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Co-occurrence and mutual exclusivity (COME) of DNA methylation refer to two or more
genes that tend to be positively or negatively correlated in DNA methylation among
different samples. Although COME of gene mutations in pan-cancer have been well
explored, little is known about the COME of DNA methylation in pan-cancer. Here, we
systematically explored the COME of DNA methylation profile in diverse human cancer.
A total of 5,128,332 COME events were identified in 14 main cancers types in The
Cancer Genome Atlas (TCGA). We also identified functional epigenetic modules of the
zinc finger gene family in six cancer types by integrating the gene expression and DNA
methylation data and the frequently occurred COME network. Interestingly, most of the
genes in those functional epigenetic modules are epigenetically repressed. Strikingly,
those frequently occurred COME events could be used to classify the patients into
several subtypes with significant different clinical outcomes in six cancers as well as
pan-cancer (p-value ≤ = 0.05). Moreover, we observed significant associations between
different COME subtypes and clinical features (e.g., age, gender, histological type,
neoplasm histologic grade, and pathologic stage) in distinct cancers. Taken together,
we identified millions of COME events of DNA methylation in pan-cancer and detected
functional epigenetic COME events that could separate tumor patients into different
subtypes, which may benefit the diagnosis and prognosis of pan-cancer.

Keywords: DNA methylation, co-methylation, mutual exclusivity, survival analysis, pan-cancer, cancer diagnosis

INTRODUCTION

DNA methylation (DNAm) is a major epigenetic modification, which is considered as an approach
for disease diagnosis. An increasing number of studies have indicated that aberrant DNAm plays
an important role in diverse diseases, especially cancers (Delpu et al., 2013; Stefansson et al., 2015;
Tahara and Arisawa, 2015). For example, the hypermethylation of CpG island in promoter region

Abbreviations: BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; COAD, Colon adenocarcinoma;
ESCA, Esophageal carcinoma; HNSC, Head and Neck squamous cell carcinoma; KIRC, Kidney renal clear cell carcinoma;
KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC,
Lung squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma; THCA, Thyroid
carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma.
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of tumor suppressor genes have been observed in pediatric acute
myeloid leukemia (Tao et al., 2014), bladder (Garcia-Baquero
et al., 2014) and adult brain tumors (Hill et al., 2011) as well as
hepatocellular carcinoma (Revill et al., 2013), which may lead
to proliferative advantages and aggressive phenotypes during
tumorigenesis (Suva et al., 2013).

Previous studies showed that the co-occurrence of gene
mutations is frequently observed in two or more genes that
tend to have mutations simultaneously in cancer patients
(Kang et al., 2008; Zhang et al., 2017). Genes that have
mutually exclusive mutations are generally involved in the
same biological process (Szczurek and Beerenwinkel, 2014).
Genomic alterations targeting similar biological processes could
be mutually redundant, with one alteration being able to disrupt
the affected process, thus identifying mutual exclusive events may
facilitate discovering unknown functional interactions (Zhang
et al., 2017). Detecting such patterns is crucial for identifying
related novel cancerous pathways and potential treatment
targets (Szczurek and Beerenwinkel, 2014). However, to date,
co-occurrence (CO) and mutually exclusivity (ME) of DNA
methylation in human cancers are less explored. Co-methylation
has been reported as a new indicator for discovering functional
associations between gene pairs in breast cancer (Akulenko and
Helms, 2013). Recently, a number of algorithms have been
developed for estimating the significance of ME and CO patterns
between two genes (Canisius et al., 2016; Hua et al., 2016; Kim
et al., 2017). Some of those tools can be used on DNA methylation
data (Canisius et al., 2016), making it possible to comprehensively
investigate the CO and ME events of DNAm in diverse The
Cancer Genome Atlas (TCGA) cancers.

In this study, we first detected the CO and ME events of
DNAm in 14 distinct cancers and explored the relationship
between related gene pairs at gene expression and DNA
methylation level. Then, we constructed a pan-cancer network
with filtered Co-occurrence and mutual exclusivity (COME)
events and identified functional epigenetic modules consisting
of genes in the zinc finger family. We also found that the
selected CO and ME events could be used to classify different
types of tumors including pan-cancer into several subtypes
with significantly different progression-free interval (PFI).
Interestingly, the subtypes determined by COME events are
significantly correlated with distinct clinical features, including
age, gender, histological type, neoplasm histologic grade, and
pathologic stage. Our results suggest that the COME events of
DNA methylation could play important roles in tumorigenesis
and may benefit the prognosis of different cancers.

