, low amplification efficiency, and lack of consistency
(Mahanama and Wilson-Davies, 2021). Air-heated-based real-
time PCR has subsequently been developed with air as a heat-
transfer medium (Qiu et al., 2019). Although this method
increases the amplification efficiency to a certain extent
because of the low thermal conductivity and specific heat
capacity of air (Miao et al., 2020), additional energy
consumption and cost were increased. Metal block-based real-
time PCR is currently one of the most widely used products,
which utilizes the semiconductor chilling plate to repeatedly heat
and cool the metal block for the thermal cycle (Loy et al., 2018).
However, temperature-changing process is still needed with
about 3°C/s (Wong et al., 2015).

Recently, with the aim of performing real-time PCR tests more
efficiently, rapid real-time PCR devices have attracted
considerable attention (Romsos and Vallone, 2015; White
et al., 2015; Federici et al., 2018) and are of great significance
for rapid pathogen detection and on-site diagnosis (Qian et al.,
2018). Although some rapid PCR devices have been designed for
point-of-care testing (POCT), some technical challenges are still
faced, such as complex hardware system design, insufficient
miniaturization, and complicated preprocessing (Luppa et al.,
2016; Kazuya et al., 2020; Rong et al., 2021). The GeneXpert,
developed by Cepheid, is a popular POC device that has been
endorsed by the WHO (Heidebrecht et al., 2016), and however it
still needs 45–60 min for the test to complete due to one single
temperature module conducting the thermal cycle through
repeated heating and cooling processes (Stime et al., 2018).
Furthermore, novel temperature control methods have been
developed to shorten thermocycling time (Rogers-Broadway
and Karteris, 2015). Some rapid nucleic acid amplification

techniques have been proposed as alternatives to the
conventional thermocycling process, including loop-mediated
isothermal amplification (Martzy et al., 2017), recombinase
polymerase amplification (Lobato and O’Sullivan, 2018),
multiple cross displacement amplification (Luu et al., 2021),
helicase-dependent amplification (Barreda-García et al., 2018),
droplet digital PCR (ddPCR) (Wang et al., 2018) and CRISPR
(Dai et al., 2020). Among the above assays, the design of primers
is complicated, and false positives can easily arise, making it
difficult to provide on-site POC testing (Lau and Botella, 2017).

To address these problems, a low-cost ultrafast molecular
diagnostic device was developed with a microfluidic chip and
dual temperature modules, which enables rapid PCR by
circulating the chip between both of two dual temperature
modules through a motion module without the heating and
cooling process. In this study, we evaluated the performance
of the ultrafast real-time device and detected SARS-CoV-2 and
Clostridioides difficile (C. difficile) to verify its clinical
performance.

MATERIALS AND METHODS

Test Equipment
The ultrafast real-time PCR system (CQ100) was offered by
Biochip for diagnosis Co., Ltd. (Hangzhou, China).

Measurement of Temperature Fluctuation,
Uniformity, and Accuracy
There are two temperature modules in the CQ100. The target
temperature of one module was set to 50, 60, and 65°C, and the
other was set to 90, 95, and 100°C. After the set temperature was
reached and stabilized, the temperature data of the central points
in the two modules were collected using a 50D digital
thermometer (Fluke Corp., Washington, DC, United States).

The temperature fluctuation was determined by the
temperature differences among different measurement times at
the same measured point on the microfluidic chip and was
calculated using the formula: ΔTf = ± (Tmax -Tmin)/2, where
ΔTf represents the value of the temperature fluctuation and Tmax

and Tmin represent the mean maximum and minimum
temperatures at the central point of each module for five
measurements, respectively.

