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Abstract: An innovative beam concept made from hollow FRP tube with external flanges and filled
with crumbed rubber concrete was investigated with respect to bending and shear. The performance
of the rubberised-concrete-filled specimens was then compared with hollow and normal-concrete-
filled tubes. A comparison between flanged and non-flanged hollow and concrete-filled tubes was
also implemented. Moreover, finite element simulation was conducted to predict the fundamental
behaviour of the beams. The results showed that concrete filling slightly improves bending perfor-
mance but significantly enhances the shear properties of the beam. Adding 25% of crumb rubber
in concrete marginally affects the bending and shear performance of the beam when compared
with normal-concrete-filled tubes. Moreover, the stiffness-to-FRP weight ratio of a hollow externally
flanged round tube is equivalent to that of a concrete-filled non-flanged round tube. The considera-
tion of the pair-based contact surface between an FRP tube and infill concrete in linear finite element
modelling predicted the failure loads within a 15% margin of difference.

Keywords: waste tyres; externally flanged-tube; hollow and concrete-filled tubes; crumbed rubber
concrete; composite structures; bending and shear properties

1. Introduction

Recently, an externally flanged FRP tube has been developed as a reinforcing com-
ponent to structural members. These lightweight, high strength and corrosion free FRP
tubes offer dimensional stability for structures and rapid installation in construction sites.
This technology has been developed primarily to reduce the volume and overall mass of
concrete structures, and can minimise costs, improve durability and reduce the carbon
footprint of the built asset [1,2]. The applications of this technology include but are not lim-
ited to walls and floors, insulated panels, void formers, shear connectors and hollow-core
concrete panels. Externally flanged hollow FRP tubes not only stabilise the void area of
the concrete (for example, a hollow core slab) from sudden collapse, but also provide addi-
tional reinforcement to the structure, minimising structural weight by reducing sectional
dimensions, which can offset the initial cost of FRP.

Recently, externally flanged FRP tubes have been used in composite piles for retaining
wall applications where the tubes were filled with concrete to resist bending loads from
adjacent soil pressure [3,4]. This type of tube can also be used for manufacturing composite
railway sleepers, which the rail industry is currently looking for [5,6]. The FRP tubes were
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originally produced for constructing hollow structures; however, when used in sleepers
they need to be filled with concrete to avoid local crushing under the train wheel load.
A conceptual drawing for their application in railway sleepers is shown in Figure 1, where
concrete-filled FRP tubes are embedded in a polymer matrix [7,8]. The ballast-track sleepers
are subjected to bending, as a high shear force is developed in the sleeper when they are
used in bridge rail-track (generally called a transom). An in-depth understanding of the
bending and shear behaviour of concrete-filled tube is essential as the strength and stiffness
of the sleepers are primarily dependent on the tube’s performance.

Figure 1. Cross-sectional view of the proposed composite railway sleeper.

Several researchers have investigated hollow and concrete-filled FRP tubes with a
variety of sections, including circular [9–11], square [12,13], rectangular [14,15] and double-
H type [3,4]. In most cases, the primary focus of the concrete-filled tube is on the axial
behaviour [16,17]. Ordinary Portland cement (OPC) concrete or in some cases geopolymer
concrete and polymer concrete were used in these studies as infill material. Moreover, most
used medium- to high-strength concrete as a filling material, which may not be required
due to the confinement effect of FRP. Muttashar et al. [12] showed that the increase in
concrete strength from 10 to 43.5 MPa increased the ultimate load by only 19% while
maintaining almost the same bending stiffness. A similar observation was also reported by
Chen et al. [18]. Burgueño and Bhide [19] studied the shear response of concrete-filled FRP
shells and they concluded that the concrete filling has considerable influence on both the
shear strength and stiffness while the infill concrete strength and anisotropy of the FRP shell
have only a minimal influence on shear response. Therefore, high strength infill concrete
can be mixed with waste materials to increase sustainability. Currently, non-decaying waste
materials such as scrap tyres are being generated and accumulated in massive quantities,
causing an increasing threat to the global environment [20,21]. The challenges for the
safe disposing of these non-decaying scrap tyres could be overcome through their use
in concrete. This study aimed to mix crumb rubber (obtained from scrap tyres) in OPC
concrete and utilise them as an infill material for FRP tubes.

