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Abstract

Coronary heart disease (CHD) is one of the leading causes of death worldwide; if suffering

from CHD and being in its end-stage, the most advanced treatments are required, such as

heart surgery and heart transplant. Moreover, it is not easy to diagnose CHD at the earlier

stage; hospitals diagnose it based on various types of medical tests. Thus, by predicting

high-risk people who are to suffer from CHD, it is significant to reduce the risks of developing

CHD. In recent years, some research works have been done using data mining to predict

the risk of developing diseases based on medical tests. In this study, we have proposed a

reconstruction error (RE) based deep neural networks (DNNs); this approach uses a deep

autoencoder (AE) model for estimating RE. Initially, a training dataset is divided into two

groups by their RE divergence on the deep AE model that learned from the whole training

dataset. Next, two DNN classifiers are trained on each group of datasets separately by com-

bining a RE based new feature with other risk factors to predict the risk of developing CHD.

For creating the new feature, we use deep AE model that trained on the only high-risk data-

set. We have performed an experiment to prove how the components of our proposed

method work together more efficiently. As a result of our experiment, the performance

measurements include accuracy, precision, recall, F-measure, and AUC score reached

86.3371%, 91.3716%, 82.9024%, 86.9148%, and 86.6568%, respectively. These results

show that the proposed AE-DNNs outperformed regular machine learning-based classifiers

for CHD risk prediction.

Introduction

According to the statement by the World Health Organization (WHO), CHD is said to be one

of the fatal disorders in the world, and as for 2016, an estimated 15.2 million people died from

CHD and stroke [1]. South Korea is equally considered to be one of the countries in which

heart disease is higher, being ranked second of all deaths [2]. Risk factors of developing CHD
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include bad habits, such as lack of physical activity, poor diet, smoking and stress [3, 4]. If it

reaches the end-stage, the most advanced treatments are required to be conducted, including

stent surgery that helps keep coronary arteries open and reduce the chance of a heart attack,

and coronary artery bypass grafting that improves blood flow to the heart, and heart transplant

[5, 6]. In the early stage, it is possible to prevent suffering from CHD by giving advice and

appropriate medicines. However, it is difficult to make precise diagnose at the earlier-stage

of CHD [7, 8]; hospitals use many kinds of clinical tests, such as electrocardiogram, coronary

computed tomography angiogram, echocardiogram and blood tests [9].

In recent times, data mining based classification techniques have been used in the research

works, predicting the risk of CHD [10–16]. Data mining is a process of automatically discover-

ing useful information in large data repositories and provides an opportunity to predict the

outcome of further observation [17]. If data have labels revealing high risky or normal, classifi-

cation techniques are used. In [15, 18], the authors have compared several classification mod-

els: Decision tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Neural network (NN),

and Support vector machine (SVM). According to the findings from these researches, the

SVM algorithm showed the highest accuracy, with Kim et al., 2015 reaching higher accuracy

(69.51%) than SVM by using the Fuzzy Logic and Decision tree on the sixth Korea National

Health and Nutrition Examination Survey (KNHANES) dataset. In [14, 16, 19, 20], DNN

based CHD prediction modesl have been proposed and, Atkov et al., 2012 has built 10 different

prediction models by different risk factors—each model has two hidden layers with 4 neurons

—the accuracy reached 93% on 487 patients’ data in Central Clinical Hospital No. 2 of Russian

railways. In [19, 20], the authors have done feature correlation analysis, and hidden layers of

DNN were connected based on the correlation results; the accuracy and AUC score of the

DNN with feature correlation analysis were 83.9% and 79.0% on the sixth KNHANES dataset.

