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G4C14-A4T14 polymorphism of TP73 gene has been reported with a potential association
in cancer risks through affected cell homeostasis; however the results were not consis-
tent. We performed a comprehensive meta-analysis to explore the associations between
G4C14-A4T14 polymorphism and cancer susceptibility. Extensive retrieve was performed in
PubMed, EMBASE, Google Scholar, Web of Science, Wanfang database and CNKI database
up to May 20, 2018. Odds ratios (ORs) and 95% confidence intervals (CIs) were conducted
to evaluate the overall strength of the associations in five genetic models, as well as in sub-
group analyses. Q-test, false-positive report probability analysis and trial sequential analysis,
Egger’s test and Begg’s funnel plot were applied to evaluate the robustness of the results. In
silico analysis was managed to demonstrate the relationship of TP73 expression correlated
with cancer tissues. Finally, 36 case–control studies with a total of 9493 cancer cases and
13,157 healthy controls were enrolled into the meta-analysis. The pooled results present
a significantly higher risk of G4C14-A4T14 polymorphism in all the five genetic models, as
well as in the subgroups of Caucasian, cervical cancer, colorectal cancer, H-B subgroup and
comfort to Hardy–Weinberg equilibrium subgroup. In silico analysis revealed that the expres-
sion of TP73 in cervical cancer tissue is higher than it in corresponding normal tissue, as
well as in cervical cancer. All in all, TP73 G4C14-A4T14 polymorphism causes an upgrade
cancer risk, especially in Caucasian population. G4C14-A4T14 polymorphism might be a
potential biomarker for judging the tumorigenesis of cervical cancer and colorectal cancer.

Introduction
Cancer is a pivotal public health and leads to the second cause of death problem around the world. In 2018,
there are almost 4700 new cancer diagnoses per day, as well as about 1700 cancer-related deaths in United
States [1]. Breast cancer, lung cancer and colorectal cancer are the most three frequently cancer of female
in United States, while prostate cancer occupied the first diagnosis cancer in male [1]. Attributed to the
increasing population growth and aging, cancer has also been the leading cause of death around China.
In 2015, there are about 12,000 newly diagnosed invasive cancer cases on average per day, while over
7500 cancer death [2]. In the past decades, biological scientists have reported that environmental factors,
genetic mutations and the multiple interactions between them mainly affect the process of tumorigenesis,
and the new research results are also on the road, such as epigenetic control [3–5].

Tumor protein P73 (TP73), also known as P53-like transcription factor, is a pivotal member of TP53
family, which affects cell proliferation, apoptosis and cell-cycle regulation [6–8]. Compared with fre-
quently mutant TP53 gene, TP73 is rarely mutated [9]. p73 protein, the encoded product of TP73, is
homologous with p53, 63% of p73 has the same amino acid sequence with p53, so it plays a critical role
in normal cell homeostasis, while it can partially compensate the loss of p53 protein function [10,11].
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G4A (rs2273953) and C14T (rs1801173), the two single-nucleotide polymorphisms (SNPs) of TP73 at positions
4 (G>A) and 14 (C>T), are incomplete linkage disequilibrium with each other, so we called it as G4C14-A4T14.
G4C14-A4T14 is located at the upstream of TP73 promoter in exon 2, it could influence the expression of TP73
through a stem–loop structure [12,13]. In recent years, G4C14-A4T14 polymorphism of TP73 was identified impli-
cated in the tumorigenesis of a variety of cancer types, including breast cancer, colorectal cancer, lung cancer, cervical
cancer, esophageal cancer and so on [14–17]. Nevertheless, data arising from these published case–control studies
were not consistent. One single study may have no sufficient power to identify slight influences of these polymor-
phisms on cancer susceptibility. Therefore, we conducted a comprehensive meta-analysis to explore the association
between G4C14-A4T14 polymorphism and cancer susceptibility.

Materials and methods
Literature search and study selection criteria
We conducted a comprehensive literature search from PubMed, EMBASE, Google Scholar, Web of Science, Wanfang
database and CNKI database (up to May 20, 2018). The keywords applied to literature retrieve are as follows: “TP73
OR (Tumor Protein P73) OR (P53-Like Transcription Factor)” AND “cancer OR carcinoma OR tumor OR tumor
OR neoplasm.” AND “SNP OR mutation OR variant OR polymorphism”. Furthermore, the references from eligible
studies were manually checked for additional relevant literature. The titles and abstracts of identifying studies were
examined to exclude obvious irrelevant records. The full-text of the remaining articles was further carefully inspected
to determine whether to report the correlation of between G4C14-A4T14 polymorphism and cancer susceptibility.

All the eligible studies should fulfill the following inclusion criteria: (1) case–control studies focus on the correlation
between G4C14-A4T14 polymorphism and cancer susceptibility; (2) genotype frequency of the cases and controls
could be obtained directly or indirectly through calculation; and (3) articles in English or Chinese. On the contrary,
studies would be removed if they were: (1) case–report, meta-analysis, systematic review or repetitive publication; (2)
lack of genotype frequency data; and (3) publications conducted on animals or cell lines.