Many studies have been conducted to promote the use of crumb rubber/waste in
concrete [22,23]. Sukontasukkul and Chaikaew [24] found that compressive and flexural
strength decreased and toughness increased with the increase of crumb rubber in OPC
concrete. Eldin and Senouci [25] used crumb rubber as a concrete aggregate and found
a lower compressive and splitting-tensile strength than in normal concrete. However,
they also indicated that the addition of crumb rubber transformed the concrete from
brittle to ductile and absorbed a large amount of plastic energy under compressive and
tensile loads. Issa and Salem [26] utilised recycled crumb rubber as a fine aggregate in
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concrete and noticed a significant drop in compressive strength when the crushed sand
was replaced by crumbed rubber beyond 25%. To enhance the mechanical properties of
rubberised concrete, Raffoul et al. [27] used external FRP confinement and observed that
the confinement can improve compressive strength tenfold and increase ultimate axial
strains by 5%. Gholampour et al. [28] concluded that the increase of rubber content can
increase the inelastic deformation capacity of concrete. Duarte et al. [29,30] found that the
replacement of natural aggregates with tyre-rubber aggregates in concrete increased the
ductility of the rubberized concrete-filled steel tubes. However, the manufacturing process
of crumb rubber from scrap tyres requires several steps and machinery, making it more
expensive than natural aggregates. Nevertheless, the high cost could be justified as solving
a significant environmental problem if properly managed.

The main objective of this study is therefore exploring the opportunities for utilising
crumbed rubber concrete as an infill material for externally flanged FRP tubes with the
aim of manufacturing composite railway sleepers. The bending and shear behaviour of
rubberised-concrete-filled FRP tubes was investigated and compared with hollow and
normal-concrete-filled FRP tubes. Finite element analysis was conducted to predict the
overall behaviour of the beams. The results obtained from this study will provide guidelines
for designing structural components fabricated with externally flanged FRP tubes.

2. Materials and Method
2.1. Materials

The externally flanged FRP tubes were composed of glass fibre reinforced polymer and
vinylester resin and were manufactured using pultrusion process. Most of the fibres were
oriented in a longitudinal direction while a small quantity of transverse fibres provided
lateral stability. The cross-sectional area and moment of inertia with respect to the x-axis
are approximately 1585 mm2 and 888,000 mm4, respectively. The mechanical properties of
externally flanged FRP tubes were obtained from the technical data sheet [31] provided by
the manufacturer as tabulated in Table 1 and the dimensions are provided in Figure 2.

Table 1. Properties of materials.

Parameters FRP Tube Normal Concrete Rubberised Concrete

Compressive strength (axial), MPa 197 30 9
Tensile strength, MPa 462 2.3 1.1
Strain at peak, (µε, microstrain) 20,000 1500 700
Elastic modulus (axial), GPa 23 25 17
Poisson’s ratio 0.25 0.21 0.17
Shear strength, MPa 7.5 - -
Density, kg/m3 1927 2000 1730
Open shear transfer coefficient (assumed) - 0.2 0.2
Closed shear transfer coefficient (assumed) - 0.8 0.8

Stress–strain curve -
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Figure 2. Dimensions of FRP tube with external flanges.

A medium-strength premix cement concrete called ‘normal’ concrete and a concrete
mix with 25% (by weight) of crumb rubber named ‘rubberised’ concrete were used to fill the
hollow tubes to increase sustainability and promote a circular economy. The crumb rubber
was added to increase the total volume of concrete without changing the initial premix
cement:concrete ratio of the normal concrete ingredients. This implies the addition of
crumb rubber did not replace either coarse or fine aggregates in the concrete but was added
as an additional material. The nominal maximum size of coarse aggregates in the premix
concrete was 5 mm. The clean- and angular-shaped crumb rubber was supplied by Chip
Tyre, Australia, having been recycled from automotive and truck scrap tyres. The nominal
maximum size and fineness modulus of the crumb rubber used in the concrete were
approximately 5 mm and 5.03, respectively (obtained from sieve analysis). The measured
mechanical properties for both normal concrete and rubberised concrete at 28 days are also
reported in Table 1.

2.2. Specimen Preparation and Test Variables

The bottoms of the tubes were sealed with plastics and placed vertically using clamps
before pouring concrete from the top. Concrete cylinders were prepared from the same mix
to determine the necessary properties in accordance with AS 1012.9 [32] and AS 1012.10 [33]
standards as provided in Table 1. All the specimens (one in each category—see Table 2)
were cast and tested on the same day to minimise variations.

Table 2. Dimensions, capacities and failure modes of the test specimens.

Specimen ID Test Types Filling Materials
L a a/d P V M

Mainly Failed by
mm mm kN kN kN-m

FPB-8-H FPB Hollow 1900 800 8 11.4 5.70 4.56 I
FPB-8-NC FPB NC 1900 800 8 15.0 7.50 6.00 II
FPB-8-RC FPB RC 1900 800 8 12.5 6.25 5.00 II
SBS-1-H SBS Hollow 200 100 1 12.1 6.05 0.61 III

SBS-1-NC SBS NC 200 100 1 31.5 15.75 1.58 IV
SBS-1-RC SBS RC 200 100 1 28.6 14.30 1.43 III
ABS-1-H ABS Hollow 300 100 1 18.2 9.10 0.46 V