The temperature uniformity was determined by the
temperature difference among various measured points on the
microfluidic chip at the same time and was calculated using the
following formula: ΔTu = T′max – T′min, where ΔTu represents the
temperature uniformity and T′max and T′min represent the
maximum and minimum temperatures for six measurements
at the five points, including one central point and four diagonal
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points. The concept of the error of indication was introduced to
analyze temperature accuracy, which is the temperature
difference between the measured and targeted data and can be
calculated by the formula: ΔT = Td – T0, where ΔT represents the
error of indication and Td and T0 represent each of the mean
temperatures for six measurements at the central point in two
modules and the presetting temperature.

Repeatability, Precision, and Linear
Response of Fluorescence Intensity
Two fluorescent channels were set to detect FAM and Cy5
fluorescence in the CQ100, and FAM and Cy5 fluorescence
was measured at excitation/emission wavelength settings of
495/518 and 650/670 nm, respectively. The fluorescent dye
powder (BiOligo Biotech Co., Ltd., Shanghai, China) was
dissolved in distilled water to obtain a 100 μM stock solution.
The working solution (8 μL) was added to each well on a
microfluidic chip, and a simple program (95°C for 1 s, 65°C
for 1 s, 72°C for 1 s, 1 cycle) was set to quickly acquire
fluorescence images. The fluorescence intensity (FI) data
(Absorbance Unit, a.u.) were obtained based on the gray value
of the fluorescent images.

Each dye stock solution was diluted to three
concentrations (low, medium, and high) with distilled
water to analyze the FI detection repeatability and
precision. The FAM solution was diluted to concentrations
of 2, 6, and 10 μM, and the Cy5 solution was diluted to
concentrations of 0.5, 2, and 6 μM. The inter-well coefficient
of variation (CV) was used to evaluate the repeatability,
which was obtained from 10 measurements of the FI in
the same reaction well. The intra-well CV was used to
evaluate the precision, which was determined from the FI
among 10 measured reaction wells at the same time. The CV
was calculated using the following formula: CV = standard
deviation/mean × 100.

Moreover, the dye solutions were two-fold serially diluted to
five concentrations ranging from 10 to 2 μM, and then a linear
fitting of the relationship between the concentrations and the
response FI was performed to evaluate the accuracy of
fluorescence acquisition.

Preparation Detection of Double-Blind
Mocked COVID-19 Samples
All included studies were approved by the Ethics Committee of
Hangzhou Medical College (ethical approval number: LL2020-03
and LL2020-41). A COVID-19 pseudovirus was constructed as
follows. The specific sequences of the N and ORF1ab genes of
SARS-CoV-2 (GenBank: MN908947) were synthesized and
cloned into the pGEM-T vector (Promega, Madison, WI,
United States). After digestion with HindIII restriction
enzymes, the target fragments were ligated into the pNCCL1
vector. The capsid protein was expressed in pET-MS2 bacteria
after induction with IPTG, and the recombinant proteins self-
assembled into virus-like particles that were released into the
supernatant and purified by density gradient centrifugation in

CsCl. The constructed pseudovirus was validated using Sanger
sequencing.

Sputum samples from healthy individuals who underwent a
health examination were collected at the Zhejiang Provincial
People’s Hospital between 1 March 2020, and 30 June 2020.
The mocked sputum samples were prepared by mixing 10 µL of
pseudovirus and 190 µL of sputum samples, while sputum
samples from healthy individuals were used as negative
controls. The prepared double-blind sputum samples were
stored at −80°C. RNA from each double-blind sample was
extracted using the RNeasy Mini Kit (QIAGEN Inc., Valencia,
CA, United States) according to the manufacturer’s instructions.
Each sample was divided into two equal parts: one was detected
using the CQ100 system, and the other was detected by the
DA0990 assay (Daan Gene Co. Ltd., Guangzhou, Guangdong,
China) that runs on the ABI7500 instrument (Applied
Biosystems Inc., Foster, CA, United States).

