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Abstract

Cytokines are critical for intercellular communication in human health and disease, but the 

investigation of cytokine signaling activity has remained challenging due to the short half-lives 
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of cytokines and the complexity/redundancy of cytokine functions. To address these challenges, 

we developed the Cytokine Signaling Analyzer (CytoSig, https://cytosig.ccr.cancer.gov), providing 

both a database of target genes modulated by cytokines and a predictive model of cytokine 

signaling cascades from transcriptomic profiles. We collected 20,591 transcriptome profiles for 

human cytokine, chemokine, and growth factor responses. This atlas of transcriptional patterns 

induced by cytokines enabled the reliable prediction of signaling activities in distinct cell 

populations in infectious diseases, chronic inflammation, and cancer using bulk and single-cell 

transcriptomic data. CytoSig revealed previously unidentified roles of many cytokines, such as 

BMP6 as an anti-inflammatory factor, and identified candidate therapeutic targets in human 

inflammatory diseases, such as CXCL8 for severe COVID-19.

Introduction

Cytokines are a broad category of intercellular signaling proteins that act in almost every 

aspect of human immunology, from anti-pathogen immune responses to tissue-damaging 

inflammation1,2. However, the precise characterization of cytokine signaling activities 

has proven difficult due to two vexing properties of cytokine activity: redundancy and 

pleiotropy. Many cytokines, especially those with similar cell surface receptors and 

downstream pathways, have cellular effects that appear redundant within a specific cellular 

context3. At the same time, cytokines often have pleiotropic functions within an organism 

that depend heavily on cell-type-specific receptor usage and the presence of other signaling 

components3.

This apparent redundancy and pleiotropy in cytokine activities are poorly captured by 

most immunological assays such as the Enzyme-Linked Immuno-Sorbent Assay (ELISA) 

and Luminex xMAP, which directly measure cytokine release. Cytokine release can be 

transient, unlike the longer-lasting and more functionally relevant measurement of target 

activities4. Recognizing this limitation, researchers have attempted to create databases of 

cytokine signaling targets. For example, the “Interferome” identifies interferon target genes 

in humans and mice through the collection and analysis of microarray data5. Gene Set 

Enrichment Analysis (GSEA) also annotates response genes for selected cytokines based 

on prior knowledge6. However, these databases and approaches cover a small fraction of 

cytokines, leaving most cytokine-induced target changes unexplored.

The need for systematic profiling approaches that allow modeling of cytokine target activity 

is urgent because cytokines can trigger life-threatening symptoms in many diseases. For 

example, COVID-19 mortality has been attributed mainly to a virus-induced cytokine storm, 

defined by excessive production of pro-inflammatory cytokines that lead to acute respiratory 

distress and widespread tissue damage7. Although pro-inflammatory cytokines help activate 

the immune response, there does not appear to be a strong relationship between cytokine 

storm severity and pathogen clearance. For example, successfully recovering COVID-19 

patients may not have any inflammatory symptoms8. Cytokine release syndrome also causes 

severe side effects in many cancer treatments, such as immunotherapies9 and chimeric 

antigen receptor (CAR) T therapies10. Similar to the disconnect between the severity of 

immune-related symptoms and disease outcomes in COVID-19, complete tumor remission 
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can occur in patients without cytokine release syndromes11. While the immunological 

mechanisms of these observations remain unclear, they imply that if properly modulated, 

the benefits of cytokine signaling can be realized without substantial pathological effects.

With this goal in mind, and to model cytokine activity generally, we developed Cytokine 

Signaling Analyzer (CytoSig, https://cytosig.ccr.cancer.gov), a data-driven infrastructure 

hosted by the National Cancer Institute (NCI). CytoSig includes both a database of 

target genes modulated by cytokines and a predictive model of cytokine signaling activity 

and regulatory cascade from transcriptomic profiles. To build the CytoSig platform, we 

first created the Framework for Data Curation (FDC) to assist expert annotations on 

metadata deposited on databases through natural language processing functions (https://

curate.ccr.cancer.gov). Using FDC, we analyzed 9,271 published studies and curated 20,591 

transcriptomic profiles for human cytokine, chemokine, and growth factor response to 

create the CytoSig database and predictive model. We validated CytoSig by showing that 

it can reliably predict cytokine target activities in both human clinical studies and our 

in-vivo experiments. Further, CytoSig identified CXCL8 signaling as potential COVID-19 

therapeutic targets that may alleviate adverse inflammation without undermining protective 

immunity.

Results

The Framework for Data Curation on Public Repositories

We hypothesized that the large number of cytokine-treatment datasets available publicly 

could serve as a knowledge base to model signaling activities in diverse biological contexts. 

