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A B S T R A C T   

In this article, we build a repetitive magic square by multiplying four elements. This square is a 
matrix with its corresponding elements. The elements of this matrix that take different values 
allow us to obtain Ramanujan’s number 1729 as its multiplicative magic constant. The additive 
magic constant of the square is the number 40. The elements of these magic constants form an 
arithmetic progression. An algorithm to build magic squares is also proposed.   

1. Introduction 

Magic or Latin squares have been studied for 4,000 years. Loh-Shu’s square is the oldest known, and its invention is attributed to 
Fuh-Hi, the founder of the Chinese civilization. 

A magic square is a matrix with the same number of rows and columns [1]. The symbols of this matrix (that is, the elements of the 
matrix that take different values) are used to obtain the addition or multiplication along each row, column, and diagonal, whose result 
must be the same [2]. Then, the values associated with such addition or multiplication are called magic constants [3]. Subsequently, 
we use the words symbols and elements interchangeably. 

Applications of square matrices have been widely considered. In particular, in [13], an optimized timely system matrix applied to 
improve image quality was studied. The usage of matrices to formulate the Maxwell and Dirac equations was stated in [16]. Different 
authors have constructed magic squares [4–9]. To get the magic constant, one often adds the elements of any row or column of the 
square. Instead of adding, one can also multiply the elements, but this alternative is not so common. Ramanujan [4] constructed 
different magic squares of the same size but with different magic constants. For instance, he constructed an even square of 4 × 4 with 
magic constants equal to 34 and 35. For an odd order, Ramanujan constructed a 5 × 5 square with magic constants equal to 65 and 66. 
Ramanujan [4] built 7 × 7 squares with magic sums 170 and 175 in two different problems. He also constructed magic rectangles. 

To the best of our knowledge, works as those proposed in the objective indicated next are unavailable in the literature. The 
objective of the present work is to construct a repetitive magic square as an application of a matrix by multiplying four elements. These 
elements permit us to obtain Ramanujan’s number 1729 as multiplicative magic constant, whereas the associated additive magic 
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constant is the number 40. The elements of these magic constants form an arithmetic progression. Furthermore, we propose an al-
gorithm to build repetitive magic squares of the fourth order. 

The rest of this work is organized as follows. Section 2 motivates our investigation and provides background on the topic. In Section 
3, we present magic squares of different kinds, whereas some examples are stated in Section 4. Section 5 details the method for 
constructing a repetitive magic square with magic product 1729 and magic sum 40. In Section 6, we study some unique features of the 
obtained repetitive magic square. Section 7 proposes an algorithm to build 4 × 4 repetitive magic squares with elements in an 
arithmetic progression. Finally, Section 8 discusses our results and conclusions. 

2. Background 

Srinivasa Ramanujan was an Indian mathematician born on 22 December 1887 in Erode and died on 26 April 1920 in Kumba-
konam, India. Ramanujan dedicated his life to mathematics. In biology, he is known for the Hardy-Weinberg principle, a fundamental 
law of population genetics. The Ramanujan number 1729 identifies the taxi when Hardy1 visits Ramanujan. Hardy was spontaneously 
warned by Ramanujan indicating that 1729 is the smallest number expressed as the sum of two cubes in two different ways as 1729 =

103 + 93 = 123 + 13. The repetitive square we propose has as its magic product this number 1729, whereas its magic sum equals 40. 
Let n be a positive integer. A Latin square of order n is an n × n array such that every row and every column are a permutation of an 

n-dimensional set. A transversal in a Latin square of order n is a set of n cells, one from each row and column, containing each of the n 
symbols exactly once. A Latin square is diagonal if its main and back diagonals are both transversals. Two Latin squares of order n are 
called orthogonal if each symbol in the first square meets each symbol in the second square exactly once when they are superposed. The 
following result is obvious. 

Theorem 1. ([1]). If there exists a pair of diagonal orthogonal Latin squares of order n, then there exists a magic square of order n. 

Clearly, a diagonal Latin square is a repetitive additive-multiplicative magic square. For example, the array stated as 

A=

⎛

⎜
⎜
⎝

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

⎞

⎟
⎟
⎠

is a repetitive additive-multiplicative magic square. Let 

B=

⎛

⎜
⎜
⎝

a b c d
d c b a
b a d c
c d a b

⎞

⎟
⎟
⎠,

where a, b, c, and d are any integer numbers. 
Note that the array B is a repetitive additive-multiplicative magic square. This is a very traditional and efficient method of con-

structing magic squares using diagonal Latin squares or orthogonal diagonal Latin squares. For some results on diagonal Latin squares, 
the reader can consult [10–12]. 