Data extraction
Two independent investigators separately extracted the relative data with any disagreement resolved by rechecking
and discussion. For every eligible study, the following data were extracted: the name of the first author, the data of
publication, ethnicity, sample size, genotyping methods, and genotype frequency of the cases and controls. In the
subgroup analysis by race, the Caucasian population typically lived in Europe or America, and the Asian population
typically lived in Asia.

Statistical methods
All the statistical calculation was conducted with STATA 12.0 software (Stata, College Station, Texas) in the
present study. ORs with corresponding 95% CIs were performed to measure the strength of the relationship be-
tween G4C14-A4T14 polymorphism and cancer susceptibility. Five common genetic models applied for assessing
gene–disease associations are allele contrast model (GC vs. AT), homozygote comparison model (GC/GC vs. AT/AT),
heterozygote comparison model (GC/AT vs. AT/AT), dominant comparison model (GC/GC+GC/AT vs. AT/AT) and
recessive comparison model (GC/GC vs. GC/AT+AT/AT) (AT/AT, homozygotes for the common allele; GC/AT, het-
erozygotes; GC/GC, homozygotes for the rare allele). Stratified analyses were also calculated by ethnicity, cancer
type and the source of control. In addition, we applied the chi-squared (χ2)-based Q-test to calculate between-study
heterogeneity [18]. P<0.1 was indicated as a substantial level of heterogeneity, and a random-effects model (the Der-
Simonian and Laird method) was selected to pool the data [19]; or else, the fixed-effects model (the Mantel–Haenszel
method) was adopted. Moreover, we also conducted the Begg’s funnel plots and Egger’s test to evaluate the publication
bias [20,21]. Hardy–Weinberg equilibrium (HWE) of controls was calculated by the χ2 test to compare the expected
and actual genotype frequencies among the controls in each study. All the statistical tests in this meta-analysis were
two-tailed, and P-values ≤ 0.05 were considered statistically significant.

False-positive report probability analysis and trial sequential analysis
We also use the false-positive report probability (FPRP) method to evaluate the results. 0.2 was set as an FPRP thresh-
old and assigned a prior probability of 0.1 to detect the odds ratio (OR) of 0.67/1.50 (protective/risk effects). The sig-
nificant result with the FPRP values less than 0.2 was considered as a worthy finding [22,23]. Trial sequential analysis
(TSA) was conducted with the guideline of a former publication. We set a significance of 5% for type I error, as well
as a 30% significance of type II error, to calculate the required sample size, and built the TSA monitoring boundaries.
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Figure 1. Flowchart presenting the study selection procedure

In silico analysis of TP73 expression
In order to further explore the relationship between TP73 expression and cancer, we used a newly developed interac-
tive web server, GEPIA (http://gepia.cancer-pku.cn/), to see the difference between tumor tissue and normal tissue.
GEPIA provided the mRNA sequencing expression data of tumors and normal samples from the TCGA and the GTEx
projects [24].

Results
Study characteristics
As shown in Figure 1, we found 1740 potentially relevant studies from PubMed, EMBASE, Google Scholar, Web
of Science, Wanfang database and CNKI database. After reviewing titles and abstracts, we excluded 1537 publica-
tions not investigating the association between TP73 G4C14-A4T14 polymorphism and cancer risk. And then, full
texts of remaining articles were evaluated. In the end, 36 case–control studies with a total of 9493 cancer cases and
13,157 healthy controls were enrolled into the meta-analysis [14–17,25–53]. The characteristics of these studies were
showed in Table 1. Among these publications, there are 6 concerned about cervical cancer [17,34,40,50–52], 5 about
lung cancer [16,29,33,35,38], 4 about colorectal cancer [28,37,46,47], 4 about esophageal cancer [14,27,28,39], 4 about
gastric cancer [28,39,43,48], 3 about breast cancer [15,26,30], 3 about squamous cell carcinoma of the head and neck
[32,41,45], as well as other 7 publications focus on Endometrial cancer [36], lymphoma [31], melanoma [42], na-
sopharyngeal carcinoma [53], neuroblastoma [25], ovarian cancer [44] and prostate cancer [49], respectively. As to
the ethnicity, 14 studies were performed in Caucasians, while the other 22 studies were managed in Asian population.
The characteristics of each case–control study, genotype frequencies and HWE examination results were presented
in Table 1. Four case–control studies were not comforted to HWE [16,32,37,45], and we further conducted a sen-
sitive analysis to validate the influence of the three studies on the integrated data. In order to evaluate the quality
of each enrolled studies, we applied Newcastle–Ottawa Scale (NOS) [45] and fill the result in Table S1, the result of
PRISMA2009 checklist was also listed to present our meta-analysis work (Table S2).