However, two hurdles must be overcome to transform this body of data into a useful 

model. First, the experimental design behind each published dataset is unique, requiring 

labor-intensive expert interpretation of the metadata and standardization of the data into a 

format suitable for automated analysis. Second, one must identify and exclude experiments 

that involve cell models, stimuli, doses, or time intervals that are not physiologically 

relevant. More broadly, such challenges exist for many other biological topics that could 

be addressed by data aggregation. To overcome these hurdles, we established the Framework 

for Data Curation (FDC), which couples large-scale automatic data processing with natural 

language processing functions to assist expert annotation of experimental design (Online 

Methods, Fig. 1a).

The FDC automatically extracts RNASeq data from the Sequence Read Archive12 and 

European Nucleotide Archive13, along with automatically extracting MicroArray data from 

the Gene Expression Omnibus14 and Array Express15. For metadata annotation, the FDC 

interacts with curators in iterative cycles. If the metadata structure and experimental designs 

differ drastically across studies, as was the case for cytokine-response data, the initial cycle 

of curation relies heavily on human expertise. However, based on the initial curations, 

the curators may specify automatic annotation rules, including highlighting text patterns 

that drive annotation decisions, translating aliases to standard names, and implementing 

controlled vocabularies. These natural language processing functions will dramatically 

reduce the human effort required after iterative cycles. The FDC is suitable for a wide 

range of data collection projects and is available at https://curate.ccr.cancer.gov.
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Generating the CytoSig Database of Cytokine-modulated Genes

The Cytokine Signaling analyzer (CytoSig) aims to provide both a database of target genes 

modulated by cytokines and a predictive model of cytokine signaling activities from a 

sample’s transcriptomic profile (Fig. 1b). Both goals depend on an extensive data collection 

of cytokine-induced target genes. We first queried Array Express (AE) and Gene Expression 

Omnibus (GEO) databases with names and aliases of human cytokines, chemokines, and 

growth factors. Note that for brevity, we use the term “cytokine” at times in this manuscript 

to refer to these three types of signaling molecules generally. The cytokine name search 

yielded 9,271 candidate studies. Out of 9,271 candidates, 5,186 studies had genome-wide 

expression matrices and could be automatically processed by FDC.

After automatic data extraction, PhD scientists with immunology training conducted a 

curation of the 5,186 selected experiments (Fig. 1a). Each dataset was assigned two curators, 

such that the secondary curator would proofread annotations of the primary curator and 

correct any errors. This initial manual curation was time intensive because the metadata 

structure and experimental designs differed drastically across studies. However, based on the 

rules learned from the initial curation, the natural language processing functions from the 

FDC accelerated the annotation process such that minimal human effort was subsequently 

required. This semi-automated extraction system ensures that CytoSig will remain updated 

and relevant as new datasets are released.

Of the 5,186 experiments examined, 962 experiments were designated as cytokine response 

studies, which comprised 20,591 non-redundant individual samples (Supplementary Table 

1). Curators then labeled each sample with the treatment cytokine, the cell model, treatment 

dose, and duration. We combined these human annotations with automatically parsed 

matrices of gene expression values and merged biological replicates, which generated 

2,056 differential expression signatures between cytokine treatments and controls (Fig. 1c). 

Certain cell models and experimental conditions tend to be more frequently used than others 

(Extended Data Fig. 1a–f).

For target genes, a differential signature presents the direction of the expression change 

(up or down) and the magnitude of that change, expressed as log2 fold change (logFC), 

under each experimental condition. These differential signatures have continuous magnitude 

values. So, rather than using cutoffs to define cytokine targets, the differential magnitudes 

were used in our further analysis.

CytoSig Data Reflect Signaling Activity in Human Physiology

Since our datasets are generated through treatment experiments in cell cultures, we 

evaluated whether our collected cytokine targets are target genes under human physiological 

conditions. We measured the Pearson correlation between expression levels of the cytokine 

and its candidate targets in independent human tissue data. For example, we defined IL10 

targets based on an IL10 treatment profile conducted in monocytes16 and then measured 

the correlation between the IL10 expression and average expression scores of its candidate 

targets across tumors in a lung adenocarcinoma cohort17, which we found to be 0.68 (Fig. 

1d). We also found that the expression correlation between IL10 targets and IL10 receptors 
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(IL10RA + IL10RB) is 0.62 (Fig. 1d). As a control to evaluate correlations expected by 

random, permuting gene identities of the IL10 treatment profile ten times resulted in a low 

average correlation of 0.04 between IL10 and its target genes and a low correlation of 0.05 

between the IL10 receptors and its targets.

