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Abstract

Background: High-density electroencephalography (hd-EEG) combined with transcranial magnetic stimulation (TMS)
provides a direct and non-invasive measure of cortical excitability and connectivity in humans and may be employed to
track over time pathological alterations, plastic changes and therapy-induced modifications in cortical circuits. However, the
diagnostic/monitoring applications of this technique would be limited to the extent that TMS-evoked potentials are either
stereotypical (non-sensitive) or random (non-repeatable) responses. Here, we used controlled changes in the stimulation
parameters (site, intensity, and angle of stimulation) and repeated longitudinal measurements (same day and one week
apart) to evaluate the sensitivity and repeatability of TMS/hd-EEG potentials.

Methodology/Principal Findings: In 10 volunteers, we performed 92 single-subject comparisons to evaluate the
similarities/differences between pairs of TMS-evoked potentials recorded in the same/different stimulation conditions. For
each pairwise comparison, we used non-parametric statistics to calculate a Divergence Index (DI), i.e., the percentage of
samples that differed significantly, considering all scalp locations and the entire post-stimulus period. A receiver operating
characteristic analysis showed that it was possible to find an optimal DI threshold of 1.67%, yielding 96.7% overall accuracy
of TMS/hd-EEG in detecting whether a change in the perturbation parameters occurred or not.

Conclusions/Significance: These results demonstrate that the EEG responses to TMS essentially reflect deterministic
properties of the stimulated neuronal circuits as opposed to stereotypical responses or uncontrolled variability. To the
extent that TMS-evoked potentials are sensitive to changes and repeatable over time, they may be employed to detect
longitudinal changes in the state of cortical circuits.
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Introduction

Several studies have suggested that the combination of high-

density electroencephalography (hd-EEG) and transcranial mag-

netic stimulation (TMS) [1,2] may be employed to directly and

non-invasively gauge cortical excitability and connectivity in

humans [3–16]. Global and/or local changes in the excitability

and connectivity patterns of cortical circuits underlie most

neuropsychiatric conditions and their treatment. Thus, at least

in principle, TMS/hd-EEG may be employed at the patient’s

bedside to track over time pathological alterations, plastic changes

and therapy-induced modifications in cortical circuits.

A first step to evaluate the potential of TMS/hd-EEG as a

diagnostic and monitoring tool involves defining the sensitivity and

repeatability of this technique. In other words, before employing

TMS/hd-EEG at the patient’s bedside, one would like to assess to

what extent TMS-evoked potentials reflect particular electrophys-

iological properties of the stimulated cortical circuits rather than a

stereotypical brain’s reaction, or uncontrollable variability. Indeed,

TMS-evoked potentials would have limited diagnostic/monitoring

application if they were found not to change when different

neuronal subsets are stimulated, or if they were found to vary

randomly when stimulation parameters are kept constant. Ideally,

TMS-evoked potentials, recorded across different sessions in a

healthy brain, should always change significantly if stimulation

parameters are varied (100% sensitivity) and should not change if

stimulation parameters are kept constant (100% repeatability).

Separate experimental evidences have suggested that TMS-

evoked potentials have a certain degree of sensitivity to changes in

stimulation parameters, such as location [10,12,17,18], intensity

[13,19] and direction of the induced current with respect to the

cortical surface [15]. Moreover, a few works have demonstrated

that TMS-evoked potentials can also detect changes in the state of

cortical circuits, such as the ones induced by alcohol intake

[9,11,20], by falling asleep [16,21] and by induction of cortical

potentiation with repetitive TMS [22]. To the best of our

knowledge, repeatability has been, so far, evaluated only in one

work by Lioumis et al. [23]. This work suggested that, at least at the
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group level, the amplitude and latency of selected components of

TMS-evoked potentials tend to be stable over time when

stimulation parameters are constant.

Altogether, the evidence reported above, although not system-

atic, suggest that TMS/hd-EEG is a reliable technique. The aim

of the present work is to perform a statistical joint evaluation of the

sensitivity and repeatability of TMS/hd-EEG measures. Overall,

we recorded 100 TMS/hd-EEG sessions in 10 healthy volunteers

and we systematically performed 92 pairwise comparisons at the

single-subject level between the TMS-evoked potentials obtained

either using different stimulation parameters, namely site,

intensity, and angle of stimulation (change comparison - C), or

keeping stimulation parameters constant over time (no-change

comparison - NC). For each comparison, we applied non-

parametric statistics to compute a Divergence Index (DI), i.e. the

percentage of spatial-temporal samples that differed significantly

between two sessions of TMS-evoked potentials. At this point,

considering each DI as a threshold, we performed receiver

operating characteristic (ROC) analysis and we computed the true

positive rate (the fraction of C comparisons with DI . threshold)

and the true negative rate (the fraction of NC comparisons with a

DI , threshold).