ABS-1-NC ABS NC 300 100 1 61.7 30.85 1.54 IV
ABS-1-RC ABS RC 300 100 1 55.4 27.70 1.39 III

I: Tube ovalisation, tensile cracking at the bottom flange and tube compression at top; II: Tensile cracking at the bottom flange and tube
compression between load points; III: Longitudinal cracking at both the mid-depth and tube–flange junction; IV: Longitudinal cracking at
the junction of circular tube and flanges; V: Tube ovalisation and longitudinal cracking at mid-depth.
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This study mainly investigated two parameters: (a) hollow and filled sections, and (b)
normal concrete (NC) and rubberised concrete (RC). These two parameters were considered
in order to investigate three different properties: (a) bending; (b) horizontal plane shear and
(c) vertical plane shear. Moreover, the performances of externally flanged FRP tubes were
compared with non-flanged round tubes to identify the structural benefits of the flanges.
Accordingly, Table 2 provides the specimen details and test variables, including tested
span length (L), shear span (a), shear span-to-depth ratio (a/d), peak load (P), maximum
shear force (V), maximum bending moment (M) and failure modes. The specimens were
named by the type of test (Figure 3), shear span-to-depth ratio and type of infill material.
For example, the sample identification FPB-8-NC indicates that the specimen was tested
under four-point bending (FPB) at a shear span-to-depth ratio of 8 and the tube was filled
with normal concrete (NC).

Figure 3. Test setup: (a) four-point bending (FPB), (b) short beam shear (SBS) and (c) asymmetrical beam shear (ABS).

2.3. Test Setup

The schematic diagram of the test setup is provided in Figure 3. Strain gauges were
attached to the critical locations, such as the top and bottom at mid-span for bending test
specimens, and the location where shear stress is maximum for shear test specimens to
capture compressive, tensile and shear strain behaviour. Three strain gauges in vertical,
horizontal and diagonal directions were used to measure the shear strain. Load was applied
onto the specimens through a spreader beam using a SANS testing machine of capacity
1500 kN. A specially designed wooden support to capture the surface of the tube (Figure 4)
was used at load and support points to ensure the uniform transmit of loads from spreader
beam to the externally flanged FRP beam. The unsupported lengths of the longer and
shorter specimens were 100 mm and 50 mm, respectively. To prevent the occurrence of
abrupt failure due to load fluctuation, a moderate loading speed of 1 mm/min was applied
under displacement control mode. All data were recorded using a data logger for further
analysis of the stress–strain behaviour.
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Figure 4. Comparison between experimental and FE results based on failure modes (a) FPB test, (b) FE model for FPB
(c) SBS test, (d) FE model for SBS, (e) ABS test and (f) FE model for ABS.

3. Results and Observations
3.1. Failure Behaviour

Different failure behaviours were observed depending on the test setup and filling
types. These failures were classified into five major categories: transverse bending of the
flanges, tube ovalisation, cracks at tube–flange junction, cracks at mid-depth and flange
buckling. Each of them is described next.

• Transverse bending of the flanges: The flanges were bent in a transverse direction at the
point of load application (Figure 4c). This type of failure occurred due to the applied
compression on inclined flanges. All specimens tested under four-point bending (FPB)
and short beam shear (SBS) showed transverse bending of the flanges.

• Tube ovalisation: The round tubes became oval under the application of loads that
created high tensile stresses in a hoop direction at the mid-depth of the specimen
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(Figure 4e). Ovalisation was mainly observed in hollow tube specimens (FPB-8-H and
ABS-1-H) due to their internal resistance being insufficient to prevent local deformation.

• Cracks at tube–flange junction: This type of crack occurred when high shear stress was
developed at the junction of round tube and flanges (Figure 4c). The specimens with
shorter shear span (SBS-1-H, SBS-1-NC, SBS-1-RC, ABS-1-NC and ABS-1-RC) showed
these cracks at the tube–flange junction.

• Cracks at mid-depth: Longitudinal cracks at mid-depth were observed for the specimens
with a low shear span-to-depth ratio (Figure 4e). This crack occurred due to high
tensile stress in a hoop direction. The specimens that exhibited this type of crack were
SBS-1-H, SBS-1-RC, ABS-1-H and ABS-1-RC.

• Flange buckling: This kind of failure was observed when high buckling stress was
developed at the top flanges (Figure 4a). The specimens tested at a high shear span-to-
depth ratio (FPB-8-H, FPB-8-NC and FPB-8-RC) showed top flange buckling failure.
However, such failures were not observed at a low shear span-to-depth ratio.

Table 3 summarises the failure of different components. ‘Yes’ indicates that a particular
failure occurred while ‘no’ specifies the failure was not observed.

Table 3. Summary of the failure for different beams.