We computed correlations in this way between the expression levels of each cytokine and 

its candidate targets for all 2,056 cytokine treatment profiles across the Cancer Genome 

Atlas (TCGA)18 and the Genotype-Tissue Expression (GTEx)19 cohorts. The distribution 

of correlations between the candidate target gene expression with the respective ligands 

and receptors is significantly higher than expected by chance (Fig. 1e). The correspondence 

between the expression of target genes and a cytokine ligand or receptor in independent 

human tissue samples suggests that our data collection is useful for modeling cytokine 

signaling events in human physiology.

Although most of the cytokine response profiles derived from cell culture models are 

relevant in human in-vivo settings, experimental conditions of some cytokines may not 

reflect physiological kinetics (Extended Data Fig. 1g and Supplementary Table 2). For 

analyses presented from this point forward, we only use differential expression signatures 

with significantly positive correlations between expression levels of target genes and ligands 

or receptors in both TCGA and GTEx cohorts (FDR < 0.05, Online Methods). This criterion 

was met by 1307 out of 2056 signatures.

For each cytokine, merging independent signatures can create a composite profile with 

superior performance than individual signatures as measured by the correlation metrics 

described above (Extended Data Fig. 1h). Each cytokine’s composite signature is composed 

of the median logFC across all experiments for each gene, reflecting target genes induced 

or repressed in most conditions. We compared the overall similarities of response by 

performing hierarchical clustering of the composite signatures of the 43 cytokines that 

have at least five high-quality independent expression profiles (Fig. 1f). A few sub-clusters 

contain cytokines with very high correlations. For example, the composite response 

signature of IL27 is very similar to interferon gamma (IFNG), and to a lesser extent, 

to interferon type-one (IFN1) and type-three (IFNL). This observation is consistent with 

the downstream transcriptional similarity between IL27 and IFNG, because they both act 

through STAT1 signaling20,21. Another cluster with high similarity contains TNFA, IL1A/B, 

and CD40L (CD40L is both a soluble ligand and a cell surface molecule22), all of which 

activate NFKB signaling23,24.

Although many cytokines have highly similar target responses, the same cytokine may 

also present context-specific differences in target response patterns. For example, the IFNG 

response signatures formed distinct clusters based on their cell origins. Macrophages and 

monocytes are clustered together and have different responses than other clusters, such as 

fibroblast (Extended Data Fig. 1i).

Two Regulatory Cascades from Primary to Secondary Cytokines

The hierarchical cascade of cytokine regulation is a paradigm in cellular signaling. For 

example, CXCL9, 10, and 11 (CXCR3 ligands) are immune-activating chemokines induced 
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by IFNG25, which itself is regulated upstream by IL1226. Within a signaling cascade, a 

cytokine can also inhibit downstream signals. For example, IL4 can block IL1 and TNFA 

signaling in human monocytes27. These hierarchical activations and inhibitions are essential 

to ensure rapid clearance of different pathogen classes while at the same time preventing 

an overzealous immune response25–27. The activation and repression relationships among 

CXCL9/10/11, IFNG, IL12, IL4, and IL1 examples discussed above are all statistically 

significant in our dataset (Fig. 2a and Extended Data Fig. 2a).

We systematically examined the changes induced by primary cytokines on secondary signals 

and identified two distinct pro-inflammatory clusters (Fig. 2b). Each group activates a 

distinct set of secondary targets. The first group, including TNFA, IL1, IL17A, IL36, and 

CD40L, triggers IL1, 6, CXCL1, 2, 5, 6, 8, and CCL20 (Fig. 2a and Fig. 2b, left box). These 

primary cytokines have target genes enriched in the NFKB signaling pathway (Extended 

Data Fig. 2b). The target chemokines of this group may attract or activate pro-inflammatory 

immune cells, such as neutrophils, fibroblasts, and T cells28. We hereafter refer to this first 

group the “NFKB transcriptional group”.

The second group, including IFNG, IFN1 (IFNA and IFNB), IFNL, and IL27, trigger 

CXCL9, 10, 11, and TRAIL (Fig. 2b, right box). These primary cytokines are known to be 

interferon-related because IL27 has similar downstream transcriptional profiles with IFNG20 

through STAT1 signaling21. Their secondary targets are chemokines for activated T cells 

(CXCL9, 10, 11)25, or pro-apoptotic signals released by effector T cells (TRAIL)28. We 

hereafter refer to this second group as the “interferon transcriptional group”.