ROC analysis showed that the overall accuracy of TMS/hd-

EEG in disclosing changes in the stimulation parameters was

96.7%, with 95% sensitivity and 100% specificity (i.e. repeatabil-

ity) at a DI threshold of 1.67%. These results demonstrate that

TMS-evoked potentials are sensitive (non-stereotypical) and

repeatable (non-random) responses and that they reflect, deter-

ministically, particular properties of the stimulated set of cortical

neurons. To the extent that TMS-evoked potentials are sensitive

and repeatable for changes in the stimulation parameters, they

may also be accurate in detecting longitudinal changes in the state

of cortical circuits.

Materials and Methods

Participants
Ten right handed healthy volunteers (7 males, 3 females, mean

age 26.9 years) were enrolled into the study after a neurological

screening to exclude potential adverse effects of TMS. Subjects

with medical history of seizures, convulsions, loss of consciousness

and traumatic brain injury, carriers of intracranial metallic objects

and/or of cardiac pace-makers were excluded from the study. The

entire experimental procedure was approved by the Local Ethical

Committee of the Hospital ‘‘L. Sacco’’ and each volunteer gave

written informed consent to participation.

TMS targeting
Structural magnetic resonance images (MRI) were recorded

from all subjects at 1 mm3 spatial resolution (1T Philips scanner).

Three TMS targets were identified on individual MRIs in the left

occipital lobe (Brodmann’s area - BA19), the left parietal lobe

(BA7) and the left frontal lobe (BA6). Precision and reproducibility

of stimulation were achieved by using a Navigated Brain

Stimulation (NBS) system (Nexstim Ltd., Helsinki, Finland), that

employs a 3D infrared Tracking Position Sensor Unit to map the

positions of TMS coil and subject’s head within the reference

space of individual structural MRI. In addition, the NBS system

computes on-line the distribution and intensity (V/m) of the

intracranial induced electric field using a locally best-fitting

spherical model of the subjects’ head and brain and taking into

account the exact shape, 3D position and orientation of the TMS

coil. Stimulation intensity, expressed as a percentage of the

maximal output of the stimulator, was kept between 40–75% for

all subjects, corresponding to an electric field between 110–

120 V/m on the cortical surface. In each area, the TMS hot spot

(i.e. location of the maximum electric field induced by TMS on the

cortical surface) was always kept on the convexity of the gyrus,

about 1 cm lateral to the midline. These medial stimulation sites

were selected because they are easily accessible and far from major

head or facial muscles whose unwanted activation may affect EEG

recordings. The reproducibility of the stimulation coordinates

across sessions was guaranteed by a virtual aiming device that

indicated in real-time any deviation from the desired target greater

than 3 mm. The TMS stimulator consisted of a Focal Bipulse 8-

Coil (mean/outer winding diameter ca. 50/70 mm, biphasic pulse

shape, pulse length ca. 280 ms, focal area of the stimulation hot

spot 0.68 cm2) driven by a Mobile Stimulator Unit (Eximia TMS

Stimulator, Nexstim Ltd., Helsinki, Finland). The coil was always

placed tangentially to the scalp, in order to optimize transmission

of the magnetic field to the cortical surface. TMS pulses were

delivered at an inter-stimulus interval randomly jittered between

700–900 ms (equivalent to ca. 1.1–1.4 Hz).

EEG recording
Continuous hd-EEG was recorded using a 60-channel TMS-

compatible amplifier (Nexstim Ltd., Helsinki, Finland). This

equipment ensured artefact-free EEG recordings starting from

8 ms after the TMS pulse [1]. Impedance at all electrodes was kept

below 5 kV. EEG signals were band-pass filtered between 0.1–

500 Hz and sampled at 1,450 Hz with 16 bit resolution. Vertical

electrooculogram (EOG) was recorded by two extra sensors. A

total of about 200 trials were collected for each TMS/hd-EEG

session. Contamination of TMS-evoked potentials by auditory

responses to the clicks produced by the TMS coil’s discharge was

prevented by masking noise and by placing a thin layer of foam

between coil and scalp. After each session, electrodes’ position was

digitized using a 3D Infrared Tracking Position Sensor Unit (for

more details about the EEG recording procedures see [16,21,24]).