Specimen ID Transverse Bending
of Flanges Tube Ovalisation Cracks at

Tube–Flange Junction
Cracks at

Mid-Depth
Top Flange
Buckling

FPB-8-H Yes Yes No No Yes
FPB-8-NC Yes No No No Yes
FPB-8-RC Yes No No No Yes
SBS-1-H Yes No Yes Yes No
SBS-1-NC Yes No Yes No No
SBS-1-RC Yes No Yes Yes No
ABS-1-H No Yes No Yes No
ABS-1-NC No No Yes No No
ABS-1-RC No No Yes Yes No

3.2. Load-Displacement Behaviour

The load-displacement behaviours of hollow, normal-concrete-filled and rubberised-
concrete-filled tubes tested under four-point bending are illustrated in Figure 5a. The load
was increased linearly until failure for FPB-8-H, FPB-8-NC and FPB-8-RC beams. The slope
of the load-displacement curve (stiffness) for FPB-8-NC and FPB-8-RC beams was almost
the same, while a slight reduction of stiffness was noticed for the hollow tube. Nevertheless,
the small variation of slope between hollow and filled tubes can be explained by the fact
that the external flanges controlled the deflection behaviour. However, a variation in
ultimate load-carrying capacity was observed among them. The recorded maximum loads
were 11.4 kN for FPB-8-H, 15 kN for FPB-8-NC and 12.5 kN for FPB-8-RC beams. When the
beams reached their maximum capacity, the load was dropped by approximately 10% and
the beam continued to hold the loads with an increase in displacement and progressive
failure. When the beams showed significant damage and continuous dropping, the tests
were stopped.

Figure 5b plots the load-displacement behaviour of hollow, normal-concrete-filled and
rubberised-concrete-filled tubes tested under short beam shear. The load started to increase
nonlinearly at the beginning. This slight nonlinearity was due to the initial settlement
between the beam and supports. Once the beam settled, the load was increased linearly
until a peak point of 12.1 kN, 31.5 kN and 28.6 kN for SBS-1-H, SBS-1-NC and SBS-1-RC
beams, respectively. Progressive failure was observed after the peak load as confirmed by
the gradual drop of loads with a significant increase of displacement. The slopes of the
load-displacement curves were almost same for SBS-1-NC and SBS-1-RC beams, while the
hollow beam (SBS-1-H) showed a reduced stiffness.
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Figure 5. Total applied load-displacement behaviour: (a) FPB, (b) SBS and (c) ABS setup.

Figure 5c plotted load-displacement behaviour under asymmetrical beam shear tests.
The overall load-displacement behaviour of ABS-1-H, ABS-1-NC and ABS-1-RC beams was
very similar to SBS-1-H, SBS-1-NC and SBS-1-RC beams, respectively. However, the beams
under ABS test setup carried almost double loads with respect to SBS setup. The maximum
loads carried by ABS-1-H, ABS-1-NC and ABS-1-RC beams were 18.2 kN, 61.7 kN and
55.4 kN, respectively.

3.3. Load–Strain Behaviour

The load-bending strain behaviours of the specimens tested under four-point bending
are provided in Figure 6a. The tensile (bottom middle) and compressive (top middle) strain
increased linearly with the increase of loads. It can be seen that the tensile and compressive
strains were almost the same at the same load level, indicating the neutral axis was almost
in the mid-depth of the section until failure. Moreover, no major differences in the slope of
the load–strain behaviour were observed among the three beams, as supported addition-
ally by Figure 5a. However, the recorded maximum strain at failure was approximately
6000 microstrain (0.6%) which is only 30% of the ultimate tensile failure strain of FRP
tube (20,000 microstrain). This is mainly due to the buckling failure of the top flanges.
Muttashar et al. [34] found that the buckling failure of FRP tube occurs at 55–75% of the
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ultimate tensile strength. Moreover, the strain gauges were attached on the top and bottom
surfaces of the round tube which was approximately 30% closer to the neutral axis than the
outermost edge of the flanges.

Figure 6. Total applied load–strain behaviour: (a) bending strain under FPB, (b) bending strain under SBS, (c) shear strain
under SBS and (d) shear strain under ABS.

Figure 6b,c plotted the tensile strain behaviour at the bottom of the round tube and
shear strain behaviour at shear span when tested under short beam shear (Figure 3b).
The tensile strain in Figure 6b was relatively lower than the strain observed in Figure 6a
and was only around 15% at the same load level. This is because of the lower shear span-
to-depth ratio of the SBS beam (a/d = 1) compared to the FPB beam (a/d = 8). The SBS
specimen’s behaviour was dominated by shear, and the corresponding shear strain plotted
in Figure 6c was determined using Equation (1). In Equation (1), γ is the shear strain while
εd, εv and εh represent the measured strains at the shear span in the diagonal, vertical and
horizontal directions, respectively. One interesting observation in Figure 6c is that the shear
strain for the hollow section is positive while it is negative for the concrete-filled sections.
This can be attributed to the ovalisation of the hollow section creating positive strain in a
diagonal direction. This result indicates that concrete filling stabilised the hollow tube from
unexpected deformation even though crushing occurred in interior concrete as shown in
Figure 4b.