Quantitative synthesis
Table 2 listed the main results of current meta-analysis work of polymorphisms in G4C14-A4T14 and risk of cancer.
The pooled results of the 36 included studies had shown that G4C14-A4T14 polymorphism conferred a significantly
higher overall risk to cancer susceptibility in all the five genetic models, allelic contrast model (GC vs. AT: OR =
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Table 1 Characteristics of the enrolled studies on TP73 G4C14-A4T14 polymorphism and cancer

First author Year Ethnicity
Genotyping

method

Source
of

control Cancer type HWE Case Control
PAA PAB PBB HAA HAB HBB

Romain et al. 1999 Caucasian PCR P-B Neuroblastoma Y 31 39 3 94 49 7

Ahomadegbe et al. 2000 Caucasian PCR H-B Breast cancer Y 36 22 1 27 7 0

Ryan et al. 2001 Caucasian PCR P-B Esophageal cancer Y 42 41 1 72 65 15

Hamajima et al. 2002 Asian PCR–CTPP H-B Esophageal cancer Y 67 29 6 133 98 10

Hamajima et al. 2002 Asian PCR–CTPP H-B Gastric cancer Y 84 51 9 133 98 10

Hamajima et al. 2002 Asian PCR–CTPP H-B Colorectal cancer Y 87 50 10 133 98 10

Hiraki et al. 2003 Asian PCR–CTPP H-B Lung cancer Y 109 68 12 130 95 10

Huang et al. 2003 Asian PCR–CTPP P-B Breast cancer Y 118 64 18 153 112 17

Hishida et al. 2004 Asian PCR–CTPP H-B Lymphoma Y 49 43 11 261 152 27

Li(a) et al. 2004 Caucasian PCR–CTPP H-B SCCHN N 399 271 38 773 387 69

Li(b) et al. 2004 Caucasian PCR P-B Lung cancer Y 593 394 67 721 365 53

Niwa(a) et al. 2004 Asian PCR–CTPP H-B Cervical cancer Y 57 52 3 270 150 22

Hu et al. 2005 Asian PCR-SSCP P-B Lung cancer Y 255 149 21 295 248 45

Niwa(b) et al. 2005 Asian PCR H-B Endometrial cancer Y 61 39 14 270 150 22

Pfeifer et al. 2005 Caucasian PCR–RFLP P-B Colorectal cancer N 113 54 12 159 96 5

Choi et al. 2006 Asian PCR P-B Lung cancer Y 320 221 41 338 212 32

Ge et al. 2006 Asian PCR–RFLP H-B Gastric cancer Y 146 99 14 391 210 29

Ge et al. 2006 Asian PCR–RFLP H-B Esophageal cancer Y 214 113 21 391 210 29

Zheng et al. 2006 Asian PCR–RFLP P-B Cervical cancer Y 58 22 2 77 19 4

Chen et al. 2008 Caucasian PCR–RFLP P-B SCCHN Y 195 111 20 214 115 20

Li(c) et al. 2008 Caucasian PCR H-B Melanoma Y 468 287 150 497 302 39

Zheng et al. 2008 Asian PCR–CTPP P-B Cervical cancer Y 71 28 2 77 19 4

Deo Feo et al. 2009 Caucasian PCR H-B Gastric cancer Y 84 22 8 214 71 10

Kang et al. 2009 Asian PCR P-B Ovarian cancer Y 164 74 19 151 92 14

Misra et al. 2009 Caucasian PCR H-B SCCHN N 112 176 15 186 124 9

Lee et al. 2010 Asian PCR–CTPP P-B Colorectal cancer Y 183 171 29 271 173 25

Shirai et al. 2010 Asian PCR–CTPP H-B Gastric cancer Y 220 142 26 239 156 24

Arfaoui et al. 2010 Caucasian PCR P-B Colorectal cancer Y 77 47 26 109 73 22

Mittal et al. 2011 Caucasian PCR–RFLP P-B Prostate cancer Y 121 56 0 192 66 7

Craveiro et al. 2012 Caucasian PCR P-B Cervical cancer Y 95 38 8 119 48 9

Sun et al. 2012 Asian PCR–CTPP P-B Cervical cancer Y 107 100 11 128 80 12

Umar et al. 2012 Caucasian PCR P-B Esophageal cancer Y 174 70 11 200 51 4

Zhou et al. 2012 Asian MALDI-TOF P-B Breast cancer Y 106 59 5 100 67 11

Zhang et al. 2014 Asian PCR P-B Nasopharyngeal
carcinoma

Y 163 116 14 247 120 13

Wang et al. 2014 Asian PCR–CTPP P-B Lung cancer N 101 59 8 102 68 25

Feng et al. 2017 Asian PCR H-B Cervical cancer Y 103 67 10 114 55 11

Abbreviations: H-B, hospital based; HWE, Hardy–Weinberg equilibrium; N, polymorphisms did not conform to HWE in the control group; P-B, population
based; SCCHN, squamous cell carcinoma of the head and neck; Y, polymorphisms conformed to HWE in the control group.

1.139, 95% CI = 1.048–1.238, P=0.002), homozygote comparison model (GC/GC vs. AT/AT: OR = 1.320, 95% CI
= 1.071–1.627, P=0.009), heterozygote comparison model (GC/AT vs. AT/AT: OR = 1.123, 95% CI = 1.012–1.245,
P=0.028), dominant comparison model (GC/GC+GC/AT vs. AT/AT: OR = 1.152, 95% CI = 1.044–1.272, P=0.005)
and recessive comparison model (GC/GC vs. GC/AT+AT/AT: OR = 1.273, 95% CI = 1.038–1.563, P=0.021) (Table
2 and Figure 2).