CQ100 Assay
The amplification was performed in a total volume of 10 μL
containing 7.5 μL CQ 100 PCR Premix (Biochip for diagnosis)
and 2.5 μL sample RNA. The mixture was loaded into each
channel of the microfluidic chip, which was snapped into a
chip holder and then inserted into the CQ100 device. The
reaction was performed under conditions recommended
according to the manufacturer’s protocol: reverse transcription
at 50°C for 5 min, pre-denaturation at 95°C for 8 s, followed by 40
cycles at 95°C for 7 s and 60°C for 14 s; it takes approximately
23 min, and results were monitored on the screen for the
appearance of sigmoidal (S) curves suggesting amplified virus
RNA. Positive and negative controls were included in each
test run.

DA0990 Assay
The assay was performed using the DA0990-Detection Kit for
2019-nCoV (PCR-Fluorescence) (DA0990 kit) according to the
manufacturer’s instructions. Briefly, the PCR reaction was
conducted in 25 μL total reaction volumes containing 17 μL
reaction solution A, 3 μL reaction solution B, and 5 μL sample
RNA. The mixture was loaded into the PCR tube and was run on
an ABI7500 instrument with the following program: reverse
transcription at 50°C for 2 min, pre-denaturation at 95°C for
2 min, followed by 42 cycles of denaturation at 95°C for 5 s and
annealing and extension at 60°C for 35 s. It took approximately
62 min and wasmonitored on the screen for the appearance of the
S curves. Positive and negative results were included for each
test run.

Collection of Clinical Samples for C. difficile
Detection
Clinical stool samples were collected from patients with diarrhea
at Zhejiang Provincial People’s Hospital between August 1 and 30
December 2020. Liquid, soft, or semi-solid stool samples of
sufficient volume were stored at −80°C and transported to
Hangzhou Medical College within 48 h for further testing.
Each stool sample was divided into two aliquots (1 mL per
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each), one was analyzed using the CQ100 system, and the other
was analyzed by Xpert C. difficile/Epi (Cepheid, Sunnyvale, CA,
United States). Toxigenic culture (TC) was used as the reference
method for evaluation of these two assays as previously described
(Neuendorf et al., 2016).

Stool samples were thawed to room temperature (20°C) and
genomic DNA was extracted using the QIAamp DNA Mini Kit
(QIAGEN), according to the manufacturer’s instructions. The
toxin A (tcdA) and toxin B gene (tcdB) of C. difficile were selected
as target genes, and sequences were obtained from GenBank. The
primers and probes were designed using DNASTAR V5
(DNASTAR, Madison, WI, United States), and the specificity
of the primers and probes was verified using the NCBI Primer
BLAST database. The primer and probe sequences are listed in
Supplementary Table S1. All sequences were synthesized by
General Biosystems (Anhui) Co., Ltd.

CQ100 Assay
Amplification was performed in a total volume of 10 μL
containing 5 μL HR qPCR Master Mix (HuiCHem Co., Ltd.,
Shanghai, China), 2 μL primers and 3 μL sample DNA. The
mixture was loaded into each channel of the microfluidic chip,
which was then placed into a chip holder and inserted into the
CQ100 device. The PCR was performed under the following
conditions: pre-denaturation at 97°C for 8 s, followed by 40 cycles
at 97°C for 7 s and 61°C for 14 s; it took approximately 18 min,
and results were monitored on the screen for the appearance of S
curves, suggesting amplified targeted DNA. Each PCR run
included both the positive and negative controls.

Xpert C. difficile/Epi Assay
The assay was performed according to the manufacturer’s
protocol, as previously described (Xu et al., 2018). Briefly,
stool samples were collected with sterile swabs and transferred
into reagent-containing sample vials, which were then vortexed
for 10 s, and all solutions were introduced into the Xpert C.
difficile cartridge, and finally placed into the Xpert instrument.
The test was performed according to the GeneXpert C. difficile
assay program.