Figure 6d shows the shear strain of the specimen under an asymmetrical beam shear
test at an a/d ratio of 1. The hollow section showed a maximum shear strain of 2000
microstrain while the concrete-filled sections provided shear strain of 7500 microstrain
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and 6700 microstrain for ABS-1-NC and ABS-1-RC beams, respectively. The maximum
strain is dependent on the load-carrying capacity of the specimen. At the same load
level, the normal-concrete-filled and rubberised-concrete-filled sections displayed almost
identical strain behaviour.

γ = 2εd − εv − εh (1)

4. Finite Element (FE) Modelling

The structural behaviour of the hollow and rubberised-concrete-filled FRP tubes with
external flanges was numerically studied using ANSYS Mechanical APDL 19.1 [35] to un-
derstand the fundamental load–displacement response and failure modes. Detailed descrip-
tions of the model geometry, element types, meshing, boundary conditions, failure criteria
and solution method are discussed in the following sections.

4.1. Element Types and Meshing

An overview of the FE model and coordinate system is provided in Figure 7. The cross-
section is defined on the X–Y plane while the length of the beam is extruded along the
Z axis. The cross section of the FRP tube was created with lines and then extruded with
a four-node Shell 181 element which is suitable for analysing thin to moderately-thick
shell structures including laminated composites. The infill concrete was modelled with
a Solid 65 three-dimensional eight-node element, particularly designed for modelling
concrete that has cracking and crushing capability, while the supports were created using
a Solid 186 element. A maximum element size of 5 mm was adopted in the model in
order to balance accuracy and computational time, as supported additionally by [36–39].
Large static displacements were permitted to ensure the effects of large deflection in
the results. Multilinear stress–strain material properties were used for concrete while
cracking and crushing were modelled using strength values and shear transfer coefficients
(Table 1). FRP tube was modelled as orthotropic material to consider the variation of
properties in the longitudinal (elastic modulus 23 GPa, Poisson’s ratio 0.25 and shear
modulus 9.2 GPa) and transverse (elastic modulus 9 GPa, Poisson’s ratio 0.25 and shear
modulus 3.6 GPa) directions.

Figure 7. FE model, (a) SBS-1-NC and (b) ABS-1-H.

4.2. Contact Surface, Boundary Conditions and Failure Criteria

A general contact between two different components is the traditional approach to
modelling a contact surface. This type of contact offers a highly automated contact between
the surfaces with limited user intervention. However, Nguyen et al. [40] indicated that
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the interaction between infill concrete and tube is an important consideration for the
reliable prediction of structural performance. Therefore, a pair-based flexible–flexible
contact between the FRP tube and infill concrete was used instead of a general contact to
obtain a more efficient and robust solution. The contact interaction between the surfaces
allows them to separate under the effect of bending load at a certain frictional coefficient.
A frictional coefficient of 0.25 was considered, as this value typically ranges between 0.2
and 0.3 [41]. A symmetric boundary condition was applied to the symmetry surface of
the specimens under four-point bending and short beam shear where the nodes were
restrained from translating in the Z-direction and rotating about the X- and Y-directions.
The applied load was distributed among the nodes on the top surface of the load plate
which can avoid stress concentration and is very similar to the experimentally applied
loads. Simply supported boundary conditions were employed at the support elements.
When any component of the FRP tube in the model exceeds the corresponding maximum
tensile stress limit of the material, the failure of the specimen was identified [42].

4.3. Comparison between Experimental and FE Results

The reliability of numerical modelling can be confirmed through experimental val-
idation. This study validated numerical modelling by comparing load–displacement
behaviour, failure loads and failure modes. Figure 5 compares the load–displacement
behaviour obtained from experimental program and FE analysis. It can be seen that the
numerical modelling predicted the load–displacement behaviour well when the beam
was tested at a large a/d ratio (Figure 5a). However, a slight variation between FE and
experimental load–displacement behaviour at a small a/d ratio was obtained due to the initial
settlement of the experimental beams into the support. This nonlinearity was not noticed
at a large a/d ratio (Figure 5a) because the overall displacement of the beam was very high
(50–60 mm) compared to the displacement (3–6 mm) at a small a/d ratio (Figure 5b,c).