Stratification analysis by cancer type
After overall pooled analysis, we also conducted stratification analysis by cancer type, in order to obtain more pre-
cise result about the G4C14-A4T14 polymorphism and cancer susceptibility. As shown in Table 2 and Figure 3, the
subgroup analysis of six enrolled colorectal cancer related studies have shown that G4C14-A4T14 polymorphism
was related to an increased cancer risk in allelic contrast model (GC vs. AT: OR = 1.204, 95% CI = 1.044–1.389,
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Table 2 Results of pooled analysis for TP73 G4C14-A4T14 polymorphism and cancer susceptibility

Comparison Subgroup N PH PZ Random Fixed

B vs. A Overall 36 <0.001 0.002* 1.139 (1.048–1.238) 1.170 (1.119–1.223)

Caucasian 14 0.001 <0.001* 1.279 (1.131–1.446) 1.317 (1.232–1.407)

Asian 22 <0.001 0.228 1.062 (0.963–1.172) 1.060 (0.998–1.126)

Breast cancer 3 0.091 0.940 0.985 (0.666–1.457) 0.929 (0.747–1.156)

Colorectal cancer 4 0.339 0.011* 1.197 (1.027–1.395) 1.204 (1.044–1.389)

SCCHN 3 0.007 0.062 1.308 (0.987–1.733) 1.274 (1.134–1.432)

Cervical cancer 6 0.982 0.031* 1.190 (1.016–1.393) 1.189 (1.016–1.392)

Esophageal cancer 4 0.010 0.873 1.027 (0.738—1.430) 1.057 (0.903–1.236)

Gastric cancer 4 0.739 0.261 1.084 (0.943–1.247) 1.084 (0.942–1.247)

Lung cancer 5 <0.001 0.657 0.943 (0.726–1.224) 1.034 (0.945–1.132)

P-B 20 <0.001 0.176 1.082 (0.965–1.213) 1.098 (1.033–1.168)

H-B 16 <0.001 0.001* 1.213 (1.079–1.365) 1.256 (1.177–1.340)

HWE(Y) 32 <0.001 0.003* 1.138 (1.044–1.239) 1.165 (1.109–1.222)

HWE(N) 4 <0.001 0.484 1.132 (0.799–1.604) 1.200 (1.071–1.345)

BB vs. AA Overall 36 <0.001 0.009* 1.320 (1.071–1.627) 1.420 (1.265–1.593)

Caucasian 14 <0.001 0.011* 1.649 (1.119–2.431) 1.806 (1.523–2.142)

Asian 22 0.033 0.151 1.170 (0.944–1.450) 1.152 (0.984–1.350)

Breast cancer 3 0.189 0.952 0.918 (0.370–2.279) 0.983 (0.558–1.732)

Colorectal cancer 4 0.676 0.001* 1.807 (1.258–2.595) 1.820 (1.270–2.608)

SCCHN 3 0.136 0.196 1.336 (0.807–2.211) 1.235 (0.897–1.699)

Cervical cancer 6 0.949 0.697 0.925 (0.590–1.451) 0.916 (0.587–1.428)

Esophageal cancer 4 0.048 0.734 1.165 (0.484–2.804) 1.168 (0.762–1.79)

Gastric cancer 4 0.815 0.114 1.351 (0.935–1.951) 1.345 (0.931–1.944)

Lung cancer 5 0.001 0.748 0.912 (0.522–1.595) 1.039 (0.823–1.311)

P-B 20 0.002 0.470 1.107 (0.841–1.457) 1.136 (0.968–1.335)

H-B 16 0.001 0.001* 1.625 (1.210–2.183) 1.809 (1.532–2.136)

HWE(Y) 32 <0.001 0.007* 1.342 (1.085–1.659) 1.476 (1.303–1.671)

HWE(N) 4 0.001 0.579 1.288 (0.526–3.152) 1.117 (0.819–1.524)

BA vs. AA Overall 36 <0.001 0.028* 1.123 (1.012–1.245) 1.133 (1.070–1.200)

Caucasian 14 <0.001 0.008* 1.252 (1.061–1.477) 1.251 (1.149–1.362)

Asian 22 <0.001 0.458 1.049 (0.924–1.191) 1.044 (0.966–1.129)

Breast cancer 3 0.100 0.284 0.941 (0.587–1.510) 0.859 (0.651–1.134)

Colorectal cancer 4 0.026 0.901 0.978 (0.693–1.381) 1.059 (0.879–1.276)

SCCHN 3 0.002 0.051 1.494 (0.998–2.236) 1.446 (1.246–1.678)

Cervical cancer 6 0.748 0.001* 1.414 (1.159–1.725) 1.413 (1.159–1.722)

Esophageal cancer 4 0.031 0.953 1.011 (0.702–1.457) 1.023 (0.841–1.244)