By this research work, we have proposed the RE based DNNs; we have aimed to improve

the performance of DNN by extracting the RE based feature from the deep AE neural network

model. In most cases, AE is used as a dimensionality reduction technique to project high

dimensional space into lower-dimensional space. Dimension reduction techniques are mostly

used to avoid the curse of dimensionality problem before cluster or classification algorithms

[21–24]. The novelty of our research work is that we used RE instead of low dimensional space

of deep AE model to extract the new feature. Reconstruction is a process of transforming the

lower-dimensional representation of source data into its original dimension. RE is estimated

by a difference between source data and reconstructed data. We have evaluated the proposed

AE-DNNs on a 6-years KNHANES dataset; it presented higher performance than the previous

studies with the same dataset as well as other machine learning-based algorithms.

Methodology

In this section, we will describe details of how to create the new feature using RE and to predict

the risk of developing CHD by DNNs. Our proposed approach has two fundamental functions:

feature extraction and CHD risk prediction. The general architecture of the proposed method

is shown in Fig 1.

RE based feature extraction

As mentioned above, AE is a technique for reducing the dimension. However, we have created

the RE based new feature using this technique and have shown its results in the results and dis-

cussion section.

AE is one kind of neural network (NN) [25] as well as being an unsupervised algorithm

that learns to copy its input (x1 . . . xn) to its output (x’1 . . . x’n) as close (xi = x’i) as possible by
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reducing the difference between inputs and outputs [26]. Thus, the number of input neurons

equal to the number of output neurons in AE. In general, the structure of AE is similar to NN

with one hidden layer, at least, whereas AE is distinguished from the NN for predicting output

label by the aim of input reconstruction. As shown in Fig 2, AE consists of the encoder and

decoder parts; firstly, it projects input x to a lower dimension that works in encoder part, then

it reconstructs output x’ from the low dimensional projection that works in decoder part. In

other words, the learning process of AE is that it compresses the input into a lower-dimen-

sional space called latent space and uncompresses back the compressed data into the output

that closely matches the original data. Then, it calculates a difference between the input and

reconstructed output and changes the weights of the network to reduce this difference.

AE takes an input vector x and maps it into a hidden representation h, then the hidden

representation h, sometimes called the latent space, is mapped back to a reconstructed vector

x’. The following equation describes an AE:

h ¼ aðwxþ bÞ

x0 ¼ a0ðw0hþ b0Þ
ð1Þ

where w and w’ are the weight matrices, b and b’ are the bias vectors, and a and a’ are the acti-

vation functions. The parameters of the AE model are optimized to minimize the average RE,

as shown in Eq 2:

MSE ¼
1

n

Xn

i¼1

ðxi � x
0

iÞ
2

ð2Þ

where MSE is the mean squared error, n is the number of a dataset, x is the input, and x’ is the

output.

In this study, we used DAE-general and DAE-risky two deep AE models, showing in Fig 1.

The DAE-risky model learns from the only high-risk subset of the training dataset for the RE

based feature extraction. The DAE-general model is used to choose an appropriate classifier in

CHD risk prediction module that trains on the whole training dataset. In this section, we will

describe how the DAE-risky model is employed in the feature extraction process. It is possible

Fig 1. General architecture of the proposed AE-DNNs method. DAE, deep autoencoder; DNN, deep neural

network; RE, reconstruction error; CHD, coronary heart disease.

https://doi.org/10.1371/journal.pone.0225991.g001
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to identify well which differentiation of RE is risky or normal by training the AE model on the

only risky dataset. In other words, if we give a person’s data who has low CHD risk as an input

of DAE-risky model, the RE will tend to be higher because the model did not learn from the

low risk dataset. Algorithm 1 shows the steps of how to do feature extraction, one of two fun-

damental functions of our proposed approach.

Algorithm 1 Feature extraction.
1: Set of points X; fXn

i ¼ 1g

2: Select risky subset from X dataset
3: Train DAE_risky on the risky subset
4: Z  []
5: for i 2 0. . .len(X̂Þ do
6: X̂i  DAE risky:predictðXiÞ

7: Zi  ðX̂i � XiÞ
2

return Z

First, all risky subset is selected from the n number of training dataset and then the DAE-

risky model is trained on the selected subset. According to Algorithm 1, the RE based new fea-

ture is calculated by a squared difference between initial input and its reconstructed output.