Besides regulating a ligand, cytokines can also modulate receptor activity as an alternative 

means of cascade regulation. For example, CytoSig finds that Activin A activates CXCR4 

while GMCSF represses CXCR4 (Fig. 2a, b). This result is consistent with previous studies 

of the CXCR4 regulation29,30. Regulation of receptors in this way appears less frequent than 

ligand regulation: we observed just 4 out of 183 (2.2%) annotated receptors that had a logFC 

greater than two, whereas 33 out of 253 (13%) annotated ligands have a logFC larger than 

two (Fig. 2b).

The CytoSig Data Reveal Anti-Inflammatory Cytokines

In contrast to cytokines that induce secondary cytokines and chemokines, IL4 and BMP6 

repress other pro-inflammatory molecules, such as IL1B, CXCL1, 8, and CCL2 (Fig. 2b 

and Extended Data Fig. 2a). Gene Set Enrichment Analysis (GSEA) on target genes of IL4 

and BMP6 revealed a depletion of inflammatory response pathways (Extended Data Fig. 2b, 

c). IL4 is a well-known anti-inflammatory cytokine that inhibits certain immune processes, 

although it may also cause allergic inflammation in a context-dependent manner31.

Besides IL4 and BMP6, which directly suppress the transcription of downstream cytokines 

and chemokines, other anti-inflammatory molecules may counteract inflammation by 

alternative mechanisms. For example, a previous study in mouse models demonstrated 

that TGF-beta signaling directly targets cytotoxic T-cell functions in mice32. Indeed, our 

collected data shows that TGFB1 treatment in human T cells significantly down-regulates 

granzyme A (GZMA), B (GZMB), and Perforin (PRF1), which induce cell death in target 
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cells attacked by T cells (Fig. 2c). Flow cytometry analysis in human and mouse primary T 

cells validated the inhibitory effect of TGFB1 on GZMA, GZMB, and PRF1 (Fig. 2d, e and 

Extended Data Fig. 2d (gating strategy)). Therefore, our data can reveal broad categories of 

anti-inflammatory cytokines.

We next examined how cytokines cooperate with and antagonize each other with respect 

to target genes across the human genome. To test whether pairs of cytokines co-regulate 

target genes, we enumerated genes with significant logFC values from both cytokines under 

analysis. Then, we compared the gene counts against values when gene labels are shuffled 

to compute false discovery rates (FDR) (Online Methods). We defined significant results 

with an FDR threshold of 0.05 (Fig. 3a). In 86% of statistically significant cases, cytokine 

pairs either enhance or repress target genes in concert (Fig. 3b). For example, TNFA and 

IL1B induce a similar set of genes and also repress a similar set of genes when investigating 

average targets across all models in our data collection (Fig. 3a, left panel).

In 14% of the statistically significant cases, cytokines exhibit an antagonistic relationship, 

meaning that they have opposite signaling effects on downstream targets (Fig. 3b). For 

example, IL4 and BMP6 downregulate many targets induced by IL1B and TNFA (Fig. 3a 

and Extended Data Fig. 3a). We also observed a similar relationship among four other 

cytokines: the IFNG target genes are antagonized by IL10 and GCSF but enhanced by 

IL27 (Extended Data Fig. 3b). Thus, our target co-regulation analysis identified four major 

anti-inflammatory regulators (IL4, BMP6, IL10, and GCSF), which antagonize chiefly pro­

inflammatory molecules in two groups (Fig. 3c, d), which we referred to as the NFKB and 

interferon transcriptional group (Fig. 2b).

BMP6 Antagonizes Pro-Inflammatory Cytokine Target Genes

Previous work demonstrated that IL4 could inhibit NFKB transcription programs33, 

explaining the antagonistic relationship between IL4 and cytokines in the NFKB group. 

A previous study demonstrated that BMP6 could inhibit the CCL2 mRNA level induced by 

TNF34. However, to the best of our knowledge, no previous studies have reported BMP6 as 

an anti-inflammatory molecule that antagonizes many proinflammatory targets.

Our analysis indicated that BMP6 may antagonize the effect of IL1B through down­

regulating IL1B-induced pro-inflammatory chemokines, with CXCL8 and CCL2 as the most 

significant targets (Fig. 3a). To validate our prediction, we first evaluated the intracellular 

protein levels of CXCL8 and CCL2 upon IL1B and BMP6 treatments by flow cytometry 

in two human lung epithelial cell lines A549 and NCI-H1299. Consistent with our data 

analysis, BMP6 treatment significantly inhibits the IL1B induction of CXCL8 and CCL2 

(Extended Data Fig. 4a–c). ELISA assays also indicated that levels of soluble CXCL8 and 

CCL2 are consistently lower in cells treated with BMP6+IL1B compared to IL1B alone 

(Extended Data Fig. 4d, one-sided Wilcoxon signed-rank p-value = 0.016).