Table 4 compares the failure loads obtained from experimental and FE analysis and
also determines the percentage differences (% Dif.). The bending stiffness of the beams
was determined from FPB tests only as the SBS and ABS test setup were not suitable for
determining bending properties due to the high shear effect. The FE model showed slightly
higher capacity than the experimental results. This can be attributed to the initial energy
absorption by the tested beams where a significant displacement was observed for a small
increase of load. Nevertheless, the FE model predicted the failure loads within 15% of the
experimental capacity. The typical failure modes of the beams are compared in Figure 4.
It can be seen that the FE model can capture buckling of the top flange, shear cracks at
the tube–flange junction, tube ovalisation and shear cracks at the mid-depth of the beam.
This was achieved through pair-based flexible–flexible contact between the FRP tube and
in-filled concrete.

Table 4. Comparison between experimental and FE failure loads, and evaluation of properties.

Specimens Failure Loads Effective Properties of the Entire Beam

Exp. (kN) FE (kN) % Dif. Stiffness, EI
(kN m2)

Strength,
(MPa)

Stiffness, EI
(kN m2)

FPB-8-H 11.4 12 5.3 34.85 146 σf
FPB-8-NC 15.0 16 6.7 35.75 187 σf
FPB-8-RC 12.5 14 12.0 35.35 158 σf
SBS-1-H 12.1 13 7.4 - 4.23 τh
SBS-1-NC 31.5 33 4.8 - 4.36 τh
SBS-1-RC 28.6 31 8.4 - 3.18 τh
ABS-1-H 18.2 21 15.4 - 5.74 τv
ABS-1-NC 61.7 64 3.7 - 6.48 τv
ABS-1-RC 55.4 57 2.9 - 7.26 τv
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5. Discussion
5.1. Bending and Shear Properties

The structural performance of a member is measured by its stiffness and strength.
The bending stiffness of the externally flanged FRP tubes can be determined by Timoshenko
beam theory [43,44]. According to this theory, the deflected shape of the beam not only
depends on the flexural rigidity (EI) but is also a function of the transverse shear rigidity
(kGA) of the beam. The bending stiffness (EI) of the beam under FPB and SBS test setups
can be determined by Equation (2). In Equation (2) ∆P/∆δ, a and L are the slope of the
load–displacement curve, shear span and span of the tested beam, respectively. The shear
coefficient (k) depends on Poisson’s ratio (ν) and can be determined using Equation (3)
for a solid circular cross-section [45] while the value of k is 0.5 for hollow profiles [46].
The magnitude of GA can be estimated from the sum of the products of the cross-sectional
area (A) and corresponding shear modulus (G) for each material.

∆δ

∆P
=

a
48EI

(
3L2 − 4a2

)
+

a
2kGA

(2)

k =
6(1 + ν)

7 + 6ν
(3)

The bending strengths of the hollow, normal-concrete-filled and rubberised-concrete-
filled specimens were determined from the load carrying capacities of FPB-8-H, FPB-8-NC
and FPB-8-RC beams, respectively, as these specimens exhibited the highest bending
moment compared to other test setups indicated in Table 2. On the other hand, two
different shear properties such as horizontal plane shear strength and vertical plane shear
strength were evaluated from the short beam shear (SBS-1-H, SBS-1-NC and SBS-1-RC)
and asymmetrical beam shear (ABS-1-H, ABS-1-NC and ABS-1-RC) tests, respectively.
The bending strength (σf ), horizontal plane shear strength (τh) and vertical plane shear
strength (τv) can be evaluated using Equation (4) to Equation (6). In Equation (4) to
Equation (6), M, c and E f are the maximum bending moment, outermost fibre distance
from neutral axis and modulus of elasticity of the FRP tube; V, b and QE are the maximum
transverse shear force, width of section and sum of the products of first moment of area
and corresponding modulus of elasticity; A f and Ac are the cross-sectional areas of the
FRP tube and infill concrete while G f or Gc is the shear modulus for the FRP tube or infill
concrete, respectively. The strength and stiffness of the beams are provided in Table 4.
These properties were not compared with the FE results as the load–displacement behaviour
is already verified, being the function of strength and stiffness. Since strength and stiffness
are the important properties of a structure, it is therefore necessary to evaluate them.

σf =
Mc
EI

E f (4)

τh =
V

(EI)b ∑ QE (5)

τv =
V[

A f + Ac

(
Gc
G f

)] (6)

5.2. Effect of Concrete Filling

The effect of concrete filling is studied by comparing the results between hollow
and normal-concrete-filled profiles. The hollow specimens failed due to tube ovalisation,
but this type of failure was eliminated by concrete filling. This is because the concrete
filling increased internal resistance of the tube and prevented local deformation. Moreover,
the concrete filling increased the bending moment capacity by 32% (from 4.56 kN-m to
6 kN-m), horizontal plane shear capacity by 160% (from 6.05 kN to 15.75 kN) and vertical
plane shear capacity by 240% (from 9.10 kN to 30.85 kN). The specimens with infill concrete
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failed in flange buckling (large span test) and longitudinal shear cracks (short span test).
These failures were observed at higher loads in comparison to the load that caused tube
ovalisation and increased the moment and shear capacity. It can be seen that concrete filling
is more effective in improving shear capacity (up to 240% improvement) than bending
strength (32% improvement). In a concrete-filled FRP tube, the flexural load is mainly
carried by the outside FRP shell while the infill concrete improves shear capacity. This is
similar to sandwich panels, where the top and bottom skins are designed to provide
strength and stiffness to the panel while the core provides shear stiffness [47]. This explains
why concrete filling has a greater ability to improve shear capacity than bending.