The equation of the proposed deep AE neural network can be written in the vectorized form:

xl ¼ tanhðwltanhðwl� 1tanhðwl� 2reluðwl� 3reluðwl� 4reluðwl� 5xþ bl� 5Þ þ bl� 4Þ

þbl� 3Þ þ bl� 2Þ þ bl� 1Þ þ blÞ
ð3Þ

Fig 2. A simple autoencoder neural network architecture based on a fully-connected layer.

https://doi.org/10.1371/journal.pone.0225991.g002
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where tanh and relu are the activation functions, wl and bl are the weight matrix and the bias

vector for each layer, l, and x is the input vector.

DNNs for CHD risk prediction

NN is mostly used to predict output labels from the input, consisting of an input layer, hidden

layer, and output layer [27]. The input layer is composed of neurons that describe input fea-

tures whereas neurons in hidden and output layers receive a result of activation function that

converts the weighted summation of the neurons of the previous layer, as shown in Fig 3. NN

learns by changing the weights of each neuron to reduce an error between target class y and

predicted class y’.

In this study, we proposed two NN classifiers trained on different groups of a dataset. In

practically, a dataset can include a subset which is higher variance than the most dataset and

that highly biased dataset degrades the performance of classification techniques. Therefore, we

isolated a highly biased dataset from the common dataset using the DAE-general model that

learned from the whole training dataset. The data that is different from most dataset gives

higher RE than common data on the DAE-general model. As shown in Fig 1, we used two

independent deep AE models. The DAE-general is used for data grouping and and selection of

the CHD risk prediction model. The DAE-risky is used for feature extraction. The only differ-

ence is that DAE-risky trained on risky subset while the DAE-general trained on the whole

training dataset. For estimating the data splitting threshold, first, we calculated reconstruction

errors of the training dataset by the squared difference between the input and output. The

threshold value is estimated by the mean and standard deviation of the reconstruction errors;

it can be described as:

threshold ¼
1

n

Xn

i¼1

REi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðREi �
1

n

Xn

i¼1

REiÞ
2

s

ð4Þ

where RE is the reconstruction error vector, and n is the number of elements in RE vector.

Fig 3. A simple neural network architecture with one hidden layer.

https://doi.org/10.1371/journal.pone.0225991.g003
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After threshold estimation, we partitioned the training dataset into two parts; each part

consists of subsets labeled by high-risk and low-risk. The first part contained a dataset with

high RE that exceeds the threshold value and the second part consisted of the rest of the data-

set. Subsequently, DNN classifiers are trained on each group separately using CHD risk factors

with RE based newly created feature. Each of NN classifiers is the same structure that has four

hidden layers with neurons 10, 7, 5, and 3, respectively. The input layer consists of 15 neurons,

including the selected CHD risk factors, and the RE based feature to predict target variable y.

y ¼ sigmoidðwlreluðwl� 1reluðwl� 2reluðwl� 3reluðwl� 4 þ bl� 4Þ þ bl� 3Þ

þbl� 2Þ þ bl� 1Þ þ blÞ
ð5Þ

where the output layer uses the sigmoid activation function, and all of the hidden layers use the

relu activation function, wl and bl are the weight matrix and the bias vector for each layer, l,
and x is the input vector.

In the CHD risk prediction process, first, test data is given as an input of the trained DAE-

general model, and its RE is calculated. If the RE exceeds the threshold, the DNN model 1 that

trained on data group with high RE will be used; otherwise, the DNN model 2 that trained on

data group with lower RE will be used to predict the class label, as shown Fig 1.

Experimental Study

We show the result of the AE-DNNs by comparing with machine learning-based NB, RF,

KNN, DT, and SVM algorithms. The design of the experimental study for the proposed

method is shown in Fig 4.