General experimental design
The experimental protocol consisted of two main arms, aimed

at evaluating the sensitivity and the repeatability, respectively, of

TMS-evoked potentials. In order to test for sensitivity, different,

randomly ordered, TMS sessions were performed in the same day

(day1) varying only one stimulation parameter at a time (either

site, or intensity, or angle of the TMS-induced current). TMS-

evoked potentials were considered sensitive to the extent that they

changed when stimulation parameters were changed. In order to

evaluate repeatability, a subset of TMS sessions was repeated later

in the same day (day1) as well as one week afterward (day8),

without changing any stimulation parameter. TMS-evoked

potentials were considered repeatable to the extent that they did

not change over time when stimulation parameters were kept

constant. In order to quantify sensitivity, single-subject pairwise

comparisons were performed between TMS-evoked potentials

obtained with different stimulation parameters. We called these

comparisons ‘‘change comparisons’’ (C). To quantify repeatability,

we performed single-subject pairwise comparisons between TMS-

evoked potentials with identical stimulation parameters. We called

these comparisons ‘‘no change comparisons’’ (NC). As described

below, each pairwise comparison involved applying a non-

parametric test based on random permutations between the

single-trial TMS-evoked potentials of the two sessions.

Change comparison (sensitivity)
Stimulation site. Pairwise comparisons were carried out

between TMS-evoked responses to perturbation of BA6, BA7, and

Accuracy of TMS/hd-EEG
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BA19 for each subject separately. Using the NBS, stimulation

intensity (I%, expressed as a percentage of the maximum

stimulator’s output) was always adjusted in each subject and in

each area in order to compensate for local differences in scalp-to-

cortex distance and to generate a comparable electric field

between 110–120 V/m. The NBS was also used to keep the

angle of stimulation parallel to the cortex midline (0u angle). In this

case, the total number of pairwise comparisons was 22 instead of

30, because in 4 out of 10 subjects cortical responses to

perturbation of one area (BA6 in 3 subjects and BA19 in 1

subject) were corrupted by artefacts and therefore excluded from

the analysis.

Stimulation intensity. Single-subject pairwise comparisons

were carried out between TMS-evoked responses obtained at I%

and I%+10%. Using the NBS, the stimulation target, as well as the

angle of the induced currents were kept unvaried. A total of 20

comparisons were performed, involving BA6 in 4 subjects, BA7 in

7 subjects, and BA19 in 9 subjects.

Stimulation angle. Pairwise comparisons were carried out

between TMS-evoked responses obtained with a stimulation angle

of 0u and responses obtained after clockwise rotating the angle by

45u and 90u. Intensity and site of stimulation were kept constant.

Overall, 20 comparisons were evaluated, involving BA6 in 2

subjects, BA7 in 4 subject, and BA19 in 4 subjects (10 comparisons

0u vs. 45u and 10 comparisons 0u vs. 90u).

No change comparison (repeatability)
Same day. For each subject, the first TMS session (intensity

I%, direction 0u, stimulation site either BA6, or BA7, or BA19)

was compared with an identical session repeated on day1, at the

end of the experiment, without changing any stimulation

parameter (10 comparisons). This procedure allowed to control

for possible plasticity-related modifications induced by repeated

TMS sessions.

One week apart. A subset of the TMS/hd-EEG sessions

recorded on day1 (intensity I% and direction 0u) was compared

with identical sessions accurately replicated on day8, namely

stimulation of BA6 in 4 subjects, of BA7 in 7 subjects and of BA19

in 9 subjects. In these cases, we carefully controlled that not only

the stimulation parameters, but also other environmental and

subjective conditions (such as daytime, room brightness, subject’s

vigilance level) were exactly the same. To further reduce sources of

measurement variability, electrodes digitization was used to ensure

that the relative position between the EEG cap and subject’s head

did not differ across the two sessions.

Data Analysis
EEG pre-processing. Data analysis was carried out using

MATLABH (2006a, The MathWorks, Natick, MA). Visual

inspection of single-trial recordings was performed by a trained

experimenter after automatic rejection of trials with EOG

.70 mV and/or with absolute power of EEG channel F8 in the

fast beta range (.25 Hz) exceeding 0.9 mV2/Hz [25], most likely

contaminated by ocular and/or muscular activity. TMS-evoked

potentials were computed by averaging a minimum of 150 selected

artefact-free single trials, in order to obtain a good signal-to-noise

ratio. Subsequently, channels residually affected by large artefacts

or with poor signal-to-noise ratio were excluded from further

analysis. Finally, the average responses were band-pass filtered (2–

80 Hz), downsampled to 725 Hz, and re-referenced to the

common average reference.

Statistical analysis. We implemented a non-parametric

permutation-based statistical procedure to perform pairwise

comparisons between TMS-evoked potentials, and to synthesize

their degree of diversity in a single value (divergence index - DI),

corrected for multiple hypothesis testing.