MATERIALS AND METHODS

Data Source
The gene expression and DNA methylation data of the TCGA
project were downloaded from UCSC Xena1 and preprocessed as
we previously described (Ding et al., 2019; Ji et al., 2019). The
clinical data matrix of TCGA cancers was downloaded from the

1http://xena.ucsc.edu

TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) (Liu
et al., 2018). The statistics of clinical information in 14 cancer
types are listed in Supplementary Table S1.

Definition of Methylated and
Unmethylated Genes
We first assigned the DNAm values for each gene with the average
beta value of the probes mapped to promoter region, including
TSS1500 (from −1,500 to −200 bp upstream of the TSS),
TSS200 (region from −200 bp upstream to the transcription
start site (TSS) itself), 1stExon (the first exon), and 5’UTR in
order as previously described (Jiao et al., 2014; Sharma et al.,
2016). According to previous studies (Sproul et al., 2011, 2012;
Heyn et al., 2016), a beta value threshold of 0.3 was used to
separate methylated from unmethylated probes. In this study,
we defined methylated (average CpG DNAm beta values within
gene promoter >0.3) and unmethylated (average CpG DNAm
beta values within gene promoter <0.3) genes at the threshold
of 0.3 in the lack of a better way to dichotomize continuous DNA
methylation beta values.

Cancer Genes and Tumor Suppressor
Genes
Cancer genes (CGs) were obtained from the database of CCGD
(Abbott et al., 2015), DriverDB (Cheng et al., 2014) and CGC
(v84) (Futreal et al., 2004), and tumor suppressor genes (TPG)
were downloaded from TSGene (Zhao et al., 2016) database.

Identification of Co-occurrence and
Mutual Exclusive Gene Pairs
We first convert the DNA methylation profile to a binary matrix,
in which methylated genes were set to 1 in corresponding
patients, and unmethylated genes were set to 0. Then we
used DISCOVER (Canisius et al., 2016), a novel statistical
independence test that assesses both COME gene pairs by
counting how many samples have an alteration in both genes
and comparing this to the number of samples expected to have
such an overlap by chance if these alterations were independent.
DISCOVER algorithm accepts a binary matrix that each row
represents a gene and each column represents a patient as an
input, then output the result of significant CO or ME gene pairs.

Filtration of COME Events
Firstly, Fisher’s exact test was performed, for each COME event
Ei, a contingency table (a, b, c, d) was created as bellow:

Occurred Not Occurred

Tumor a b
Normal c d

In the table, a and b denote the number of tumor samples in
which event Ei occurred and not occurred, respectively, whereas
c and d separately represent the number of normal samples
in which event Ei occurred and not occurred respectively.
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Then Fisher’s exact test (SciPy package in Python) p-value was
calculated to evaluate whether Ei was significantly differentially
occurred in this cancer type. Finally, frequently occurred
COME events were defined as the events that were significantly
differentially occurred in at least three different cancer types.

Construction of FEM Models
The FEM algorithm (Jiao et al., 2014) is a functional supervised
algorithm, which uses a network of relations between genes (in
our case, is frequently occurred COME network) to identify
subnetworks where a significant number of genes are associated
with a phenotype of interest (POI, in our case, is the differential
expression and differential methylation). Differential expression
and differential methylation analysis were implemented inside
the FEM algorithm.

Unsupervised Consensus Clustering and
Survival Analysis
K-means clustering in R package ConsensusClusterPlus
(Wilkerson and Hayes, 2010) was used to perform consensus
clustering. The optimal cluster number k was chosen depending
on the elbow and CDF curve (Senbabaoglu et al., 2014). For
survival analysis of the pan-cancer, the best cluster number
was chosen as the one with the maximum average silhouette
coefficient. Python package lifelines2 was implemented in
survival analysis, and the log-rank test was used to estimate the
significance of different groups.

Gene Ontology and KEGG Pathway
Enrichment Analysis
Gene Ontology (GO) biological process and KEGG pathway
enrichment analysis were performed using the web-based gene
annotation tools DAVID (Huang da et al., 2009a,b) and
ToppGene (Chen et al., 2009), the terms with FDR ≤ = 0.05 were
considered as significant.