Data pre-processing

KNHANES is the Nationwide Program to evaluate Koreans’ health and nutritional status. It

consists of 3 parts: Health examination, health interview and nutrition survey. It has been con-

tinuously collected since 1998 [28]. The KNHANES datasets are released for public use within

one year of the end of each survey year [29, 30].

Fig 4. Design of experimental study for the AE-DNNs. Steps 1-7 (green line) represent model training, and steps 8-13

(blue line) show model evaluation. KNHANES, Korea national health and nutrition examination survey; AE,

autoencoder; RE, reconstruction error; DNN, deep neural network; CHD, coronary heart disease.

https://doi.org/10.1371/journal.pone.0225991.g004
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We have analyzed samples spanning the years 2010-2015. After removing missing valued

rows, a total of 25,990 records include 11,317 men, and 14,673 women were used in our experi-

ment. There are 12,915 records of high-risk people and 13,075 records of low-risk people in

the dataset. Fig 5 illustrates the integrated KNHANES dataset.

Selecting valuable features from the experimental dataset plays an important role in build-

ing accurate prediction model. It not only reduces the space and computation complexity but

also improves the performance of the classification model. We selected 14 features that influ-

enced in CHD from the total number of 423 features of a health interview, health examination,

and nutrition survey using an extremely randomized tree classifier in the scikit-learn machine

learning package in Python on all variables and chi-square test on categorical variables. The

general descriptions of the selected features are shown in Table 1.

The features such as age, knee joint pain status, lifetime smoking status, waist circumfer-

ence, neutral fat, body mass index, weight change in one year status, systolic blood pressure,

total cholesterol, obesity status, frequency of eating out, high-density lipoprotein cholesterol,

marital status, and diabetes were used as risk factors of CHD prediction model. Hypertension,

dyslipidemia, stroke, myocardial infarction, angina, and hyperlipidemia were used to identify

class labels (high-risk or low-risk). In other words, in case one of these 6 disorders is identified,

the individual will be considered to have high CHD risk.

In this paper, we presented the DNN based CHD prediction model. NN is a black-

box model, it does not give importance of each feature, and any insights on the structure

explicitly. Therefore, we trained several DNN models by removing each features one by one

from all and then ranked all features by how they affect the DNN model. First, we trained a

baseline model with DNN based on all 14 features. Then, features were ranked depends on the

difference of accuracy between the baseline model and the newly trained model that elimi-

nated a feature, shown in Table 2. From the table, all features affect the effectiveness of predic-

tion results because all accuracy was decreased when get rid of a particular feature.

Additionally, we retrained DNN models again by removing the lowest-ranked features step

by step manner until remain one feature, and results are written in Table 3. As a result, the

Fig 5. Integrated KNHANES dataset.

https://doi.org/10.1371/journal.pone.0225991.g005
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Table 1. Description of the selected features.

Variable name Low risk (13,075 records) High risk (12,915 records)

Age(yr) 41.54 (17.71) 55.96 (15.55)

Body mass index (kg/m2) 22.53 (3.27) 24.61 (3.33)

Total cholesterol (mg/dL) 181.16 (28.55) 194.17 (41.91)

High − density lipoproteincholesterol (mg/dL) 54.53 (10.33) 46.23 (12.18)

Systolic blood pressure (mmHg) 113.28 (14.97) 124.19 (17.41)

Waist circumference (cm) 76.94 (9.55) 84.40 (9.44)

Neutralfat (mg/dL) 93.24 (48.54) 165.91 (125.52)