At first, a Wilcoxon rank-sum test was applied to check that the

baselines (250 ms pre-stimulus) of the single trials, contributing to

the two TMS-evoked potentials to be compared, had the same

distribution. In case of a negative result, the most deviated trials

were removed and the test was repeated until the baseline

distributions of the two groups of trials were statistically equivalent

(P.0.05). The percentage of rejected trials was always less than

5%. At this point, we could test the null hypothesis that two sets of

TMS-evoked potentials (each one composed by 60 EEG channels

by 182 time points, corresponding to 250 ms post-stimulus

sampled at 725 Hz) are equivalent. If this is the case, ‘‘mixing’’

together, in any random combination, the single trials collected

during the two TMS/hd-EEG sessions should always result in

statistically equivalent TMS-evoked potentials. Otherwise, the null

hypothesis can be rejected. Thus, for each comparison, 1000

‘‘mixed’’ TMS-evoked potentials were obtained by randomly

mixing and averaging 1000 times the single trials collected in two

different sessions (Fig. 1A,B). The set of 1000 values at each post-

stimulus time sample represented the instantaneous empirical null

probabilistic distribution of the voltage of the TMS-evoked

potentials. In order to correct for multiple comparisons in time,

we computed a single distribution for the whole time interval as

follows: i) all instantaneous distributions were centralized around

zero, by shifting them by an amount d(t) (Fig. 1C); ii) for each

centralized distribution, we computed the maximum absolute

value (Fig. 1D); iii) the one-tail (1-a)100th percentile of the

distribution of the maximum absolute values was used to estimate

a significance threshold G for the whole time window of interest

(Fig. 1D); iv) two boundaries were computed as (+G+d(t)) and

(–G+d(t)). The temporal profile of these boundaries is modulated

by d(t), since G is a fixed threshold. The null hypothesis of

equivalence between two TMS-evoked responses at each time

sample t was rejected with probability of false positives a corrected

for multiple comparisons when at least one of the two original

potentials at that time sample lay beyond the significance

boundaries (Fig. 1E). Finally, for each comparison the DI was

defined as the percentage of significantly different time samples in

the first 250 ms post-stimulus in all 60 EEG channels out of the

total number of spatial-temporal samples. In this way, the DI was

systematically calculated at the sensor level for all pairwise

comparisons (n = 92). As a proof of concept, the same statistical

procedure was also carried out at the source level on the time

series of regional cortical currents in one subject (see Source modeling

paragraph below). Cortical meshes were automatically parcellated

into subregions (Automated Anatomical Lobules classification)

using the masks provided by WFUPickAltas tool (freely available

at: http://www.ansir.wfubmc.edu; [24,26,27]).

Source modeling. The Statistical Parametric Mapping

software package (SPM5, freely available at http://www.fil.ion.

bpmf.ac.uk/spm) was used to warp individual MRIs to the

Montreal Neurological Institute atlas and to compute cortical

meshes (7204 vertices each). EEG sensors and individual meshes

were co-registered by rigid rotations and translations of anatomical

landmarks (nasion, left and right tragus). Conductive head volume

was modeled according to the 3-spheres BERG method [28] as

implemented in the Brainstorm software package (freely available

at http://neuroimage.usc.edu/brainstorm). Finally, inverse

solution was computed on each single trial by applying the

empirical Bayesian approach [24,29–33].

Receiver Operating Characteristic (ROC) analysis. The

statistical analysis described above, yielded 92 DIs, resulting from

62 C comparisons (stimulation site, intensity, angle) and from 30

Accuracy of TMS/hd-EEG
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NC comparisons (same day, one week apart). ROC analysis was

applied to evaluate the overall ability of TMS-evoked potentials in

disclosing well-controlled modifications of stimulation parameters

against measurement variability/error. Briefly, each measured DI

was set as threshold to decide whether a change occurred (.

threshold), or not (, threshold). Thus, the true positive rate

(sensitivity%) and the true negative rate (specificity, or

repeatability%) was computed for all 92 DI thresholds. Then,

we plotted the ROC curve as sensitivity% vs 100-specificity%

using a Matlab script (freely available at http://www.mathworks.

com/matlabcentral/fileexchange/19950; Cardillo G., 2008: ROC

curve: compute a Receiver Operating Characteristics curve). The optimal DI

threshold was set in correspondence to the maximum of the

Younden index [34], computed as [sensitivity + specificity - 1].

The percentage of correct classifications across all pairwise

comparisons was measured to quantify accuracy of TMS/hd-

EEG, while the area under the ROC curve yielded the probability

of ranking the DI of a randomly chosen C comparison higher than

the DI of a randomly chosen NC comparison.

Results

Starting from 100 TMS/hd-EEG sessions recorded in 10

healthy subjects, we performed 62 C comparisons (22 for changes

in stimulation site, 20 in stimulation intensity and 20 in stimulation

angle) and 30 NC comparisons (10 same-day and 20 one-week-

apart recordings with the same stimulation parameters).