Statistical Analysis
All statistical analyses were performed with Python3.5.2 on
anaconda3-4.0.0. Kruskal-Wallis H-test and Chi-square test were
performed with Python package SciPy (Jones et al., 2014).

RESULTS

Overview of Co-occurrence and Mutual
Exclusivity Network of DNA Methylation
in Different Cancers
To construct the COME network of DNA methylation in cancers,
we first dichotomized the DNA methylation beta values in
every sample with threshold of 0.3, the genes with average beta
value ≥ 0.3 in promoter region are designated as methylated
while the genes with average beta value lower than 0.3 in
promoter regions were considered as unmethylated (see section
“Materials and Methods”). Thus, a binary matrix was built for

2http://lifelines.readthedocs.io/en/latest/index.html

each of 14 different cancers, in which 1 represents methylated
and 0 for unmethylated. Then DISCOVER algorithm (Canisius
et al., 2016) was employed to detect the CO and ME events based
on the binary alteration matrix of DNA methylation. A total of
2,670,651 CO and 2,457,681 ME events that were identified as
significant by DISCOVER in 14 cancers (q-value ≤ 0.05, q-value
was calculated by DISCOVER). The expression correlation
between genes pair of CO is significantly higher than those of
ME (Figure 1A, p-value <0.001, independent Student’s t-test).
Moreover, gene pairs of CO events were mainly positively
correlated at the DNA methylation level, whereas gene pairs of
ME events were negatively correlated (Figure 1B). In addition,
co-methylated gene pairs tend to co-expressed (Figure 1C,
Pearson’s correlation = 0.32, p-value = 0).

Then, to screen COME events that are associated with the
tumor, Fisher exact test was performed in each cancer to screen
the COME events that were significantly enriched in tumor
or normal samples (p-value ≤ 0.05, see section “Materials and
Methods”). After filtration, a total of 1,385,366 COME events
(involving 7334 unique genes) were retained for further analyses
[including 1,029,686 CO (involving 6894 genes) and 355,680
ME events (involving 6924 genes), the distribution of COME
events in 14 cancers is shown in Figure 1D]. To explore the
associations between COME events and cancers, we calculated
the fraction of tumor suppressor genes (TSGs) and disease genes
against all genes set involved in COME events. Strikingly, over
45% of the COME genes are cancer genes or TSGs (Figure 1E).
We further constructed pan-cancer networks based on CO and
ME events. Interestingly, 5 out of the top 10 hub genes in the
network are cancer genes, including ELF3, SLC10A4, ANXA9,
DEFB118, KRT8 (Figure 1F). Specifically, ELF3 was annotated as
a cancer gene for rectum adenocarcinoma, colorectal neoplasms,
hematologic diseases and breast neoplasms in the database of
DriverDB (Cheng et al., 2014), CoReCG (Agarwal et al., 2016),
and DDMGD (Bin Raies et al., 2015) respectively. Moreover,
aberrant methylation of hub gene AGR2 was reported to be
associated with ovarian cancer (Sung et al., 2014), while MT3
was a putative tumor suppressor gene in pediatric acute myeloid
leukemia (Tao et al., 2014).

Gene Pairs of COME Events Tend to Be
Significantly Correlated Between DNA
Methylation and Gene Expression
To build a reliable network of COME events in each cancer,
we further screened frequently occurred events from the above
1,385,366 COME events that were significantly enriched in
tumor or normal samples, as frequently occurred events, we
considered events that were differentially occurred in at least
three different cancer types. After filtering, we found that
gene expression correlation and DNA methylation correlation
between gene pairs of COME events tend to be more correlated
than that of before-filtering (Pearson’s correlation r = 0.55,
p-value = 0, Supplementary Figure S1A). The correlations
between gene expression and DNA methylation of most genes
involved in COME gene pairs tend to be more negatively
correlated than that of randomly generated random gene sets
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FIGURE 1 | Identification of co-occurrence and mutual exclusivity events of methylation. (A) Letter value (LV) plot of Pearson’s correlation coefficient of gene
expression level between gene pairs for CO and ME events. (B) Pearson’s correlation plot of DNA methylation between gene pairs. (C) Jointplot of Pearson’s
correlation coefficient between gene expression and DNA methylation for COME gene pairs. (D) Countplot of COME events in 14 cancers. (E) The proportion of
cancer genes and tumor suppressor genes against all of the genes involving in COME events in different cancers. (F) Degree distribution of top 10 genes in
pan-cancer network for each cancer and pan-cancer.