Statistical Analysis
The clinical sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) of the CQ100 assay were
calculated according to previous studies (Huang et al., 2017).
Turn-around time was determined using a single sample, and
costs per test were calculated based on the prices of the purchased
kits. The 95% confidence interval (CI) was calculated using the
SPSS version 19.0 software (SPSS Inc., Chicago, IL, United States);
p ≤ 0.05, determined by Fisher’s exact test, was considered
statistically significant.

RESULTS

The CQ100 is a portable real-time PCR device powered by an
alternating current supply or a portable battery. The physical
dimensions are 269 mm × 209 mm × 206 mm (length × width ×

height) and the weight are 5.8 kg. This device contains three core
functional components that control temperature, optics, and
motion. For PCR reactions, a microfluidic chip with 12
channels and a matching chip holder are required, and they are
performed under closed conditions to prevent aerosol formation.
As shown in Figure 1, the chip circulates back and forth between
the module “A” and module “B” to perform the PCR reaction, and
fluorescence is monitored when the chip moves to the middle of
these two modules. The amplification was shown on the monitor
screen, and the Ct values were calculated automatically.

Evaluation of Temperature Control
Performance
The temperature fluctuations of the dual temperature modules at
different target temperatures (50°C, 60°C, 65°C, 90°C, 95°C, and
100°C) were ±0.02°C, ±0.07°C, ±0.01°C, ±0.04°C, ±0.07°C, and
±0.01°C, respectively (Supplementary Table S2). The temperature
uniformities of dual temperature modules at each target temperature
were 0.5°C, 0.9°C, 0.6°C, 0.5°C, 0.3°C, and 0.6°C, respectively
(Figure 2). In addition, the errors of indication of dual
temperature modules at each target temperature were 0.28°C,
0.30°C, −0.03°C, 0.17°C, 0.05°C, and −0.05°C, respectively (Figure 3).

Evaluation of Fluorescence Acquisition
Performance
The intra-well repeatability and inter-well precision of the FI at
high, medium, and low dye concentrations are shown in Table 1.
The intra-well CVs were 1.14–1.65% for FAM and 0.51–2.03% for
Cy5. The inter-well CVs were 0.74–3.33% for FAM and
1.86–3.39% for Cy5. Moreover, the FI of the FAM and Cy5
channels had a good linear relationship with the dye
concentrations in the range of 2–10 μM, with coefficients of
determination (R2) of 0.9990 and 0.9937, respectively (Figure 4).

Detection of Double-Blind Mocked and
Clinical Samples
CQ 100 results were reported as positive or negative based on real-
time PCR. When a sample did not demonstrate an S-type curve or
had a Ct value >38, the result was considered negative; conversely,
samples with S-shaped curves and Ct values ≤ 38 were considered
positive (Figure 5). Among a total of 100 double-blind mocked
sputum samples, the CQ100 device detected SARS-CoV-2 in 15
(15.0%) samples, which shows a 100% concordance with the results
obtained by the DA0990 assay. Among a total of 249 stool samples,
the CQ100 device detected C. difficile toxins in 54 (21.7%), with a
sensitivity and PPV of 99.0 and 96.3%, which were higher than the
Xpert C. difficile/Epi values of 94.4 and 88.1% (p > 0.05) (Table 2).

Comparison of the Detection Performance
With Other Assays
As shown in Table 3, the reaction volumes, turn-around time
(TAT), and cost per test of CQ100 were compared with two other
assays issued by the National Medical Products Administration
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(NMPA). For SARS-CoV-2 detection, CQ100 reaction volumes
(8 μL), TAT (23 min, not including RNA extraction), and cost
(approximately 5.0 $) per sample were less than those for DA0990
(20 μL, 60 min, approximately 17.2 $). For toxigenic C. difficile
detection, CQ100 could be completed in 18min, whereas XpertC.
difficile/Epi required 45 min. The CQ100 cost per test
(approximately 6.2 $) was 10 times lower than that of Xpert
C. difficile/Epi (approximately 59.3 $).