3. Magic squares of different kinds 

The magic squares can be constructed in several ways and classified into three types:  

(i) Additive magic square (standard form): Its elements are arranged in such a way that they add to give a magic sum (S) along 
rows, columns, and diagonals.  

(ii) Multiplicative magic square: Its elements are arranged to multiply, giving a magic product (P) along rows, columns, and 
diagonals.  

(iii) Additive-multiplicative magic square: Its elements are arranged to add and multiply to give S and P, respectively, along rows, 
columns, and diagonals. 

Based on the elements involved in a magic square, it can be classified into two kinds as follows:  

(i) Non-repetitive magic square: Its elements are all distinct and are not repeated. This is equal to any standard magic square. In this 
kind of magic square, we have: number of elements = number of rows × number of columns.  

(ii) Repetitive magic square: All its elements must be used in all rows, columns, and diagonals, with no element employed more than 
once in a row, column, and diagonal. In this kind of magic square, we get:  
(ii.a) number of elements = number of rows = number of columns. 

1 G.H. Hardy was an English mathematician known for his achievements in number theory and mathematical analysis. 
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(ii.b) number of elements < number of rows × number of columns. 

Regarding the order of a magic square, it may be classified as:  

(i) Magic square of even order: Its rows and columns are equal, and it is of order n = 2k, with k ≥ 2.  
(ii) Magic square of odd order: Its rows and columns are equal, and it is of order n = 3k, with k ≥ 1. 

4. Examples 

In Section 3, different kinds of magic squares were discussed. Next, we provide some examples to understand those kinds of magic 
squares from which the reader can quickly get an idea about them. 

Example 4.1. After understanding a 3 × 3 magic square, one could do the following additive square of 5 × 5 with magic sum 65:  

17 24 1 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

11 18 25 2 9  

Example 4.2. [14] A 3 × 3 multiplicative square with magic product 4096 is given by:  

128 1 32 

4 16 64 

8 256 2  

Example 4.3. [7] An additive-multiplicative magic square of order 8 with S = 840 and P = 2, 058,068,231,856,000 is stated as:  

46 83 117 102 15 76 200 203 

19 60 232 175 54 69 153 78 

216 1617 17 52 171 90 58 75 

135 114 50 87 184 189 13 6 

150 261 45 38 91 136 92 27 

119 104 108 23 174 225 57 30 

116 25 133 120 51 26 162 203 

39 34 138 243 100 29 105 152  

Example 4.4. A familiar non-repetitive 3 × 3 square with magic sum 15 is established as:  

8 1 6 

3 5 7 

4 9 2  

Example 4.5. A repetitive magic square of the fifth order, whose elements are not in arithmetic progression with magic sum 30, is 
presented as:  

9 6 3 5 7 

6 7 5 9 3 

5 3 6 7 9 

7 5 9 3 6 

3 9 7 6 5  
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Example 4.6. [3] An even-order magic square of the fourth order, with magic sum 34, is given by:  
1 14 11 8 

12 7 2 13 

6 9 16 3 

15 4 5 10  

Examples 4.1, 4.2, 4.4, and 4.5 are related to an odd order, whereas Examples 4.3 and 4.6 are of an even order. Example 4.3 is a 
non-repetitive additive-multiplicative magic square of even order. 

5. Method for constructing repetitive magic squares 

Next, we apply the concepts involved in additive, multiplicative, repetitive, and even order magic squares. The only difference 
between the well-known Devi magic square [15] and our magic square is that our elements are in arithmetic progression. Thus, the 
sum of the elements in any row, column, or diagonal is equal to S = 40, and the product of the elements in any row, column, or 
diagonal is equal to P = 1729. 

Since we are proposing a repetitive magic square, it is enough to satisfy the conditions according to the sum of elements or the 
product of elements. To build a 4 × 4 magic square, suppose that, in the first row of the square, we put the four elements of an 
arithmetic progression, where the first term is a, whereas d is the common difference of successive members. 

Therefore, we have that S = a+ (a + d)+ (a + 2d)+ (a + 3d) = 4a+ 6d. Hence, we get P = a(a + d)(a + 2d)(a + 3d). The 
method of construction is given below. Consider the 4 × 4 magic square given in Table 1. 