Obesity status
1. Underweight 1176 254

2. Normal 9258 7188

3. Obesity 2641 5473

Life time smoking status
1. Less than 5 packs (100 units) 336 224

2. More than 5 packs (100 units) 3755 5200

3. Never smoked 7478 7235

8: Non − applicable (youth, child) 1501 251

9. No response 5 5

Diabetes
1. Normal 10678 7427

2. Fasting blood sugar disorder 1916 3262

3. Diabetes 481 2226

Knee joint pain status
1. Yes 835 2070

2. No 4035 7204

8. Non − applicable (below the 50 years of age) 8201 3637

9. No response 4 4

Weight change in one year status
1. No change 7447 8638

2. Weight loss 1634 1743

3. Weight gain 2481 2269

8. Non − applicable (youth, child) 1501 251

9. No response 12 14

Frequency of eating out year status
1. More than twice a day 1147 735

2. Once a day 2182 1606

3. 5 to 6 times a week 2570 1502

4. 3 to 4 times a week 1303 1070

5. 1 to 2 times a week 2804 2883

6. 1 to 3 times a month 2242 3336

7. Less than once a month 825 1781

9. No response 2 2

Marital status
1. Married, living together 8338 9736

2. Married, living separately 58 85

3: Bereavement 566 1576

4. Divorced 300 436

8. Response refused 374 165

(Continued)
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accuracy of all models is less than the baseline model. Therefore, all selected 14 features were

used together for further experiments.

The Framingham risk score (FRS) is the multivariable statistical model used to identify the

risks of developing CHD based on age, sex, smoking status, hypertension, cholesterol, high-

density lipoprotein cholesterol, and diabetes [31]. In [18–20] papers, the authors have built the

data mining based models on KNHANES dataset to predict the risk of CHD using Framing-

ham risk factors and several hospital tests. We compared our selected features with the risk fac-

tors of these guidelines by RF, SVM, and DNN algorithms, showing in Fig 6.

Compared methods

We have compared the proposed AE-DNNs to the following supervised machine learning

techniques. For the compared algorithms, we have chosen optimal values of input parameters

by changing their values until decreasing the performance.

NB. The Naïve Bayes is probability-based classification algorithm. It computes the poste-

rior probability for each class label and picks the class label that has the highest probability. In

NB, it does not calculate the probability based on combined features, instead, considering all

features separately; it is called conditional independence [17].

KNN. The k-nearest neighbor algorithm is used for the classification task. In the classifica-

tion phase, a user defines the value of the k parameter, and an unlabeled instance is labeled

by the most frequently occurred class label among the k number of nearest training samples.

First, it calculates distances between the unlabeled instance and each training data to find the

nearest neighbors. Belongs to the k number of nearest neighbors, a majority voted class label

will be assigned to the output label. We have configured the value of the k between 2 and 20.

Table 1. (Continued)

Variable name Low risk (13,075 records) High risk (12,915 records)

9. No response 2 9

88. Non − applicable 3426 908

https://doi.org/10.1371/journal.pone.0225991.t001

Table 2. Result of feature ranking.

DNN models Accuracy Difference from baseline Rank

DNN(all features) 0.8547

DNN(all features–high density lipoprotein cholesterol) 0.7928 0.0619 1

DNN(all features–total cholesterol) 0.8132 0.0415 2

DNN(all features–neutral fat) 0.8308 0.0239 3

DNN(all features–obesity status) 0.8428 0.0119 4

DNN(all features–frequency of eating out) 0.8477 0.0070 5

DNN(all features–diabetes) 0.8485 0.0062 6

DNN(all features–age) 0.8487 0.0060 7

DNN(all features–weight change in one year status) 0.8511 0.0036 8

DNN(all features–systolic blood pressure) 0.8513 0.0034 9

DNN(all features–waist circumference) 0.8524 0.0023 10

DNN(all features–body mass index) 0.8528 0.0019 11

DNN(all features–life time smoking status) 0.8530 0.0017 12

DNN(all features–marital status) 0.8539 0.0008 13

DNN(all features–knee joint pain status) 0.8541 0.0006 14

https://doi.org/10.1371/journal.pone.0225991.t002
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DT. The decision tree classifier is a simple algorithm that has been widely used so far [17].