(Figure 2A, random gene set was generated randomly with
the same number of genes in each cancer). Gene functional
enrichment analysis showed that the genes involved in CO events
were mainly enriched in the pathways of Neuroactive ligand-
receptor interaction, Nicotine addiction, Morphine addiction,
cAMP signaling, Calcium signaling and the biological processes
of chemical synaptic transmission, cell adhesion, neuropeptide
signaling pathway and so on (Figure 2B and Supplementary
Table S2). While the genes of ME events were mainly associated

with the development of the central nervous system and brain
(Figure 2C and Supplementary Table S2). We further built a
pan-cancer cooperative network by merging the networks of each
cancer (Supplementary Figures S1B–D). Intriguingly, most of
the genes with a high degree (have the largest number of links) in
the pan-cancer network showed enrichment for known cancer-
related genes or tumor suppressor genes (Figure 2D). Aberrant
DNA methylation of some of those top 10 genes with the highest
degree has been reported to be associated with neoplasms, such
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FIGURE 2 | The features and functions of gene pairs in COME events. (A) Box plot of Pearson’s correlation coefficient between gene expression and DNA
methylation for the genes involved in COME events compared with that of random genes set (p-value was calculated by independent Student’s t-test). (B,C)
Enriched KEGG pathways and biological processes for the genes involved in CO and ME events (DAVID online web server). (D) Fraction of cancer genes and tumor
suppressor genes (TSG) against the top N genes ranked by the degree in pan-cancer network. (E) Degree distribution of top 10 genes in pan-cancer network for
each cancer and pan-cancer.

as HHIPL1 (Duong et al., 2012), GABRB2 (Beltrami et al., 2017),
FOXF1 (Lo et al., 2010) and RSPO4 (Oka et al., 2009: Figure 2E).

Zinc Fingers Gene Family Is Enriched in
Functional Epigenetic Modules
To identify functional epigenetic modules, we integrated the
gene expression and DNA methylation data from TCGA and
frequently occurred COME networks constructed in each cancer
using the FEM algorithm (Jiao et al., 2014), which can be used
to effectively identify gene modules of coordinated differential
methylation and differential expression in the context of a
network. Many functional epigenetic modules were identified by
FEM. Remarkably, six modules enriched in the zinc fingers gene
family were identified in 6 distinct cancer types (Figures 3A–F).
Most genes in these modules were hypermethylated and down-
regulated, indicating that genes of zinc fingers family may tend to
be co-methylated and transcriptionally suppressed.

To further explore the associations between aberrant DNA
methylation of zinc fingers gene family and neoplasms, we
found that those genes were significantly enriched in regulation
of transcription, DNA binding transcription factor activity,
RNA polymerase II regulatory region sequence-specific DNA
binding, Neuroactive ligand-receptor interaction, and so on
(Supplementary Table S3). Besides, many of the genes in these
modules were enriched in cytoband of 19q13.43, transcription
factor binding sites of ZNF274 and they tend to have similar DNA
methylation patterns.

We also examined whether those genes in the zinc fingers
gene family can be used to distinguish tumor samples from
normal samples in the above 14 cancers. Six genes (ZIK1,
ZNF471, ZNF229, ZFP28, ZNF677, and ZNF582) shared among
6 modules were selected to build a logistic regression module.
Compared with the models based on gene expression or DNA
methylation along (AUC = 0.76), the module integrated both
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FIGURE 3 | Functional epigenetic modules identified from CO and ME network. The color of core indicate significant DNA methylation changes, color of border
represent significant gene expression changes, edges represent COME events between two genes, and edge color indicates different event type (co-occurrence or
mutual exclusivity). (A–F) Functional epigenetic modules identified from corresponding cancer type.