Results of a representative subject are reported in Fig. 2. Here,

one particular TMS/hd-EEG session (stimulation of BA19 at I%

intensity and 0u angle on day1) is taken as a reference (blue) and

compared with four other sessions (red), where stimulation

parameters are varied one at a time. Specifically, the site (BA19

Figure 1. Non-parametric statistical procedure to perform single-subject pairwise comparisons between TMS-evoked potentials.
Single-trial recordings from two different conditions (blue and red lines) were randomly mixed 1000 times (A) and averaged (B). Instantaneous
distributions of averaged voltages were computed and centralized around zero by keeping record of the displacement d(t) (C). The distribution of
maximum absolute values of each centralized distribution was computed and used to define a significance threshold G as the (1-a)100th percentile
(D). Significance boundaries (gray dotted lines) were computed as (6G + d(t)) and used to define the significantly different time samples (red stars)
between conditions at a specific channel (E).
doi:10.1371/journal.pone.0010281.g001
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Figure 2. Results of pairwise comparisons between TMS-evoked potentials of a representative subject at the sensor (A,B) and at the
source level (C,D). Brain responses to stimulation of BA19 at I% intensity and 0u angle on day1 (blue traces) are compared with brain responses
recorded during four different sessions (red traces), during which stimulation parameters were varied one at a time, namely stimulation site (BA6),
intensity (I%+10%), angle (45u) and day (day8), resulting in 3 C comparisons and one NC comparison. For each comparison, superimposition of pairs of
TMS-evoked potentials in all sensors is displayed in (A), while enlarged view of P1 channel is shown in (B), together with significance boundaries (dotted
gray traces) and significantly different samples (red stars). Pairs of TMS-evoked cortical currents are shown in (C) as current density maps and in (D) as
temporal profile of current density integrated over the left frontal and left occipital lobules, together with significantly different samples (red stars).
doi:10.1371/journal.pone.0010281.g002

Accuracy of TMS/hd-EEG
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vs. BA6), the intensity (I% vs. I%+10%), the angle (0 vs. 45u) and

the day (day1 vs. day8) of stimulation were varied, resulting in

three C comparisons and one NC comparison. For each

comparison, Fig. 2 displays the superimposition of TMS-evoked

potentials at the sensor level (A,B) as well as the cortical current

density maps (C) and the temporal profile of current density

integrated over the left frontal and occipital lobules (D). This

representation provides a qualitative description of the overall

degree of diversity between different conditions. While TMS-

evoked scalp potentials and cortical currents tended to overlap in

the NC comparison, they were clearly characterized by divergent

spatial-temporal patterns in all the C comparisons, suggesting that

the spatial-temporal characteristics of the brain response to a

direct perturbation markedly depended on each and every

stimulation parameter, e.g. site, intensity and angle.

Fig. 3A summarizes the general results obtained from all

subjects: each coloured dot represents the DI computed for a

specific pairwise comparison. In particular, DIs of the C

comparisons for changes in the stimulation site, intensity and

angle are represented by cyan, black and green dots, respectively;

DIs of NC comparisons are depicted in yellow for same-day

sessions and in red for one-week-apart sessions.

C comparisons resulted in the largest DI values
Generally, comparing the brain responses evoked by TMS

pulses delivered over different stimulation sites revealed obvious

differences in the space distribution and time course of voltages

and currents (Fig. 2, first row). The average DI of all 22 C

comparisons between different stimulation sites was 11.4565.7%

(range 3–19.7%). Inspecting single DI values (Fig. 3A) also showed

that comparisons between distant areas (i.e. BA6 vs BA19, large

cyan dots) was associated with the highest DI values (18.461.2%),

while pairwise comparisons between nearby sites (i.e. BA6 vs. BA7

and BA7 vs. BA19, small cyan dots) resulted in lower DIs

(8.864.3%).

Varying stimulation intensity (Fig. 2, second row) resulted in

amplitude and latency changes of the main TMS-evoked

components, while the general topographical distribution of

voltages and currents tended to be preserved. The average DI

across the 20 C comparisons between different intensities of

stimulation (Fig. 3A, black dots) was 10.8866% (range 2.31–

22.2%).

When changing the angle of the TMS-induced current, the

morphology of cortical responses varied in a rather unpredictable

way, on a single-case basis (Fig. 2, third row). The average DI

value was 3.9263% (range 0.7–13.8%), with no systematic

difference between 0u vs. 45u and 0u vs. 90u pairwise comparisons.

In 4 out of 20 angle comparisons, DI values were smaller (Fig. 3A,

green dots) than the largest DI obtained comparing experimental

sessions with identical stimulation parameters (Fig. 3A, yellow and

orange dots).