Similar results were observed for bending stiffness properties, where concrete filling
only improved bending stiffness by 2.6% (from 34.85 kN m2 to 35.75 kN m2). This obser-
vation is different from the non-flanged hollow and concrete-filled tubes, where concrete
filling can improve bending stiffness up to 100% [9], indicating that the external flanges
contributed to increase bending stiffness. While concrete filling positively contributes to
the bending and shear capacities of the beam, it has a negative impact on the structural
weight. The weight of the beam increased by 185% (from 3.05 kg/m to 8.71 kg/m) when
the hollow tube was filled with concrete. Therefore, concrete filling is a suitable choice if
the FRP tube needs to resist high shear force.

The alternative approach to increase bending stiffness without increasing signifi-
cant structural weight is an increase in FRP tube thickness. Idris and Ozbakkaloglu [48]
mentioned that the flexural behaviour of the beam can be influenced significantly by the
thickness of the tube. The FE analysis suggested that an increase of FRP tube thickness
from 3 mm to 10 mm increased the bending stiffness from 26 kN-m2 to 48 kN-m2 (almost
twofold, an 85% improvement) as shown in Figure 8, while concrete filling only improved
the stiffness by 2.6%, as mentioned earlier. This implies that increasing tube thickness
is more effective than filling the tube with concrete when there is a need to improve
bending stiffness.

Figure 8. Effect of tube thickness on bending stiffness.

5.3. Effect of Rubberised Concrete

The effect of rubberised concrete as a filling material can be seen from the results
of normal-concrete-filled and rubberised-concrete-filled FRP tubes. For a particular test
setup, there was no major differences in failure modes except an additional longitudinal
crack observed at the mid-depth for short span (SBS and ABS) specimens filled with
rubberised concrete (Table 3). This additional crack was noticed after the longitudinal
crack appeared at the tube–flange junction. It was mentioned before that the rubberised
concrete contains 25% (by weight) of crumb rubber. The bending moment capacity and
bending stiffness of the rubberised-concrete-filled specimen was reduced by 17% (from
6.00 kN-m to 5.00 kN-m) and 1% (from 35.75 kN m2 to 35.35 kN m2) while the horizontal
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plane shear and vertical plane shear capacity reduced by 9% (from 15.75 kN to 14.30 kN)
and 10% (from 30.85 kN to 27.70 kN), respectively. The small degradation of the properties
can be attributed to the lower strength and elastic modulus of the rubberised concrete
compared to normal concrete, as indicated in Table 1. However, the rubberised concrete can
offer lower structural weight and a more environmentally-friendly solution than normal
concrete. The rubberised-concrete-filled specimen reduced the structural weight by 9%
(from 8.71 kg/m to 7.94 kg/m) due to its density, which is lower than normal concrete.
Moreover, adding 25% crumb rubber in OPC concrete not only minimises the use of cement
(responsible for 5–10% global carbon dioxide emissions [15]) by increasing the total volume
of concrete, but also provides a way to reuse accumulated waste tyres. The mixing, casting
and compacting of the concrete mix using crumb rubber was similar to that of the normal
concrete mix. It is expected that the proposed approach of using rubberised concrete as an
infill material would contribute to the disposal of the non-decaying scrap tyres, since the
amount being accumulated is creating a challenge for proper disposal.

5.4. Effect of External Flanges

The effect of external flanges is examined by comparing the results between flanged
and non-flanged round tubes. The results of hollow and concrete-filled flanged round tubes
are taken from this study while the results for non-flanged round tubes are extracted from
a similar study conducted by Fam et al. [9]. Fam’s study experimentally investigated the
bending behaviour of hollow and concrete-filled GFRP circular tubes. The infill concrete
strength was 37 MPa, which is close to the strength of the normal concrete (30 MPa) used in
this study, considering the fact that the infill concrete strength has a minor influence on the
overall behaviour of the beam. The outer diameter of the tubes was 100 mm and they were
tested at a 1300 mm span with shear span-to-depth (a/d) ratio of 5.5. The a/d ratio has a
significant impact on failure behaviour and the present study observed that the increase
of a/d ratio from one to eight changed the failure modes from longitudinal shear cracks
(SBS-1-RC, a/d = 1) to top flange buckling (FPB-8-RC, a/d = 8). Moreover, the increase of
a/d ratio from one to eight increased the bending moment by 250% (from 1.43 kN-m to
5.00 kN-m) but reduced the shear dominance by 56% (from 14.30 kN to 6.25 kN). This result
indicates that the beam gradually transformed from shear to bending dominance with the
increase of the a/d ratio. However, Manalo et al. [49] found that the failure of the beams
generally occurred due to bending when they tested them at an a/d ratio of 5 or above.
Therefore, the comparison of bending properties between Fam’s study (a/d = 5.5) and the
present study (a/d = 8) is reasonable. However, the effective strength and stiffness of the
beams were divided by the weight per unit length of the corresponding FRP tubes to make
a fair comparison between these two studies due to the variation of fibre contents.