CytoSig Predicts Signaling Activities from Expression Data

Since the cytokine response data in our collection reflect signaling relationships in human 

tissues (Fig. 1e), we created the CytoSig model to predict signaling activities using 

the transcriptome profile of an input sample. The output of CytoSig is different from 
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standard cytokine assays such as ELISA, which measure cytokine levels instead of cytokine 

target activities. CytoSig utilized the ridge regression to search for features in an input 

transcriptome profile that can be explained by a cytokine’s influence on its target gene 

expression (Extended Data Fig. 5 and Online Methods).

As described in the introduction, redundancy and pleiotropy are major obstacles to modeling 

cytokine activity. To account for complications from signaling pleiotropy, our model only 

aims to predict each cytokine’s overall activity, instead of its effects on individual genes or 

pathways. We analyzed each cytokine’s composite signature averaged across at least five 

independent experiments. Significant enrichment of the composite signature of a cytokine in 

the input sample’s transcriptome should indicate the presence of signaling events. To address 

signaling redundancy, we utilized a penalized linear model that avoids reporting a cytokine 

as active if other cytokines with similar composite signatures have influenced target gene 

expression to a greater extent. For any input profile, our model reports a significant score 

for a cytokine only if predicted activities are significantly higher than expected by chance 

(Online Methods).

Accuracy Validation by Cytokine-Blocking Clinical Response

To test the model accuracy, we reasoned that the patient’s clinical response upon cytokine 

blocking therapies should reflect authentic cytokine activities in human tissues. Therefore, 

we compared CytoSig predictions of cytokine activities with transcriptomic data before and 

after cytokine-blocking therapies in inflammatory diseases (Supplementary Table 3). For 

example, a microarray study measured the whole blood transcriptome of arthritis patients 

at baseline and day 3 after anti-IL1B Canakinumab treatmentand evaluated the therapy 

response at day 15 post-therapy35. Upon IL1B neutralizing therapy, the IL1B activity 

reduction at day 3 predicted by CytoSig correlates significantly with the patient clinical 

response evaluated at day 15 (Fig. 4a). For another example, an IFNA vaccine trial among 

systemic lupus patients profiled both whole blood transcriptomes and clinical response as 

the titer of IFNA neutralizing antibodies in blood after immunization36. The IFN1 activity 

reduction predicted by CytoSig correlates significantly with the clinical response across 

patients (Fig. 4b).

Among all cytokine-blocking studies collected from GEO and ArrayExpress databases, 

CytoSig predicted the activity reduction score to be at least negative one (one standard 

deviation below zero) for 85% cytokines (Fig. 4c). The accuracy dropped to 0% when gene 

labels are permuted in the model. These results supported the reliability of CytoSig on 

cytokine activity prediction in human tissues and demonstrated the clinical utility to guide 

therapy decisions.

Accuracy Validation on TGF-beta Isoform-Specific Activities

CytoSig predicts different activities for cytokines from the same family sharing receptors, 

such as TGFB1 and TGFB3. The validation in the previous section established that CytoSig 

can perform with high accuracy on a broad set of cytokines. To validate the accuracy of 

CytoSig’s predictions of signaling activities among cytokine isoforms sharing the same 
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receptors and similar downstream pathways, we performed in-vivo experiments with the 4T1 

breast cancer mouse model using neutralizing antibodies against TGF-beta isoforms.

Specifically, we profiled the transcriptomes of mouse 4T1 tumors treated with neutralizing 

antibodies targeting all TGF beta isoforms and antibodies targeting only TGFB1, 2 (but 

not TGFB3). The differential profile between pan-TGFB and TGFB1,2 antibodies can 

reflect the anti-TGFB3 effects because the TGFB3 isoform is the differential target between 

two antibodies. CytoSig predicts a significant reduction of TGFB1 activity based on the 

differential transcriptomic profiles upon treatments for both anti-TGFB antibodies, and a 

significant reduction of TGFB3 activity only for the anti-TGFB3 profile (Fig. 4d).

Accuracy Validation in Tumors and Cancer Therapy Response

To further evaluate CytoSig model accuracy, we utilized the International Cancer Genome 

Consortium (ICGC) tumor cohort37, which has no overlap with the previous TCGA and 

GTEx data in model training. We assumed that tumors with ligand or receptor expression 

levels higher than one standard deviation above the average level in the entire dataset reflect 

positive activity for that cytokine. Under this assumption, we evaluated the accuracy of 

CytoSig on predicting samples with significant cytokine signaling activities. Based on the 

Receiver Operating Characteristic (ROC) curve and area under the ROC curve (AUC), 35 

out of 43 cytokines have a performance significantly better than chance (Extended Data Fig. 