The other elements of the 4 × 4 magic square are chosen according to Table 2. Note that when adding the elements of any row, 
column, or diagonal, the result is 4a+ 6d. 

Now, we arrange the elements a, a+ d, a+ 2d, and a + 3d in Table 1 to satisfy all the abovementioned conditions. For convenience, 
we transform the magic square given in Table 1 as the magic square given in Table 3. 

The sub-index of each element of the magic square in Table 3 is a 1 × 3 vector. The first two entries of that vector have the following 
meaning:  

(t, l) It arranges the elements from top to bottom and left to right (simultaneously).  
(t, r) It arranges the elements from top to bottom and right to left (simultaneously).  
(b, l) It arranges the elements from bottom to top and left to right (simultaneously).  
(b,r) It arranges the elements from bottom to top and right to left (simultaneously). 

The third entry of the vector indicates the element in the arithmetic progression. If the value of the third input is 1, then we must carry 
out the sorting starting from the element a; if it is 2, we use the element a+ d; if it is 3, we start with the element a+ 2d; and, if the 
value of the third input of the vector is 4, we carry out the sorting starting from the element a+ 3d. To understand the above notation, 
we break the magic square MS1 into four 2 × 2 squares (denoted by A, B, C and D), as displayed in Table 4. 

Using the proposed method, the squares A, B, C, and D are the following: 

Table 1 
4 × 4 magic square (MS) to build with fixed elements in 
the first row. 

Table 2 
4 × 4 magic square (MS) to build with all 
elements fixed. 
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Combining squares A, B, C and D, the 4 × 4 magic square that we see in Table 2 is reached. If a = 1 and d = 6, then we obtain the 
4 × 4 magic square presented in Table 5. 

The resulting 4 × 4 magic square has repeated elements 1, 7, 13, and 19. These elements define an arithmetic progression and, in 
addition, constitute (except the first element) the unique prime decomposition of Ramanujan’s number, that is, 1729 = 1× 7× 9×

13, as we can see in Table 5. Therefore, in this square, the magic sum and product are 40 and 1729, respectively. Note that no other 
combination of integer numbers produces this magic square. 

6. Special features of the obtained repetitive magic square 

Next, we provide some unique features of the obtained repetitive magic square. The elements we use to construct the magic square 
are the number 1 (which is not prime or composite) and the prime factors of the number 1729 (that is, the numbers 7, 13, and 19). 
These elements are in arithmetic progression with the first element a = 1, common difference d = 6, and last element l = 19. The 
element corresponding to the number 1 plays an essential role in this magic square. The reader may think that the number 1 is not 
necessary to get the magic product 1729 and that, if the number 1 is not used, it produces a 3 × 3 repetitive square matrix with sum and 
product 39 and 1729, respectively. However, this is not the case because, after several attempts, we conjecture that 4 × 4 is the smallest 
array size for a repetitive magic square. We test 2 × 2 and 3 × 3 matrices, which were generated using 3 × 3 and 4 × 4 matrices, 
respectively, with an additional element corresponding to the number 1 and 2× 2, 3 × 3 matrices. 

We explain the reason for doing this conjecture after the following discussion. Note that the number 1 is unavoidable and very 
important for making a 4 × 4 repetitive magic square, allowing us to obtain the desired magic product corresponding to the number 

Table 3 
4 × 4 magic square (MS) with the 
proposed notation. 

Table 4 
Partition the 
4 × 4 magic 
square (MS) into 
four 2 × 2 
squares. 

Table 5 
The 4 × 4 magic square (MS) 
built. 
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1729. Hence, the unique features of the obtained repetitive magic square can be summarized as follows: (i) the order 4 × 4 is the 
smallest matrix size of this square; (ii) its magic elements are in arithmetic progression; and (iii) all the elements other than the number 
1 are the only possible prime factors of Ramanujan’s number 1729. 

The reason for the 4 × 4 magic square to be the smallest possible one is that we must first recall the definition of a magic square. 
This definition indicates that the sum along the row, column, and each diagonal should be the same. Otherwise, it is not a magic square. 
We have taken a repetitive magic square, that is, its elements can be repeated. Nonetheless, such elements should be equal to the order 
of the magic square, which is our conjecture. 