The goal is to create a model that predicts the value of a target variable by learning simple deci-

sion rules inferred from the data. Classification and regression trees (CART) was introduced

by Breiman in 1984 and very similar to C4.5, but the main difference is that it supports numer-

ical target value (class label). It builds both classification and regression trees [32]. The classifi-

cation tree construction by CART is based on the binary splitting of the attributes. We have

used “gini” for the gini impurity and “entropy” for the information gain to measure the quality

of a split.

RF. The random forest is the one kind of ensemble algorithm [17]. It creates several deci-

sion tree classifiers on various sub-samples of the dataset and uses averaging to improve the

Table 3. Results of DNN models with recursive feature elimination.

DNN models Accuracy Difference from baseline

DNN(without knee joint pain status) 0.8541 0.0006

DNN(without previously eliminated features & marital status) 0.8529 0.0018

DNN(without previously eliminated features & life time smoking status) 0.8542 0.0005

DNN(without previously eliminated features & body mass index) 0.8504 0.0043

DNN(without previously eliminated features & waist circumference) 0.8517 0.0030

DNN(without previously eliminated features & systolic blood pressure) 0.8451 0.0096

DNN(without previously eliminated features & weight change in one year
status)

0.8457 0.0090

DNN(without previously eliminated features & age) 0.8284 0.0263

DNN(without previously eliminated features & diabetes) 0.8181 0.0366

DNN(without previously eliminated features & frequency of eating out) 0.8112 0.0435

DNN(without previously eliminated features & obesity status) 0.8055 0.0492

DNN(without previously eliminated features & neutral fat) 0.7662 0.0885

DNN(without previously eliminated features & total cholesterol) 0.6936 0.1611

https://doi.org/10.1371/journal.pone.0225991.t003

Fig 6. Comparison of the selected features and other guidelines. The feature group 1 is the Framingham risk factors,

and the feature group 2 was proposed by [18-20] papers on KNHANES dataset.

https://doi.org/10.1371/journal.pone.0225991.g006
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predictive accuracy and control over-fitting [33]. In this research work, we have adjusted the

number of trees in the forest between 10 and 150.

SVM. The support vector machine is a supervised learning method, and it has shown

promising empirical results in many practical applications [17]. It finds a separator line called

the hyper-plane that differentiate the classes very well and learns by minimizing the classifica-

tion error and maximizing the margin. SVM can be extended to non-linearly separable data

using kernel function. We have built the SVM model by using kernel functions such as linear,

poly, rbf, and sigmoid.

PCA-DNNs. The proposed AE-DNNs uses the RE for two kinds of purposes. The first

one is RE based feature extraction by the AE model that trained on the high-risk subset of the

training dataset. The second one is used to arrange training dataset into two groups based on

their RE divergence by the AE model that trained on the whole training dataset. Subsequently,

two DNN models learn from these groups. In the prediction process, the second AE model

is also employed to choose a proper classification model. Therefore, we have used Principal

component analysis (PCA) in place of AE for calculating RE. PCA is a dimension reduction

technique that the direction with the largest projected variance is called the first principal com-

ponent. The orthogonal direction that captures the second largest projected variance is called

the second principal component, and so on [34]. We can estimate RE by projecting back a low

dimension to original space using PCA.

Results and discussion

The experiment was done on a computer with i5-8500 CPU, NVIDIA GeForce GTX 1070 Ti

graphics card, and 32GB RAM. We have compared our proposed approach to other machine

learning-based algorithms by experimenting with total 6-years data that integrated KNHA-

NES-V and KNHANES-VI datasets. All compared algorithms were implemented in Python

with Keras, which is a high-level neural networks API, written in Python and capable of run-

ning on top of TensorFlow. For AE-DNNs, two DNN classifiers were configured as same as

each other. Also, the learning rate to minimize the mean squared error was 0.001, and the

Adamax optimizer was used [35]. The batch size was 32, and the number of epochs was 5000.