6a, b). Therefore, the CytoSig model can predict target activities of most cytokines.

We also evaluated the CytoSig model in predicting the clinical outcome of anticancer 

therapies that inhibit cytokine signaling. Vascular endothelial growth factor (VEGF)blocking 

is a category of treatments inhibiting either VEGF ligands or receptors from promoting 

abnormal angiogenesis in tumors38,39. As the cancer driver, the pre-treatment target pathway 

activity may predict targeted therapy efficacy and patient survival after treatment40. We 

found that high VEGF signaling activities predicted by CytoSig in pre-treatment tumors, 

using data from two clinical studies38,39, are highly predictive of longer survival outcomes 

upon blocking the VEGF pathway through either ligand (Bevacizumab) or receptors 

(Sunitinib, inhibitor of multiple receptor tyrosine kinases, including VEGF receptors) (Fig. 

4e).

Immune checkpoint blockade is another treatment category whose responses depend on 

cytokine signaling by IFNG41. PDL1 is a target gene induced by IFNG signaling42; thus, 

we evaluated the association between IFNG activity in pre-treatment tumors and the anti­

PDL1 therapy response, using data from an anti-PDL1 clinical trial in urothelial cancer43. 

IFNG activity predicted by CytoSig is highly predictive of overall survival outcome upon 

anti-PDL1 (Extended Data Fig. 6c). Moreover, for both anti-VEGF and anti-PDL1 clinical 

studies, the CytoSig predictions had better associations with the clinical outcome than other 

approaches, such as ligand or receptor expression and gene set signatures (Extended Data 

Fig. 6d).

Accuracy Validation in Single-cell Transcriptomic Data

Encouraged by the reliable performance on bulk data, we further evaluated the capability of 

the CytoSig to predict signaling activities in single cells. The ideal evaluation standard for 
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CytoSig predictions in single cells would be a method providing systematic measurements 

of both transcriptome and cytokine activities in each single cell. However, no such method 

currently exists to our knowledge. To validate the accuracy in single-cell data, we utilized 

transcription factor (TF) activities as indicators of active cytokine signaling (Supplementary 

Table 4).

We computed TF activities for a single-cell transcriptomic profile using the RABIT 

framework, which leverages an extensive collection of ChIP-Seq profiles to predict TF 

activities through transcriptional patterns of TF target genes44. For example, using data from 

a COVID-19 single-cell study45, RABIT predicted that most CD8 T cells have a positive 

STAT1 TF activity, reflected as a higher expression level of STAT1 ChIP-Seq target genes 

compared to other genes (Fig. 5a). A minor CD8 T cell population has negative STAT1 

TF activity. Consistent with the dependence of interferons and IL27 on STAT1 signaling 

(Supplementary Table 4), cells with positive TF activities have significantly higher signaling 

activities from the CytoSig model than cells with negative TF activities (Fig. 5a).

We utilized a receiver operating characteristic (ROC) curve to measure the CytoSig’s ability 

to predict TF activities based on the predicted cytokine activity. We found that the activity 

of CD8 T cell effector cytokines, including interferons and TNF, all predict downstream TF 

activities better than random (Fig. 5b). Using the area under the ROC curve (AUC), we next 

evaluated cytokine activities’ predictive performance on their downstream TF activity for all 

cell types in the COVID-19 single-cell study. The AUC metrics are consistently higher than 

expected by chance for ten out of eleven pairs of cytokines and downstream TFs (Fig. 5c 

and Supplementary Table 4). We observed similar high performance in another cancer study 

(Extended Data Fig. 7a). We performed such evaluation on 18 single-cell datasets and found 

that AUC metrics are consistently higher than random (Fig. 5d).

CytoSig Identifies Signaling Markers of Severe COVID-19

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an 

urgent health crisis. The symptoms of coronavirus disease 2019 (COVID-19) range from 

mild fever, cough, and difficulty breathing to respiratory failure and death7. While more 

severe outcomes have been associated with an exaggerated immune response referred to as 

the cytokine storm, the immune-response mechanisms underlying the dramatic difference of 

disease severity remain unclear.