NC comparisons results in lowest DI values
When TMS was applied with identical stimulation parameters

at different times, the morphology and the spatial-temporal

dynamics of TMS-evoked potentials were largely preserved

(Fig. 2, fourth row). The average DI was 0.2860.4% (range 0–

1.2%) when comparing same-day recordings and 0.4360.4%

Figure 3. Divergence Index of all pairwise comparisons between TMS-evoked potentials. Single DI values computed over the entire post-
stimulus period (250 ms) are shown in (A) with the following color-coding: DIs of the C comparisons for changes in the stimulation site, intensity and
angle are represented by cyan, black and green dots, respectively, while DIs of NC comparisons are depicted in yellow for same-day sessions and in
red for one-week-apart sessions. DI values computed over different temporal windows of interest (0–60 ms, 60–120 ms, 120–250 ms) are reported in
(B) with the same color-coding, except for NC comparisons that are summed together and plotted in orange.
doi:10.1371/journal.pone.0010281.g003
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(range 0–1.67%) for pairwise comparisons between one-week-

apart sessions. The single DI values for all NC comparisons

(Fig. 3A, yellow and orange dots) were always below 1.67%

Relative differences in the DI value are preserved across
latencies

In order to understand whether the observed differences

between TMS-evoked potentials were preserved over the entire

post-stimulus period, rather than limited to a specific latency, we

computed the DI over three subsequent post-stimulus intervals,

namely 0–60 ms, 60–120 ms and 120–250 ms (Fig. 3B). For each

type of pairwise comparison, the average DI computed at early

latencies (0–60 ms) was significantly higher (P,0.05) as compared

to the one computed for late latencies (120–250 ms), although the

relative differences among types of comparison were preserved

across all time intervals (P,0.01).

ROC Analysis
Results of ROC analysis showed that the optimal DI threshold

according to the Younden index was 1.67% and yielded a 95.1%

sensitivity and 100% specificity (repeatability), corresponding to an

overall accuracy of 96.7%. The efficacy of DI in reliably

quantifying the pairwise differences between TMS-evoked poten-

tials was 99.1%, as measured by the area under the curve (Fig. 4).

Discussion

How accurately TMS-evoked potentials can detect actual

changes in cortical responsiveness? If the EEG response to TMS

tends to be stereotypical, actual changes in cortical responsiveness

may go undetected (low sensitivity). On the other hand, if TMS/

hd-EEG measurements tend to be too variable and noisy, changes

in cortical responsiveness may be overestimated (low repeatability).

Defining sensitivity and repeatability concerns the interpretation

of the responses to any kind of stimulation: however, this task is

particularly relevant when interpreting the EEG responses

triggered by TMS, a technique that activates the brain in a way

that is non-ecological and that is difficult to control.

Unlike sensory stimulation, TMS activates simultaneously a

rather large cortical volume containing both inhibitory and

excitatory fibers, possibly belonging to different functional

subsystems. Thus, it is possible that different TMS perturbations

may result in EEG responses that engage many different circuits

and that are largely overlapping. In addition, TMS not only

perturbs cortical neurons directly but may also activate the brain

indirectly, due to the stimulation of scalp nerves and to the click

sound associated with the coil’s discharge over the subject’s head.

For this reason, it is also conceivable that differences in the brain’s

reaction may be partially obliterated by an invariant event-related

potential triggered by unwanted somatosensory or/and acoustic

stimulations. Altogether, these factors may significantly hamper

the sensitivity of TMS-evoked potentials. On the other hand, due

to the complexity of the technique, TMS-evoked potentials may

also lack repeatability, by showing accidental changes related to

stimulation and/or recording errors. Indeed, stimulating directly

the cortical surface involves the control of several factors, since a

large number of cortical locations can be arbitrarily selected and

perturbed, each one with several stimulation parameters (e.g.

intensity, pulse waveform, and orientation of the magnetic field).

Thus, a lack of precise control of these parameters across

subsequent TMS/hd-EEG sessions, may result in large measure-

ment errors and in an apparent modulation of cortical

responsiveness. Similarly, other factors, such as EEG sensors

positioning, coil temperature, calibration of amplifiers, etc., may, if

not adequately controlled for, affect the repeatability of TMS-

evoked potentials.

In this work, we used controlled changes in the stimulation

parameters (site, intensity, and angle of the induced electric field)

and repeated longitudinal measurements (same day and one week

apart) in order to jointly evaluate the sensitivity and repeatability

of TMS/hd-EEG. In order to synthetically quantify the extent to

which pairs of TMS-evoked potentials, recorded in various

conditions, differed in their overall spatial-temporal pattern, we

employed non-parametric statistics to calculate a Divergence

Index (DI). ROC analysis showed that an optimal DI threshold of

1.67%, yielded a 96.7% accuracy (95.1% sensitivity and 100%

specificity) of TMS-evoked potentials in detecting whether a

change in stimulation parameters occurred, or not. The finding

that TMS-evoked potentials, rather than being stereotypical or

noisy responses, reflect to a large extent deterministic properties of

the stimulated cortical circuits has different implications, as

discussed below.