Before train prediction models, we have normalized our dataset. Standardization is a widely

used normalization method in machine learning algorithms, and it calculates mean and stan-

dard deviation for each attribute of a dataset. Then each value is subtracted by the mean, and

the subtracted result is divided by the standard deviation.

The accuracy, precision, recall, specificity, f-measure, and area under the curve (AUC) that

represents a summary measure of accuracy is used to evaluate the classifiers’ performance. We

have used the methodology of 10-fold cross-validation to measure.

Table 4 shows the results of CHD prediction models that learned from risk factors in

Table 1, and the highest values of evaluation scores are marked in bold. The configuration of

input parameters is shown in the column of the Algorithm.

Table 4. Results of compared algorithms on integrated KNHANES dataset.

Algorithm Accuracy Precision Recall Specificity F-measure

NB 0.7421 0.7940 0.6493 0.8246 0.7123

KNN(n_neighbors = 19) 0.7919 0.7645 0.8415 0.7364 0.8011

DT(criterion = ‘gini’) 0.7819 0.7833 0.7763 0.7851 0.7797

RF(n_estimators = 110, criterion = ‘gini’) 0.8442 0.8150 0.8881 0.7979 0.8499

SVM (kernel = ‘rbf’) 0.8175 0.8053 0.8358 0.7948 0.8202

PCA − DNNs 0.8537 0.9012 0.8217 0.8908 0.8595

Proposed AE − DNNs 0.8633 0.9137 0.8290 0.9041 0.8691

https://doi.org/10.1371/journal.pone.0225991.t004
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As a result, the AE based proposed approach outperformed the PCA based version. For

machine learning-based compared algorithms, the RF algorithm showed higher performance

than others. In Table 4, the precision of the proposed AE-DNNs increased by 9.86% from the

RF algorithm, but the recall decreased by 5.91%. The recall is a fraction of the true positive pre-

dictions over the total amount of positively labeled dataset, while precision is a fraction of the

true positive predictions among all positive predictions. In other words, recall measures what

proportion of actual positives was identified correctly, and the precision evaluates the effective-

ness of true positive predictions. However, as recall gives a high score, the number of false true

prediction can be increased relatively. That means improving recall typically reduces precision

and vice versa. It is difficult to compare models with low precision and high recall or high pre-

cision and low recall. Thus, F-measure is used to measure recall and precision at the same

time, where the highest F-measure indicates a good result. The specificity is a fraction of the

true negative (high risky) predictions over the total amount of negatively labeled dataset.

The AE-DNNs improved the specificity by 10.61% from the RF and 7.94% from the NB algo-

rithm. Moreover, AE-DNNs showed the result of the highest accuracy (86.33%) and F-mea-

sure (86.91%).

Table 5 shows the Receiver operating characteristic (ROC) curve analysis results. We tested

whether observed AUC differs significantly from AUC of 0.5 by Hanley and McNeil test [36].

For all compared algorithms, AUC (<0.000001) was statistically significant. In the case of

AE-DNNs, AUC was 0.8665 (95% CI, 85.25-88.07), and it improved the highest AUC of com-

pared algorithms (AUC of RF) by 2.35%.

Fig 7 shows the ROC curves of each compared algorithms on the integrated KNHANES

dataset with 10-fold cross-validation distinctly. For 10-fold cross-validation, it is possible to

calculate the mean area under the curve, and see the variance of the curve when the training

set is split into different subsets. Therefore, we show the ROC curve of each round of cross-val-

idation with variance in Fig 7.

Fig 8 shows the average ROC curves of compared 7 methods. The AE-DNNs method shows

higher AUC scores than other methods.