We applied CytoSig to analyze single-cell RNASeq data from bronchoalveolar lavage fluid45 

and peripheral blood46 of COVID-19 patients (Fig. 6a). These datasets are used earlier in 

this manuscript to establish reliable prediction accuracy in single-cell RNASeq data (Fig. 5c, 

d and Extended Data Fig. 7b). Many cytokine signaling activities are significantly associated 

with the severity differences in COVID19 symptoms. For example, among macrophages 

from lavage, IL10 activity is significantly higher in severe patients than mild and healthy 

controls (Fig. 6b, c, and Supplementary Table 5). In contrast, among CD8 T-cells from 

blood, the type I interferon (IFN1) activity is highest in mild patients relative to severe cases 

or healthy controls (Fig. 6d, e). This is consistent with previous studies reporting a lack 

of type I interferon response among both patients47 and cultured cells upon SARS-CoV-2 

infection48.
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Analysis of differential activity among severe, mild, and healthy individuals revealed 

a few cytokines as signaling markers of COVID-19 symptom severity. Among severe 

COVID-19 patients, we found elevated IL1B activities in macrophages, the most populous 

cell type from bronchoalveolar lavage fluid45 (Fig. 6f). This result of IL1B activation 

in macrophages is consistent with previous reports7. Meanwhile, IL10 has high activities 

among severe patients in lavage and blood myeloid cells, including macrophage, monocytes, 

and neutrophils (Fig. 6g and Extended Data Fig. 8), a result also consistent with published 

studies49,50. IL10 is known to inhibit antigen presentation by dendritic cells to cytotoxic 

T cells, thus impairing T cell-mediated antiviral immunity51. IL10 can also suppress 

macrophage activation for fighting against intracellular pathogens52. Thus, in severe 

COVID-19 cases, the cytokine environment may compromise the antiviral immune response 

while triggering pathological inflammation. We observed that monocytes and macrophages 

have high expression levels of IL10 and IL1B, thus potentially serve as cytokine producing 

cells (Extended Data Fig. 9).

CXCL8 as Candidate Therapeutic Target for Severe COVID-19

Direct IL1B or IL10 blockade may compromise the antiviral response53 or fail to alleviate 

inflammation54. Therefore, inhibition of downstream targets could serve as alternative 

approaches. With this in mind, we analyzed the downstream targets induced by IL1B or 

IL10. We found that IL1B target CXCL8 have higher expression levels in macrophages from 

lavage samples of patients with severe COVID-19 (Extended Data Fig. 10). Meanwhile, in 

blood neutrophils, IL10 target CXCL1 has higher expression levels among severe patients 

than mild cases and healthy controls (Extended Data Fig. 10).

CXCL1 and CXCL8 all bind to the CXCR2 receptor and serve as primary chemokines in 

neutrophil recruitment. A high neutrophil-to-lymphocyte ratio in peripheral blood indicates 

severe disease and organ failure55. Aberrant formation of neutrophil extracellular traps may 

contribute to severe damage to the lung parenchyma in COVID-1956. A phase I clinical trial 

evaluated the CXCL8 blocking antibody in treating solid tumors and has not observed any 

dose-limiting toxicities57, which indicates the potential of therapy repurposing.

Discussion

We have introduced CytoSig, a data-driven platform to model cytokine activities. CytoSig 

complements existing cytokine release assays because it can predict cytokine target activities 

from bulk transcriptomic data available from many large-scale cohorts and single-cell RNA­

seq data that provides resolution down to individual cells. The acquisition of both types of 

data is now routine, making CytoSig useful to a broad spectrum of research questions.

CytoSig offers particular advantages in analyzing single-cell data because it is not affected 

by the absence of cytokine-producing cells or zero read counts for ligand or receptor 

genes. This advantage is especially important because current single-cell technologies have 

difficulty capturing some cell types, such as neutrophils58. Many studies also sort cells 

using markers such as CD45, which may exclude cytokine-producing cell populations. 

Moreover, the dropout events, reflected as zero read counts, on transiently expressed 
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cytokine genes further complicate analysis. The CytoSig model uses a reliable alternative 

strategy, analyzing receiver cells’ transcriptional patterns across many cytokine target genes.

A limitation of CytoSig is the ascertainment bias of public datasets, which leads to many 

experiments on a few cytokines, cell models, or experimental conditions, and a lack of 

data on others. There are currently 67 human cytokines, 42 chemokines, and 133 growth 

factors annotated in the literature28. However, our collection from public databases captures 

high-quality profiles for 43 of the 242 documented molecules (17.8%) due to the lack of 

data available for most signaling molecules. Also, most datasets were generated through a 

few models, such as monocytes or fibroblasts, without sufficient coverage on diverse cell 

lineages. Such a gap indicates a need for attention on a broad range of cytokines and cell 

models beyond a few deeply studied molecules and systems.

Despite these limitations, the CytoSig platform provides biologists and clinicians with 

a powerful resource to study signaling activities in laboratory or clinical samples. 

Furthermore, independent of CytoSig, the Framework for Data Curation (FDC) is a general 

resource for data scientists to accelerate data curation projects. Using the FDC, our plans 

to continuously integrate new datasets will provide the community with an ever-growing 

repository for generating new biological insights.