Gastric cancer 4 0.295 0.867 1.007 (0.821–1.234) 1.015 (0.849–1.214)

Lung cancer 5 0.002 0.781 0.964 (0.742–1.251) 1.044 (0.929–1.172)

P-B 20 <0.001 0.129 1.113 (0.969–1.279) 1.118 (1.033–1.209)

H-B 16 <0.001 0.129 1.134 (0.964–1.334) 1.152 (1.059–1.253)

HWE(Y) 32 <0.001 0.065 1.101 (0.994–1.219) 1.098 (1.032–1.169)

HWE(N) 4 <0.001 0.325 1.245 (0.805–1.927) 1.348 (1.165–1.560)

BB+BA vs. AA Overall 36 <0.001 0.005* 1.152 (1.044–1.272) 1.174 (1.111–1.240)

Caucasian 14 0.004 <0.001* 1.312 (1.140–1.511) 1.327 (1.224–1.440)

Asian 22 <0.001 0.332 1.063 (0.940–1.203) 1.059 (0.984–1.141)

Breast cancer 3 0.096 0.860 0.959 (0.605–1.520) 0.880 (0.675–1.148)

Colorectal cancer 4 0.073 0.538 1.092 (0.824–1.447) 1.151 (0.964–1.375)

SCCHN 3 0.001 0.061 1.482 (0.982–2.237) 1.415 (1.226–1.633)

Cervical cancer 6 0.861 0.003* 1.339 (1.107–1.619) 1.338 (1.106–1.618)

Esophageal cancer 4 0.020 0.910 1.022 (0.706–1.477) 1.050 (0.870–1.267)

Gastric cancer 4 0.477 0.522 1.058 (0.892–1.255) 1.057 (0.892–1.254)

Lung cancer 5 <0.001 0.694 0.943 (0.704–1.263) 1.045 (0.935–1.167)

P-B 20 <0.001 0.130 1.112 (0.969–1.275) 1.124 (1.043–1.211)

H-B 16 <0.001 0.012* 1.204 (1.042–1.392) 1.234 (1.139–1.337)

HWE(Y) 32 <0.001 0.010* 1.138 (1.032–1.255) 1.150 (1.084–1.221)

HWE(N) 4 <0.001 0.376 1.223 (0.783–1.911) 1.315 (1.143–1.512)

Continued over
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Table 2 Results of pooled analysis for TP73 G4C14-A4T14 polymorphism and cancer susceptibility (Continued)

Comparison Subgroup N PH PZ Random Fixed

BB vs. BA+AA Overall 36 <0.001 0.021* 1.273 (1.038–1.563) 1.374 (1.227–1.538)

Caucasian 14 <0.001 0.046* 1.509 (1.008–2.261) 1.697 (1.437–2.005)

Asian 22 0.074 0.097 1.160 (0.951–1.415) 1.141 (0.976–1.332)

Breast cancer 3 0.172 0.798 0.984 (0.388–2.493) 1.075 (0.617–1.875)

Colorectal cancer 4 0.512 0.002* 1.746 (1.228–2.484) 1.760 (1.241–2.496)

SCCHN 3 0.416 0.642 1.075 (0.782–1.477) 1.078 (0.786–1.477)

Cervical cancer 6 0.913 0.349 0.825 (0.530–1.286) 0.811 (0.524–1.256)

Esophageal cancer 4 0.052 0.688 1.193 (0.504–2.824) 1.165 (0.764–1.777)

Gastric cancer 4 0.717 0.118 1.342 (0.934–1.927) 1.334 (0.929–1.915)

Lung cancer 5 0.006 0.794 0.938 (0.578–1.521) 1.029 (0.818–1.294)

P-B 20 0.006 0.532 1.086 (0.839–1.404) 1.106 (0.945–1.296)

H-B 16 <0.001 0.005* 1.545 (1.139–2.094) 1.734 (1.474–2.039)

HWE(Y) 32 <0.001 0.011* 1.309 (1.063–1.613) 1.446 (1.280–1.633)

HWE(N) 4 0.003 0.743 1.145 (0.509–2.579) 1.000 (0.736–1.358)

PH: P value of Q-test for heterogeneity test; PZ: means statistically significant (P<0.05); HWE, Hardy–Weinberg equilibrium; N, polymorphisms did not
conform to HWE in the control group; P-B, population based; SCCHN, squamous cell carcinoma of the head and neck; Y, polymorphisms conformed
to HWE in the control group; *P value less than 0.05 was considered as statistically significant.