DNA methylation and gene expression data of the 6 genes showed
better performance in distinguishing tumor samples from
normal (AUC = 0.86, Supplementary Figure S2). Moreover, the
clustering result also indicates that gene expression and DNA
methylation profile of those 6 genes can effectively separate tumor

samples from normal samples (Supplementary Figure S3). Most
of those 6 genes are involved in function of nucleic acid binding,
and some of those genes have been reported to be aberrantly
methylated in tumors [such as ZIK1 (Borinstein et al., 2010),
ZNF471 (Bhat et al., 2017)] and may serve as a marker of
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FIGURE 4 | Kaplan-Meier plot of PFI for distinct subtypes of 6 different cancers. Consensus cluster plot (top) and Kaplan-Meier survival plots (bottom) were
separately shown for 6 disparate cancers, c1-c4 represent cluster 1 – cluster 4, and p-values were calculated by log rank test.

cancer [e.g., ZNF677 (Heller et al., 2015), ZNF582 (Lin et al.,
2014)]. Consequently, our finding demonstrates that combing
DNA methylation and gene expression data of those genes from
zinc fingers family may be associated with tumorigenesis.

Co-occurrence and Mutual Exclusive
Events Contribute to Prognosis in
Human Cancers
To investigate whether the COME events are associated
with cancer prognosis, Frequently occurred COME events

(occurred in at least 3 distinct cancer types, Supplementary
Table S4) were used to perform consensus cluster and Kaplan-
Meier survival analysis in each of those 13 cancers (no frequently
occurred COME event was left in pancreatic adenocarcinoma,
PAAD). Strikingly, we observed significantly different PFI among
disparate subtypes in 6 different cancer types (p-value <0.05, log-
rank test, Figure 4), as well as in BRCA and lung squamous cell
carcinoma (LUSC) (p-value = 0.07, Supplementary Figure S4).

Next, we performed Kruskal-Wallis H-test and Chi-square test
to explore the association between COME subtypes and different
clinical information (including age, gender, histological type,
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FIGURE 5 | COME subtypes correlate with distinct clinical features. (A,B) Age distribution of different COME subtypes identified in BRCA and UCEC, respectively.
(C–J) Distribution of gender, histological type, neoplasm histologic grade and pathologic stage against COME subtypes in corresponding TCGA cancers. p-values
for continuous variable were calculated by using Kruskal-Wallis H-test (A,B), and p-values for categorical variable were calculated by performing Chi-square test
(C–J). p-value were calculated between all different groups.

neoplasm histologic grade, and pathologic stage). Interestingly,
significant difference was observed between different clinical
features and different subtypes in 5 cancers (Figure 5). For
example, the distribution of age was significantly different
in different COME subtypes in BRCA and uterine corpus

endometrial carcinoma (UCEC) (Figures 5A,B, Kruskal-Wallis
H-test, p-value <0.001), which is in accordance with previous
studies that DNA methylation is associated with age (Horvath,
2013; Johnson et al., 2014). In kidney renal papillary cell
carcinoma (KIRP), cluster 3 is enriched with female whereas
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FIGURE 6 | Co-occurrence and mutual exclusive events contribute to prognosis of pan-cancer. (A) Clustering heatmap based on top 15 enriched COME events in
13 clusters. The clusters are denoted by number and color in the second bar, and tissue of origin specified in the first color bar. The color in the left identified top 15
COME pairs significantly enriched in corresponding cluster. (B) Kaplan-Meier plot for the PFI of 13 clusters identified in pan-cancer. (C,D) Kaplan-Meier plot of PFI for
co-methylation event of CRMP1-GRM6 and GRB7-SLC45A4 in pan-cancer, respect.

cluster 2 is enriched with male (Figure 5C). Moreover, cluster 2
of LUSC is significantly enriched with female, which is opposite
to clusters 1, 3, and 4 (Figure 5D). We also found that different
COME subtypes have distinct distribution of histological types
in BRCA and UCEC (Figures 5E,F). Furthermore, cluster 2
of UCEC is enriched with the histological type of serous
endometrial adenocarcinoma and cluster 2 has a shorter PFI

compared to other clusters (Figure 4). As for neoplasm histologic
grade (Figures 5G,H), cluster 3 of kidney renal clear cell
carcinoma (KIRC) is enriched in grade G3 and G4, and poorer
prognosis was observed in this cluster (Figure 4). Similarly,
G3 and high-grade patients are enriched in cluster 2 of UCEC,
while cluster 2 has poorer survival probability compared to other
subtypes (Figure 4). Patients of stage III and stage IV are enriched

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 January 2020 | Volume 8 | Article 20

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00020 January 27, 2020 Time: 16:3 # 10

Ding et al. COME Analysis of DNA Methylation

in cluster 3 and has the poorest clinical outcome in KIRC, while
cluster 1 is enriched with the patients of stage III and stage IV
and has the shortest PFI in KIRP (Figures 4, 5I,J). Collectively,
the subtypes determined by COME pattern are correlated with
various clinical features (age, gender, histological type, neoplasm
histologic grade, and pathologic stage), which may explain why
distinct COME subtypes have significantly different PFI.