By the definition of a repetitive magic square, as mentioned, all its elements must be used in all rows, columns, and diagonals, with 
no element being employed more than once in a row, column, and diagonal. In this kind of magic square, as also mentioned, we have 
the conditions that the number of its elements must be equal to the number of rows and also to the number of columns; as well as the 
number of its elements must be less than the number of rows multiplied by the number of columns. Due to these conditions, we do not 
consider 

(
2 2
2 2

)

or 
⎛

⎝
3 3 3
3 3 3
3 3 3

⎞

⎠

as repetitive magic squares. Also, if we suppose to take our repetitive magic square with elements 1, 7, 13, and 19 as an example, we see 
what would happen if we omit the number 1. In that case, the matrix is 

⎛

⎝
7 13 19
13 19 7
19 7 13

⎞

⎠

Note that this matrix may look like a magic square, but we see in the back diagonal that 19, 19, and 19 have 57 as the magic sum, while 
the remaining rows, columns, and another diagonal arrive at the number 39 as the magic sum. This contradicts the fact that a magic 
square does not have more than one magic sum. 

7. Construction of 4 × 4 repetitive magic squares 

Next, we propose an algorithm to build 4 × 4 repetitive magic squares with four elements in arithmetic progression. 
From a magic sum S, we must choose two integers a and d for 4a+ 6d = S. The necessary and sufficient condition for the linear 

Diophantine equation 4a + 6d = S to have a solution is that GCD(4,6)|S ≡ 2|S, that is, the greatest common divisor (GCD) between 4 
and 6 divides S indicating S must be even. If S = 2m and m is an integer number, then the general solution of the linear Diophantine 
equation is a = − 3k − m and b = 2k+ m, where k is any integer number. For example, the magic square of Table 5 is obtained if m = 20 
(S = 40) and k = − 7. Algorithm 1 summarizes our procedure. 

As an illustration, if S = 100 and k = − 18, we obtain the repetitive magic square of Table 6, and if S = 50 and k = − 10, we 
obtain the repetitive magic square of Table 7. This last magic square also has the particularity that it is built with the first four positive 
multiples of the number 5. The products of the magic squares are, respectively, P = 105,984 and P = 15, 000. 

Algorithm 1. Procedure to build a 4 × 4 repetitive magic square.  
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8. Conclusions 

In this article, we have provided some unique features of repetitive magic or Latin squares. We have used the number 1 and the 
prime factors, corresponding to the numbers 7, 13, and 19 of the number 1729, to construct our magic square. These numbers are in 
arithmetic progression. The number 1 has played an essential role in this magic square. We have conjectured that 4 × 4 is the smallest 
matrix size for a repetitive magic square. Thus, the number 1 is unavoidable and very important for making a 4 × 4 repetitive magic 
square, obtaining the desired magic product corresponding to the number 1729. We have tested 2 × 2 and 3 × 3 matrices, which were 
generated using 3 × 3 and 4 × 4 matrices, respectively, with an additional element corresponding to the number 1, and 2× 2, 3 × 3 
matrices, which was justified in Section 6. 

Therefore, the following points summarize the results obtained in the present work:  

(i) We have constructed a repetitive 4 × 4 square with Ramanujan’s number 1729 as its magic product.  
(ii) The magic sum of the constructed square is equal to 40.  

(iii) The order 4 × 4 is the smallest matrix size of the repetitive magic square.  
(iv) Its magic elements are in arithmetic progression.  
(v) All the elements different from the number 1 are the only possible prime factors of Ramanujan’s number 1729.  

(vi) We have detected that any repetitive magic square, whether the elements are in arithmetic progression or not, gives both magic 
sum and product.  

(vii) We have proposed an algorithm to construct 4 × 4 repetitive magic squares using a Diophantine equation. 

A limitation of this work is that it requires at least a magic square of the fourth order with several elements that should be equal to 
the matrix order. The number 1 used here does not make any sense in the product. However, if it is not used, the unique magic sum will 
not be attained to convert a matrix into a repetitive magic square. 

This study also restricts the one-element repetitive matrix as the magic square. For example, the matrix given by 
(

2 2
2 2

)

is repetitive. Nevertheless, we cannot accept the restriction that the number of its elements must be equal to the order of the matrix. 
Here, the number 2 is the only element. Therefore, the number of elements is equal to 1, but its order is equal to 2, so this matrix is not 
accepted as a repetitive magic square. 
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