Figure 2. Meta-analysis of the association between TP73 G4C14-A4T14 polymorphism and overall cancer risk

P=0.011), homozygote comparison model (GC/GC vs. AT/AT: OR = 1.820, 95% CI = 1.270–2.608, P=0.001) and
recessive comparison model (GC/GC vs. GC/AT+AT/AT: OR = 1.760, 95% CI = 1.241–2.496, P=0.002). As to cer-
vical cancer, there are also some interesting results. The meta-analysis revealed an increasing risk of cancer caused by
G4C14-A4T14 polymorphism in allelic contrast model (GC vs. AT: OR = 1.189, 95% CI = 1.016–1.392, P=0.031),
heterozygote comparison model (GC/AT vs. AT/AT: OR = 1.413, 95% CI = 1.159–1.722, P=0.001) and dominant
comparison model (GC/GC+GC/AT vs. AT/AT: OR = 1.338, 95% CI = 1.106–1.618, P=0.003) (Table 2, Figure 4).
We also performed subgroup analysis of breast cancer, esophageal cancer, gastric cancer, lung cancer and squamous
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Figure 3. Meta-analysis of the association between TP73 G4C14-A4T14 polymorphism and colorectal cancer risk

Figure 4. Meta-analysis of the association between TP73 G4C14-A4T14 polymorphism and cervical cancer risk

cell carcinoma of the head and neck, no significant association was found between G4C14-A4T14 polymorphism
and these carcinomas in all five genetic models (Table 2 and Figures S1–S4).

Stratification analysis by ethnicity
There was some significant result shown in subgroup analysis of ethnicity. The 14 Caucasian based case–control stud-
ies shown a significantly increasing risk between G4C14-A4T14 polymorphism and cancer in allelic contrast model
(GC vs. AT: OR = 1.279, 95% CI = 1.131–1.446, P<0.001), homozygote comparison model (GC/GC vs. AT/AT:
OR = 1.649, 95% CI = 1.119–2.431, P<0.001), heterozygote comparison model (GC/AT vs. AT/AT: OR = 1.252,
95% CI = 1.061–1.477, P<0.001), dominant comparison model (GC/GC+GC/AT vs. AT/AT: OR = 1.312, 95% CI
= 1.140–1.511, P=0.004) and recessive comparison model (GC/GC vs. GC/AT+AT/AT: OR = 1.509, 95% CI =
1.008–2.261, P<0.001) (Table 2 and Figure S5).

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Begg’s funnel plot for publication bias test for TP73 G4C14-A4T14 polymorphism (GC vs. AT)

The x-axis is log (OR), and the y-axis is natural logarithm of OR. The horizontal line in the figure represents the overall estimated

log (OR). The two diagonal lines indicate the pseudo 95% confidence limits of the effect estimate.

Stratification analysis by source of control
Due to there are 20 case–control studies based on population controls, whereas another 16 studies enrolled
hospital-based controls, we performed the stratified analysis by HWE status to obtain more precise results. The
remarkable result shown a noticeable upgrade cancer risk of G4C14-A4T14 polymorphism of the hospital-based
control subgroup in allelic contrast model (GC vs. AT: OR = 1.213, 95%CI = 1.079–1.365, P=0.001), homozygote
comparison model (GC/GC vs. AT/AT: OR = 1.625, 95% CI = 1.210–2.183 P=0.001), dominant comparison model
(GC/GC+GC/AT vs. AT/AT: OR = 1.204, 95% CI = 1.042–1.392, P=0.012) and recessive comparison model (GC/GC
vs. GC/AT+AT/AT: OR = 1.545, 95% CI = 1.139–2.094, P=0.005), while there was no significant result of the het-
erozygote comparison model (GC/AT vs. AT/AT: OR = 1.134, 95% CI = 0.964–1.334, P=0.129). Nevertheless, there
are no significant result revealed in population-based control subgroup in overall cancer (Table 2 and Figure S6).

Stratification analysis by HWE status
In order to exclude the influence of allele frequency changing, we calculated whether the control group conform to
HWE, and conducted the stratification meta-analysis in subgroups of HWE status. As shown in Table 2 and Fig-
ure S7, the subgroup that conforms to HWE was uncovered responsible to the remarkable increasing cancer risk of
G4C14-A4T14 polymorphism in allelic contrast model (GC vs. AT: OR = 1.138, 95%CI = 1.044–1.239, P=0.003),
homozygote comparison model (GC/GC vs. AT/AT: OR = 1.342, 95% CI = 1.085–1.659, P=0.007), dominant com-
parison model (GC/GC+GC/AT vs. AT/AT: OR = 1.138, 95% CI = 1.032–1.255, P=0.010) and recessive compar-
ison model (GC/GC vs. GC/AT+AT/AT: OR = 1.309, 95% CI = 1.063–1.613, P=0.011), whereas the other four
case–control studies that do not conform to HWE did not influence the result in overall cancer (Table 2 and Figure
S7).

Sensitivity analysis and publication bias
Sensitivity analysis was performed to assess the influence of each individual study on the pooled OR by sequential
removal of individual studies, the results showed that the study material alteration did not influence the corresponding
pooled ORs for the overall meta-analysis (Figure 5 and Table S3). In addition, Begg’s funnel plot and Egger’s test were
presented to assess the potential publication bias, no evidence of publication bias was revealed by evaluating the shape
of Begg’s funnel plot and by Egger’s regression test (Figures S8, S9 and Table S4).