DISCUSSION

PCR has revolutionized molecular diagnostics for the detection of
pathogens (Rajendran et al., 2019). However, conventional real-time
PCR systems only have one temperature controlling block, which
requires time and energy to perform repeated thermal cycling and
limits their application for on-site testing. With the increasing
number of emerging infectious diseases worldwide, a variety of

FIGURE 1 | Image of the basic components of CQ100 device: (A) dual temperature modules and (B)microfluidic chip. The chip circulates back and forth between
the module “A” and module “B” to perform the PCR. The target temperature of the module “A” was set to 50°C, 60°C, and 65°C, and the module “B” was set to 90°C,
95°C, and 100°C. (C) the matching chip holder.

FIGURE 2 | Temperature values at the five measurement points of dual temperature modules. CT, center; UL, upper left; BL, bottom left; UR, upper right; BR,
bottom right. (A1–A3) the target temperature was set to 50°C, 60°C, and 65°C, respectively; (B1–B3) the target temperature was set to 90°C, 95°C, and 100°C,
respectively. Values represent the mean ± SD of six measurements of the temperature at each point.
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molecular-based diagnostic assays has been recently developed to
rapidly detect SARS-CoV-2 and C. difficile, by which the time to get
results ranged from 20min to 1 h or more (Crobach et al., 2018; Das
Mukhopadhyay et al., 2021). Many techniques were used for rapid
gene-based assay including isothermal amplification with CRISPR,
microfluidic chip with PCR, and etc. Of them, some were expensive,
some need large-scale instruments. Thus, there is still an urgent need
to develop rapid, inexpensive, and portable molecular diagnostic
tools for gene diagnosis.

This study shows that the dual temperature modules
integrated into CQ100 have high precision (±0.1°C), uniform
temperature distribution (±1°C), and accurate temperature
control (±0.5°C). Meanwhile, the fluorescence acquisition had

good repeatability and high precision. Thus, it has been
demonstrated that CQ100 has promising performance with the
high accuracy and reliability for molecular diagnosis. Moreover,
CQ100 has high sensitivity and specificity for detecting SARS-
CoV-2 and C. difficile compared with the golden TC assay, and
reduces the TAT by almost 30 min, thereby saving time and
expense compared with other two NMPA-cleared assays.
However, the detection operation needs to be further
optimized. When CQ100 was used to detect C. difficile in
clinical stool samples, there were discrepant results occurred in
5 samples. These 5 samples were semi-solid, not liquid, the
discrepant results between CQ100 and Xpert might be
inhomogeneous distribution of C. difficile cells. Furthermore,

FIGURE 3 | The errors of indication of temperature measurement at the central point of dual temperature modules: (A) the errors of indication of the “A”module; (B)
the errors of indication of the “B” module.

TABLE 1 | Intra-well repeatability and inter-well precision of the FI.

Dye concentration (μM) FI of intra-well FI of inter-well

X ± SD (a. u.) CV (%) X ± SD (a. u.) CV (%)

FAM — — — —

2 364.00 ± 4.59 1.26 358.50 ± 10.29 2.87
6 672.50 ± 11.12 1.65 670.50 ± 4.97 0.74
10 1031.50 ± 11.80 1.14 1040.50 ± 34.68 3.33

Cy5 — — — —

0.5 127.00 ± 2.58 2.03 1.50 ± 4.12 3.39
2 412.00 ± 7.15 1.74 416.50 ± 12.03 2.89
6 1143.50 ± 5.80 0.51 1084.50 ± 20.20 1.86

FIGURE 4 | Fluorescence linear analysis in two fluorescence channels: (A) the FI of FAM channel; (B) the FI of Cy5 channel.
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the amount of total genomic DNAs in the wells on the
microfluidic chip was lower than that in Xpert. Thus, the
further tests should be conducted to confirm these 5 samples
using the multi-points sampling method.