Sensitivity of TMS-evoked potentials and the
differentiation of cortical circuits

Integration and differentiation (or functional specialization)

within regions are fundamental organizing principles of thalamo-

cortical networks [35,36]. While integration refers to the ability of

the elements of a system to interact with each other, differentiation

may be defined as the system’s ability to react in different ways to

different perturbations. TMS/hd-EEG, by directly exploring

causal interactions (effective connectivity) among cortical areas,

may provide a dependable evaluation of thalamocortical integra-

tion [16,37,38]. On the other hand, to the extent that TMS-

evoked potentials are sensitive to changes in perturbation

Figure 4. ROC analysis applied to the DI. ROC curve is depicted
as a solid black line, interspersed by blank dots representing
the values of sensitivity and specificity (repeatability) associ-
ated to single DI values. The optimal DI value of 1.67% computed
according to the Younden index [34] is shown as a black dot. Dashed
line represents the ROC curve of a random classifier. Gray-shaded
region indicates the area under the curve.
doi:10.1371/journal.pone.0010281.g004
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parameters, they may also gauge the degree of differentiation

within thalamocortical networks. The present work shows that, at

least on a coarse grain, different cortical perturbations result in a

degree of response differentiation that is consistently higher

compared to random test-retest variability (Fig. 3 and 4).

In the present experiments, changing stimulation parameters

almost invariably resulted in higher DIs compared to the no-

change conditions (Fig. 3A). Importantly, this finding was not

limited to the early latencies, and indeed DI values for the C

conditions were significantly larger until 250 ms post-stimulus

(Fig. 3B). This evidence demonstrates that the EEG response to

TMS is primarily due to direct cortical stimulation and to the

ensuing reverberation of activity in a specific network of connected

elements. Moreover, if TMS-evoked potentials were heavily

contaminated by somatosensory, or auditory event-related poten-

tials, the EEG responses generated when stimulating the head in

two sites located a few centimetres away, rotating the stimulation

angle, or increasing slightly the intensity of stimulation would have

a very similar morphology. Thus, our finding suggests that the

collateral stimulation of peripheral nerves by TMS plays a little

role in the generation of TMS-evoked potentials.

Changing the site of stimulation resulted in very different

responses and in high DI values that were even higher when the

responses triggered in areas located far away (area 19 vs. area 6)

where compared (Fig. 3A, large cyan dots). This variability in the

cortical response reflects specific properties of the stimulated

circuits and may be ascribed to local differences in cortical

excitability [17], to differences in the frequency tuning of

corticothalamic modules [18,39] and to differences in the pattern

of cortico-cortical connectivity [4,12,24].

Rotating the coil in the same area produced smaller

modifications of TMS-evoked potentials as compared to changes

of stimulation site. Indeed, 4 out of the 20 pairwise comparisons

between recording sessions with different angles resulted in a DI

,1.67%, i.e. the optimal threshold that maximized sensitivity and

specificity (repeatability) of TMS-evoked potentials in the ROC

analysis. Previous work [40] showed that by stepwise rotating the

coil relative to left motor cortex, the largest muscle responses were

obtained when the coil was 50u to the parasagittal plane, with the

induced current in axis with the main direction of the axons in the

motor ‘‘hand knob’’. In addition, TMS coil orientation has been

shown to affect the motor threshold [41], the degree of selectivity

when stimulating different peripheral muscles [42] and even

cognitive functions [43]. However, while the main orientation of

motor cortex axons is quite predictable across subjects, little is

known, a priori, about the main orientation of fibers in other brain

areas, such as the ones stimulated in this study (BA6, BA7 and

BA19). Thus, it is likely that the 4 pairwise comparisons between

different stimulation angles resulting in low DI values, may be due

to a virtually negligible variation of the induced current direction

as compared to cortical axons. In fact, only by integrating TMS/

hd-EEG with high resolution structural imaging techniques, such

as diffusion tensor imaging (DTI), one may be able to control, in

any cortical area, the coil’s orientation with respect to the main

direction of axons.

Certainly, in order to evaluate the fine grain of cortical

differentiation with TMS/hd-EEG, one should design ad hoc

experiments where stimulation parameters are varied in a

systematic way (i.e. by moving/rotating the coil several times by

a constant step). Meanwhile, it would be interesting to test whether

the DI resulting from two different perturbations decreases in

physiological (sleep, anesthesia) and pathological (coma, epilepsy)

conditions, where the capacity for integration and differentiation

in thalamocortical circuits is thought to be altered [35,37,44,45].

Repeatability of TMS-evoked potentials and longitudinal
changes in cortical circuits

TMS-evoked potentials recorded on the same day, with the

same stimulation parameters (Fig. 3, yellow dots) were very stable

(mean DI 0.28%), despite the fact that, between the two

measurements, several (from 5 to 8) other sessions of repetitive

TMS were carried out. It is well known that repetitive TMS pulses

delivered at low (,1 Hz) and high (.5 Hz) stimulation frequency

can respectively induce a reduction [46] and an increase [22,47] of

brain excitability [48]. Throughout the experiment, we used a

stimulation frequency jittering randomly between 1.1–1.4 Hz.