Result of FPRP and TSA
The FPRP values for significant findings at different prior probability levels are shown in Table 3. In the result of
overall group in five genetic models, all the statistical power is about 1, and the FPRP values are all less than 0.2,
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Table 3 False-positive report probability values for associations between the risk of cancer and the frequency of genotypes
of TP73 Gene

Comparison Subgroup Pz OR (95% CI)
Statistical
power* Prior probability

0.250 0.1 0.01 0.001 0.0001

B vs. A Overall 0.002 1.139
(1.048–1.238)

1.000 <0.001 <0.001 0.001 0.006 0.053

Caucasian <0.001 1.279
(1.131–1.446)

0.809 <0.001 <0.001 0.001 0.006 0.054

Colorectal
cancer

0.011 1.204
(1.044–1.389)

0.754 <0.001 <0.001 0.001 0.007 0.062

Cervical cancer 0.031 1.189
(1.016–1.392)

0.446 <0.001 <0.001 0.001 0.008 0.075

H-B 0.001 1.213
(1.079–1.365)

1.000 <0.001 <0.001 0.001 0.006 0.054

HWE(Y) 0.003 1.138
(1.044–1.239)

1.000 <0.001 <0.001 0.001 0.006 0.053

BB vs. AA Overall 0.009 1.320
(1.071–1.627)

1.000 <0.001 <0.001 0.002 0.024 0.196

Caucasian 0.011 1.649
(1.119–2.431)

0.467 0.003 0.008 0.081 0.469 0.898

Colorectal
cancer

0.001 1.820
(1.270–2.608)

0.901 0.002 0.005 0.053 0.362 0.850

H-B 0.001 1.625
(1.210–2.183)

1.000 0.001 0.002 0.017 0.148 0.635

HWE(Y) 0.007 1.342
(1.085–1.659)

1.000 <0.001 <0.001 0.003 0.025 0.208

BA vs. AA Overall 0.028 1.123
(1.012–1.245)

0.992 <0.001 <0.001 0.001 0.006 0.053

Caucasian 0.008 1.252
(1.061–1.477)

0.557 <0.001 <0.001 0.001 0.009 0.085

Cervical cancer 0.001 1.413
(1.159–1.722)

0.822 <0.001 <0.001 0.002 0.018 0.157

BB+BA vs. AA Overall 0.005 1.152
(1.044–1.272)

1.000 <0.001 <0.001 0.001 0.006 0.053

Caucasian <0.001 1.312
(1.140–1.511)

0.703 <0.001 <0.001 0.001 0.006 0.061

Cervical cancer 0.003 1.338
(1.106–1.618)

0.714 <0.001 <0.001 0.002 0.015 0.135

H-B 0.012 1.204
(1.042–1.392)

1.000 <0.001 <0.001 0.001 0.007 0.064

HWE(Y) 0.010 1.138
(1.032–1.255)

0.996 <0.001 <0.001 0.001 0.006 0.053

BB vs. BA+AA Overall 0.021 1.273
(1.038–1.563)

1.000 <0.001 <0.001 0.002 0.022 0.182

Caucasian 0.046 1.509
(1.008–2.261)

0.341 0.003 0.010 0.100 0.528 0.918

Colorectal
cancer

0.002 1.760
(1.241–2.496)

0.888 0.001 0.004 0.045 0.323 0.827

H-B 0.005 1.545
(1.139–2.094)

1.000 0.001 0.002 0.020 0.172 0.675

HWE(Y) 0.011 1.309
(1.063–1.613)

1.000 <0.001 <0.001 0.002 0.024 0.195

CI, confidence interval; H-B, hospital based; HWE(Y), Polymorphisms conformed to Hardy–Weinberg equilibrium in the control group; OR, odds ratio.
*Statistical power was calculated using the number of observations in the subgroup and the OR and P values in this table.

under the prior probability of 0.1. On the subgroup of cervical cancer and colorectal cancer, the FPRP values are also
less than 0.2. The result of TSA is shown in Figure 6, the required sample size is 21,728 samples, and the cumulative
z-curve crossed the trial sequential monitoring boundary before reaching the required sample size, which means that
our conclusions are robust with these sufficient evidence.
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Figure 6. Trial sequential analysis for TP73 G4C14-A4T14 polymorphism under the allele contrast model

In silico analysis of TP73 expression
In silico analysis, we draw out the correlation between TP73 expression and breast invasive carcinoma, cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), esophageal
carcinoma, head and neck squamous cell carcinoma, lung adenocarcinoma, lung squamous cell carcinoma (LUSC),
ovarian serous, prostate adenocarcinoma, rectum adenocarcinoma, skin cutaneous melanoma, Ssomach adenocarci-
noma, with the help of GEPIA web server. The result indicated that the expression of TP73 in tumor tissue is higher
than it in corresponding normal tissue of CESC (TPM = 9.60 vs. 0.58 respectively, P<0.01), COAD (TPM = 1.93 vs.
0.56 respectively, P<0.01), LUSC (TPM = 7.64 vs. 1.07 respectively, P<0.01), whereas lower than it in normal tissue
of SKCM (TPM = 0.67 vs. 7.62 respectively, P<0.01) ( Figure S10).