With respect to conventional devices, dual temperature
modules were firstly designed in the CQ100 combining with
the microfluidic chip technology, which conducts PCR
reactions by rapidly circulating the chip between both of
two dual temperature modules through a motion module
and abandon the heating and cooling process. These
properties make CQ100 break through the limitations of the
reaction speed, which is suitable for on-site detection. Thus,
the merit of the CQ100 is summarized as follows: 1) No
repeated heating and cooling process is needed in order to
greatly shorten turnaround time to get results. 2) The volume
of each channel is merely 8 μL in a microfluidic chip, thus
reagents and cost were saved per analysis. 3) The compact
design and portable construction make CQ100 have the
potential to be applied in POC diagnosis.

Recently, rapid PCR research has focused on shortening the
thermal cycle time by developing or improving heating methods
(Tung et al., 2016; Song et al., 2017; Trauba and Wittwer, 2017;
Chen R et al., 2019). Farrar and Wittwer (2015) reported an
ultrafast PCR reaction that was based on rapidly changing
samples between two water baths, and combined both
annealing and extension steps, which was able to complete the
amplification within 15–60 s. Kulkarni et al. (2022) demonstrated
a continuous-flow microfluidic device that could realize 32 min
DNA amplification at an optimum flow rate of 5 μL/min.
Although these systems exhibit excellent performance, PCR
products need to be analyzed by gel electrophoresis.
Furthermore, most currently marketed POC instruments are
based on single-temperature zone, such as the Filmarray by
BioFire, m-PIMATM Analyzer by Abbott, and GeneXpert®CT/
NG by Cepheid, which still require 40–60 min to complete the
reaction. Meanwhile, the prices of these machines range from
$3,000 to $25,000 (Fernández-Carballo et al., 2018), which makes
their availability difficult in resource-limited settings.

FIGURE 5 | Representative results of the CQ100 assay performed in samples: (A) the mocked COVID-19 samples; (B) the clinical C. difficile samples. A positive
sample had an S-shaped curve based on the FAM and Cy5 channel detection and the Ct value of ≤38; in contrast, a negative sample had a differently shaped curve in the
FAM and Cy5 channels.

TABLE 2 | Sensitivity, specificity, and predictive values of the two assays for toxigenic C. difficile detection.

Test No. of samples with indicated results Sensitivity (%) Specificity (%) PPV (%) NPV (%)

S+T+ S+T− S−T+ S−T−

CQ100 52 0 2 195 100.0 99.0 96.3 100.0
Xpert C. difficile/Epi 52 0 7 190 100.0 94.4 88.1 100.0

S, standard; T, test; +, positive; −, negative; PPV, positive predictive value; NPV, negative predictive value.

TABLE 3 | Comparison the reaction volumes, TAT and cost per test with other two assays.

Reaction volumes (µL) TAT (min) Cost per test ($)a

COVID-19 — — —

CQ100 8 23 5.0
DA0990 20 60 17.2

C. difficile — — —

CQ100 8 18 6.2
Xpert C. difficile/Epi — 45 59.3

aCost per test was not an exact cost, because the reagent prices fluctuated continually.
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CQ100 has been shown to be cost-effective for rapid on-site
detection; however, it still has several limitations. First, there
were only 12 channels in the microfluidic chip. Second,
fluorescence can only be detected in the FAM and Cy5.
Third, the nucleic acid extraction step increases the total
TAT. Therefore, additional studies should develop a single-
site multi-channel microfluidic chip for high-throughput
analysis, increase the number of fluorescence channels to
achieve multiple detections, and further combined with an
automated nucleic acid extraction system to reduce manual
operation time.

In summary, this study demonstrates that CQ100 is an
ultrafast, affordable, and portable molecular diagnostic tool
for pathogen detection. Additionally, dual temperature
control heating–based real-time PCR provides a new
paradigm for rapid molecular diagnosis of a variety of
infectious diseases.
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