To further explore the COME events in pan-cancer,
we performed consensus clustering based on the frequently
occurred COME events in 5442 tumor samples of 13 types
of cancer. Thirteen clusters were identified by maximizing
the average silhouette coefficient. The top 15 significantly
enriched COME events in each cluster are shown in Figure 6A.
Most of these clusters were significantly correlated with
cancer tissue of origin (p-value <0.0001, Chi-square test,
Supplementary Table S5). For example, clusters of C7,
C9, C10, C11, and C13 were significantly enriched with
patients from LIHC (liver hepatocellular carcinoma), HNSC
(head and neck squamous cell carcinoma), COAD (colon
adenocarcinoma), UCEC and PRAD (prostate adenocarcinoma),
respectively (p-value <0.0001, hypergeometric test). While
some other clusters, such as C1, contained a mixture type
of BLCA (bladder urothelial carcinoma), BRCA, LUAD (lung
adenocarcinoma), and LUSC (p-value <0.0001, hypergeometric
test). Furthermore, those 13 clusters exhibited significantly
different PFI via Kaplan-Meier analysis (p-value <0.0001, log-
rank test, Figure 6B). Among the 13 clusters, cluster C5
exhibited the best prognosis and the co-occurrence of CRMP1-
GRM6 was the most significantly enriched event in this
cluster (p-value <0.001, hypergeometric test). CRMP1 (collapsin
response mediator protein 1) has been reported to be associated
with medulloblastoma (Li et al., 2015) and gliomas (Mukherjee
et al., 2009). Hypermethylation of the CpG sites on GRM6
(glutamate metabotropic receptor 6) was reported to be a
hallmark of CIMP in clear cell renal cell carcinomas (Arai
et al., 2012). In contrast, cluster C7 was associated with the
poorest prognosis and co-methylation of GRB7-SLC45A4 was
enriched in this group (p-value <0.001, hypergeometric test).
GRB7 (growth factor receptor bound protein 7) was reported to
play an important role in breast cancer progression (Lim et al.,
2014). We further performed Kaplan-Meier survival analysis in
the pan-cancer to verify whether the co-methylation of CRMP1-
GRM6 and GRB7-SLC45A4 was associated with clinical outcome
in pan-cancer. The result shows that patients with co-methylation
of CRMP1-GRM6 have better outcomes (p-value <0.0001, log-
rank test, Figure 6C), whereas patients with co-methylation of
GRB7-SLC45A4 exhibit significantly poorer prognosis (p-value
<0.0001, log-rank test, Figure 6D).

DISCUSSION

In our study, we first identified 2,670,651 CO and 2,457,681 ME
gene pairs in 14 different cancers based on the methylation profile
from the TCGA project. Interestingly, the genes in functional
epigenetic modules identified in six cancer types were mainly
from the zinc finger gene family, and most of those genes were

epigenetically repressed. Although several studies have reported
the epigenetic silencing of the zinc finger gene family (Lleras
et al., 2011; Severson et al., 2013; Gaykalova et al., 2015), we
are the first to identify functional epigenetic modules of the
zinc finger gene family in six cancer types by integrating gene
expression and DNA methylation data in the context of COME
networks. Methylation was reported to be the main mechanism
for downregulation of tumor cell growth suppressor ZNF677 in
non-small cell lung cancers (NSCLCs) and the methylation of
ZNF677 could be used in the prognosis of NSCLCs (Heller et al.,
2015). Furthermore, we identified a set of COME events that can
divide tumor patients into different subtypes with significantly
different clinical outcomes. Different COME subtypes were found
to be significantly associated with distinct clinical features, such
as age, gender, histological type, neoplasm histologic grade and
pathologic stage. We also found that COME events could be used
to divide tumor samples of pan-cancer into different subtypes
with significantly different outcomes, which may benefit the
prediction of the prognosis for pan-cancer.

This study is just the beginning to investigate and characterize
the roles of COME of DNA methylation in human cancers.
Our findings may contribute to the diagnosis and prognosis of
human pan-cancer. The underlying mechanism and function of
COME events in diverse cancers are still needed to be further
studied in the future.
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