Discussion
TP73 gene is located at chromosome 1p36 and comprises 15 exons [54]. TP73 could be transcribed from two in-
dividual promoters, one is in the upstream of exon 1, it could produce p53-like proteins containing transactivation
domain (TAp73) and another TA lacking protein (�TAp73). The second promoter is situated in intron 3, it could
turn out the N-terminal truncated isoform (�Np73) [55]. What’s more, both TAp73 and �Np73 undergo the alter-
native splicing and initiation of translation, and lead to several splicing isoforms [56,57]. While sharing the similar
sequence with p53, TAp73 could activate the expression of downstream genes through specifically binding domain of
p53 response element, regulating cell apoptosis or cell-cycle arrest [58,59]. On the meanwhile, �Np73 could present a
potent anti-oncogenic function through inhibiting the key role of TAp63, TAp73 or p53 [60]. Several publications had
reported that the TP73 expression plays critical role in tumorigenesis, combined with different isoforms or several
mutations [61–64].

In the past decades, almost 146 unique variations had been reported (shown in the Biomuta database [65]), while
numerous studies had probed into the relationship of G4C14-A4T14 polymorphism and cancer genomics. G4A
(rs2273953) and C14T (rs1801173) polymorphisms are located at position 4 (G to A) and 14 (C to T) of exon 2
5’-untranslated region, which might influence the initiating AUG codon through constructing a stem–loop [54].
Zheng et al. [40] and Niwa et al. [34] reported that G4C14-A4T14 polymorphism was not associated with the can-
cer susceptibility of cervical cancer in Uighur and Japanese, respectively. However, Craveiro et al. [51] revealed that
G4C14-A4T14 polymorphism leads to an increasing risk of cervical cancer, as well as the newest study conducted
by Feng et al. [17].As colorectal cancer, Hamajima et al. [28] presented that no significant differences in the genotype
frequencies were observed among the enrolled cases and controls in his study. On the contrast, Lee et al. [47] reported
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that GC/AT and AT/AT genotypes were significantly associated with colorectal cancer risk in Korean population. Ar-
faoui et al. [66] also uncovered that no remarkable differences of genotype frequencies in cancers and controls, but
they found that AT/AT genotype might cause the poor prognosis of colorectal cancer. Several researches also man-
aged in lung cancer. Hu et al. [35] indicated that both AT/AT and GC/AT variants were associated with a remarkable
decreased risk for lung cancer, distinguishingly, Li et al. [64] suggested that the AT/AT and GC/AT genotypes were
related with a statistically significantly increased risk for lung cancer. Choi et al. [38] did not agree with each of them,
they revealed that TP73 G4C14-A4T14 polymorphism does not affect the susceptibility to lung cancer in Korean
population.

Among these publications concerned about G4C14-A4T14 polymorphism and cancer risk, the result is not con-
sistent. Liang et al. [67] conducted a meta-analysis about G4C14-A4T14 polymorphism and cervical cancer, they
only enrolled 5 studies, as well as Liu et al. [68], they only enrolled 5 studies about lung cancer. Yu et al. [69] had
performed a meta-analysis with only 23 eligible studies; however, they draw a decreased risk of G4C14-A4T14 poly-
morphism, this mistake may cause by the fewer samples. Therefore, our team carried out the present comprehensive
meta-analysis aiming at shedding light on the multiple lines of evidence. Finally, 36 case–control studies comprise
9493 cases and 13,157 controls were enrolled and analyzed. All in all, our recent updated meta-analysis draws a com-
prehensive, precise and convincible result, which is that G4C14-A4T14 polymorphism of TP73 is strongly associated
with the increasing cancer risk, especially for Caucasian, cervical cancer and colorectal cancer. Therefore, in the fu-
ture, G4C14-A4T14 polymorphism might be a useful diagnostic marker for cervical cancer and colorectal cancer,
especially in Caucasian population. On the other hand, for researchers, other polymorphisms of TP73 should be
focused on to assess whether they change cancer risks.

The current result about G4C14-A4T14 polymorphism and cancer risk should be cautiously interpreted, because
there are some limitations. First, an insufficient capacity that slight effects on cancer susceptibility occurred when a
stratified analysis was conducted by the cancer type, ethnicity and source of control. Second, several potential con-
founding factors were ignored, such as age, gender, smoking, drinking and etc., so we are unable to perform a further
assessment of potential gene–environment interactions. Third, we only enrolled publications written in English or
Chinese, missing publications from other languages may cause potential bias. On the meanwhile, the advantages of
this research should not be buried. First, a comprehensive search was conducted to identify more qualified studies, so
this analysis is persuasive and substantive. Second, the quality of each registered research was evaluated by NOS scale,
low-quality studies were eliminated to raise the credibility of results. Third, stratification analysis was performed by
ethnicity, source of controls, tumor type or ethnicity, in order to decrease the impact of heterogeneity and obtain the
real conclusion.

In conclusion, our meta-analysis had successfully elaborated that TP73 G4C14-A4T14 polymorphism causes
an upgrade cancer risk, especially in Caucasian population. G4C14-A4T14 polymorphism might be a potential
biomarker for judging the tumorigenesis of cervical cancer and colorectal cancer.
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