Figure 9 plots the strength/FRP weight and stiffness/FRP weight for both hollow
and concrete-filled flanged and non-flanged tubes. It can be seen that the external flanges
increased the strength/FRP weight by 36% (from 25.04 MPa/(kg/m) to 34.07 MPa/(kg/m))
for the hollow section and 87% (from 55.75 MPa/(kg/m) to 104.23 MPa/(kg/m)) for the
concrete-filled section. On the other hand, the stiffness/FRP weight of the beam increased
by 22% (from 8.56 kN-m2/(kg/m) to 10.47 kN-m2/(kg/m)) for the hollow section and 7%
(from 10.58 kN-m2/(kg/m) to 11.30 kN-m2/(kg/m)) for the concrete-filled section. This in-
creased capacity can be attributed to the fact that the external flanges stabilised the round
tube and provided resistance against premature failure. It is interesting to see that the
stiffness/FRP weight of the hollow externally flanged round tube (10.47 kN-m2/(kg/m))
was similar to the concrete-filled non-flanged round tube (10.58 kN-m2/(kg/m)). This indi-
cates that both the structural weight and the use of concrete can be minimised by using
externally flanged FRP tubes, without sacrificing stiffness, which is the primary design
criterion for FRP structures.
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Figure 9. Comparison between round FRP tubes with and without external flanges (a) hollow round tube [9], (b) hollow
externally flanged round tube, (c) concrete-filled round tube [9] and (d) concrete-filled externally flanged round tube.

6. Conclusions

This study investigated the flexural and shear behaviour of externally flanged FRP
tubes filled with rubberised concrete. Their behaviour was examined experimentally un-
der four-point bending, short beam shear and asymmetrical beam shear, and analysed
numerically to predict their load-displacement response. The results are compared with hol-
low, normal-concrete-filled and equivalent non-flanged profiles from which the following
conclusions are drawn:

• Filling the hollow tube with concrete stabilised the beam section from ovalisation
by increasing internal resistance, which improved shear capacity by 240% and bend-
ing strength by 32%. This indicates that the concrete filling is more effective if the
externally flanged FRP tube is used in shear-dominated structures.

• Concrete filling increases the bending stiffness by only 2.6% while an increase of FRP
tube thickness from 3 mm to 10 mm can double the bending stiffness. Therefore,
increasing tube thickness is more effective than filling the tube with concrete when
there is a need to improve bending stiffness.

• Adding 25% crumb rubber in OPC concrete reduces the moment capacity by 17%,
bending stiffness by 1%, horizontal plane shear by 9% and vertical plane shear by
10% due to the lower strength (9 MPa) and elastic modulus (17 GPa) of rubberised
concrete compared with OPC concrete (30 MPa strength and 25 GPa modulus) as an
infill material. However, the rubberised-concrete-filled specimen is 9% lighter and
more sustainable than a normal-concrete-filled specimen.

• External flanges that stabilise the round tube increase its strength-to-FRP weight ratio
and stiffness-to-FRP weight ratio up to 87% and 22%, respectively, compared with
equivalent non-flanged FRP tubes. Moreover, the stiffness-to-FRP weight ratio of
hollow externally flanged round tube is similar to concrete-filled non-flanged round
tube, indicating that the external flanges can minimise both the structural weight and
the usage of concrete.

• The fundamental load-displacement behaviour of the externally flanged FRP tubes
can be predicted within 15% using finite element analysis. To achieve accuracy up
to that level, the contact surface between an FRP tube and infill concrete needs to be
modelled with pair-based flexible–flexible contact for a frictional coefficient of 0.25.

The application of externally flanged FRP tubes is increasing for manufacturing walls
and floors, insulated panels, void formers, shear connectors, hollow-core concrete panels
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and other civil engineering structures. As the main purpose of this study was to understand
the behaviour of externally flanged tube for manufacturing composite railway sleepers,
full-scale railway sleepers in which externally flanged FRP tubes are used as reinforcement
are recommended for further investigation. The flexural and shear behaviour investigated
in this study will provide guidance to design engineers for the effective utilisation of
externally flanged FRP tubes in civil constructions.
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