Our results indicate that this particular stimulation rate does not

induce significant brain reorganization/plasticity processes and

may be used to probe repeatedly the excitability of cortical circuits

without significant interference.

The mean DI between TMS-evoked responses recorded during

identical experimental sessions performed one week apart (0.43%)

was slightly higher than mean DI between same-day sessions

(0.28%). This minor discrepancy might be ascribed to different

factors: i) small co-registration errors, that clearly reduce the

reproducibility of navigation; ii) small errors in re-positioning the

EEG cap; iii) unavoidable and unpredictable biological variability

due to changes in brain excitability that likely takes place on the

time-scale of several days. Nevertheless, this comparison clearly

demonstrated that TMS-evoked potentials, besides being sensitive

to changes, are also very stable over time. Thus, as suggested by

the ROC curve in Fig. 4, repeating after one week a given

perturbation and observing a DI .1.67% would strongly indicate

that, in the mean time, some change occurred in the brain circuits.

In principle, identifying a cut-off level above which one can decide

whether a change in brain responsiveness occurred, or not, is

crucial if one wants to use TMS/hd-EEG to track over time

pathological alterations, plastic changes and therapy-induced

modifications in cortical circuits. The DI can be automatically

computed at the sensor as well as at the source level (Fig. 2) on a

large matrix of spatial-temporal data, without having to select

particular peaks, or components. By design, the DI tends to better

capture changes in amplitude than changes in shape, since two

responses with identical shape but with different amplitude will be

maximally different. This feature may represent a limitation or an

advantage, depending on the case (see below). In the present

experiments, increasing TMS stimulation intensity by 10%

produced changes that were reliably detected by the DI. This

finding suggests that calculating the DI on repeated TMS/hd-

EEG sessions may be effective in revealing rather fine modifica-

tions in cortical excitability (indexed by the response’s amplitude)

due to pathological alterations, i.e. stroke, epilepsy and depression

[49–52] or therapeutic interventions, i.e. electroconvulsive thera-

py, rTMS, neurorehabilitation or drug administration [51,52].

Limitations of the study
The DI values computed in the C conditions allowed detecting

changes in the stimulation parameters with excellent accuracy:

however their absolute values spread over a wide range (Fig. 3A).

This dispersion may be due to a differential susceptibility of

different cortical sites to changes in stimulation parameters. For

example, if delivering TMS pulses on a specific cortical region at

I% intensity activates locally most of the axons, increasing the

stimulation intensity by 10% in this particular area would not

dramatically change the electrical response and would result in a

low DI. Similarly, as already discussed above, stimulating at

different angles would not make much difference if the fibers in the

target area are oriented in all directions (anisotropic arrangement).

The contribution of these factors to the morphology of TMS-
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evoked potentials cannot be easily predicted, even if some insights

may be provided by the integration of high-resolution structural

neuroimaging (such as DTI). At any rate, a systematic under-

standing may only be achieved by varying parametrically the

perturbation parameters, e.g. stimulating at several locations

uniformly distributed on the scalp, delivering TMS pulses at

progressively higher intensities from threshold to saturation,

rotating gradually the angle of the induced current to span the

whole circle. Such an extensive mapping of cortical electrophys-

iology was clearly beyond the scope of the present work, which was

primarily aimed at evaluating, technically, the general level of

accuracy of TMS/hd-EEG. Therefore, here, we tested only a

limited set of all possible stimulation parameters, a task that still

required considerable experimental and methodological efforts,

e.g. recording and analyzing 100 TMS/hd-EEG sessions and

performing 92 pairwise comparisons between TMS-evoked

potentials.

Various classifiers, describing differences between evoked

potentials, could have been used to build the ROC curve. In

this work, we implemented the DI because it allows to quantify the

differences between TMS-evoked potentials starting directly from

the entire matrix of spatial-temporal data, without requiring a

priori information, and to synthesize them into a single number.

However, the ability of the DI in detecting modifications of TMS-

evoked potentials due to physiological and/or pathological

alterations in cortical circuits should be carefully evaluated.

Indeed, the DI is rather conservative (it corrects for multiple

comparisons in time) and explores the entire post-stimulus period,

at all sensors. Thus, since several channels and latency ranges are

often not involved by a TMS-evoked potential, one should

generally expect low absolute DI values. In fact, we found that

maximum DI values were around 20% (Fig. 3). When testing more

specific hypotheses, other methods of classification (e.g., restricting

the DI in space and time, template-matching, Mahalanobis

distance) could be chosen. Clearly, the aim of the present study

was not to develop an optimal classifier, but to use the most

general one in order evaluate the accuracy of TMS/hd-EEG with

a data-driven approach.
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