Fig 9 shows how the AUC score of the proposed DNN was improved by managing two DNNs

with the RE based feature. First, we trained a single DNN model using the selected features and

received AUC of 0.8534. Second, we partitioned the training dataset into two groups based on

their RE on the AE model that trained on the whole training dataset. Then, two DNN models

learned from each of the groups, and its AUC score increased to 0.8572 from the single NN

model. Finally, combining the RE based new feature with the selected CHD risk factors, AUC of

the two DNNs based approach improved by 1.31% from the proposed single DNN model.

Experimental results show that we can use the AE-DNNs method for CHD risk prediction

because it has given higher performance than other methods. In accordance with Tables 2 and 3,

Table 5. Results of the receiver operating characteristic curve analysis of compared algorithms.

Algorithm AUC p-value 95%CI

NB 0.7370 1.52848E-44 0.7180-0.7561

KNN 0.7889 3.5552E-78 0.7715-0.8064

DT 0.7807 2.34585E-65 0.7630-0.7984

RF 0.8430 9.901E-113 0.8277-0.8583

SVM 0.8153 5.15569E-96 0.7989-0.8318

PCA − DNNs 0.8562 1.5289E-125 0.8417-0.8709

Proposed AE − DNNs 0.8665 1.4386E-132 0.8525-0.8807

https://doi.org/10.1371/journal.pone.0225991.t005
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Fig 7. Receiver operating characteristic curves of compared algorithms. (a) Receiver operating characteristic curves

of Naïve Bayes algorithm; (b) Receiver operating characteristic curves of k-nearest neighbors algorithm; (c) Receiver

operating characteristic curves of decision tree algorithm; (d) Receiver operating characteristic curves of support

vector machine algorithm; (e) Receiver operating characteristic curves of random forest algorithm; (f) Receiver

operating characteristic curves of principal component analysis based deep neural networks (PCA-DNNs) algorithm;

(g) Receiver operating characteristic curves of autoencoder based deep neural networks (AE-DNNs) algorithm.

https://doi.org/10.1371/journal.pone.0225991.g007
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the RF algorithm had the highest accuracy, f-measure, and AUC scores from compared algo-

rithms except for the proposed method, 84.42%, 84.99%, and 84.30% respectively. However,

our proposed AE-DNNs has made these performances 86.33%, 86.91%, and 86.65%. Also, we

changed AE modules by PCA modules, and the result of PCA-DNNs was higher than compared

algorithms, but not well than AE-DNNs.

Fig 8. The average receiver operating characteristic curves of compared algorithms.

https://doi.org/10.1371/journal.pone.0225991.g008

Fig 9. Improvement of area under the curve scores based on input features and the number of deep neural

network classifiers.

https://doi.org/10.1371/journal.pone.0225991.g009
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Conclusions

In this paper, we have proposed a deep learning-based model to predict the risk of developing

CHD and evaluated it in the Korean population. In the proposed method, two fully connected

DNN classification models are combined with a deep AE models successfully. Generally, AE is

used for dimensionality reduction. However, we did not use AE for dimensionality reduction

purposes; it was employed as providing RE by projecting back reduced dimension into its orig-

inal space. Two AE models named DAE-general and DAE-risky learned from the whole train-

ing dataset and the high-risk datasets, individually. First, RE based feature was extracted from

the DAE-risky model, and it was used to feed the DNN model with other risk factors. Then,

based on the RE of the DAE-general model, the whole training dataset was partitioned into

two different subsets. Finally, two independent DNN classifiers were trained on each group;

each group consists of the CHD risk factors and RE based newly created feature. In the predic-

tion process, we compared the RE on the DAE-general model of each testing data to the previ-

ously determined threshold value and chose an appropriate classifier from these two DNN

classifiers. By using two DNN classifiers with RE based feature, we improved the performance

of single NN classifier on the whole dataset. Experimental results showed that the proposed

AE-DNNs outperformed all the compared classifiers with accuracy, F-measure, and AUC

score of 86.33%, 86.91%, and 86.65%, respectively.
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