Online Methods

The Framework for Data Curation (FDC) from Public Databases

The FDC aims to automate the data curation process as much as possible with two 

components: 1, semi-automated metadata annotation; 2, automatic gene expression matrix 

extraction. Databases processed by FDC include ArrayExpress (AE)15, Gene Expression 

Omnibus (GEO)14, European Nucleotide Archive (ENA)13, and Sequence Read Archive 

(SRA)12. The FDC server is built using Python 3 and Dango 3 frameworks with MySQL 8 

as the database backend. The natural language processing functions are created in the web 

browser frontend using the jQuery 3 Javascript library.

The first FDC component for metadata annotation utilizes a three-stage approach. In the 

first stage, the users should query the GEO and AE databases with keywords related to 

their biological topic. The SRA and ENA metadata are available through the GEO and AE, 

respectively. The database query will generate a list of candidate datasets. After uploading 

the candidate list to FDC, the users can define pattern-matching rules, implemented as 

regular expressions59, to narrow down query results. In the second stage, users should 

browse study summaries and determine which datasets are relevant to their study topic. To 

accelerate the process, users could define a set of highlighting rules, implemented as regular 

expressions59, so that curators only need to focus on the most relevant texts.

In the third stage, users will extract metadata fields for each experimental profile. The 

FDC aims to reduce human manual edits as much as possible, with automatic rules and 

text transformation functions defined by users. FDC will automatically parse each sample’s 

study design information and summarize all potentially relevant fields in a candidate table. 

The users can define a set of automatic mapping rules to convert aliases, such as biological 
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molecule and cell model names, to their standard names. FDC also provides automated 

functions to extract and transform text information from candidate metadata columns. Based 

on these functions, curators will standardize metadata columns into controlled vocabularies.

The second FDC component can automatically extract MicroArray and RNA-Seq public 

databases. For Affymetrix MicroArray data on the AE and GEO, we generated expression 

matrices from CEL files through the R Oligo package60. For other MicroArray platforms, 

we downloaded the processed data through the R GEOquery61 and Python Orange62 

packages for GEO and ArrayExpress, respectively. For RNASeq data from the ENA and 

SRA databases, we downloaded the fragments per kilobase of transcript per million mapped 

(FPKM) data through the RNASeq-ER Application Programming Interface63. In total, our 

framework extracted 27,181 independent human transcriptomics datasets deposited before 

February 2nd, 2020. Many datasets from public repositories are not gene expression studies, 

thus cannot be automatically analyzed by the second FDC component. However, the first 

FDC component can still assist the metadata annotation for non-transcriptomic data.

Besides the two primary components introduced above, FDC also provides other assistant 

modules, such as curator management for a project and result proofreading panels if project 

managers want to review the annotations from curators. With the standardized metadata 

matrix from the first component and gene expression matrix from the second component, 

users can perform algorithmic data analysis for their biological topics.

Collection of Human Cytokine Response Data Based on FDC

In the first step, we queried names and aliases of human cytokine, chemokine, growth 

factors28, and a few immune-suppressive signals in the tumor microenvironment64 through 

the query interface of GEO and ArrayExpress. The SRA and ENA metadata are available 

through the GEO and ArrayExpress, respectively. Our query returned 9271 candidate series, 

and 5186 of them have processed data matrices from FDC. The other 4085 datasets do not 

have FDC-processed data due to several reasons. Some studies using NanoString platforms 

only focus on hundreds of genes instead of genome-wide. Some MicroArray or RNA-Seq 

studies may have corrupted raw data, leading to FDC extraction failures. We also excluded 

all micro-RNA and non-coding RNA studies.

In the second step, we recruited Ph.D. scientists with immunology training for data 

annotations based on the FDC. Curators have focused on data curation for several months. 

A second curator proofreads all annotations of the first curator and corrects errors. Most 

studies among the 5186 candidates only mentioned cytokines in their description but did 

not study the signaling response. The curators read descriptions of 5186 experiments and 

identified 962 of them as cytokine response studies, including 20591 non-redundant samples 

(Supplementary Table 1). Then, curators read descriptions of 20591 samples and label 

cytokine treatment, cell model, dose, and duration, using the semi-automated functions on 

the FDC. We established a set of control vocabularies about signal names, cell models, 

concentrations, and duration units.

Together with data matrices extracted and expert annotations, we generated differential gene 

expression profiles, defined as the log2 fold change (logFC) between treatment and control 
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conditions. We only kept experiments with biological replicates and acquired 2056 logFC 

vectors after merging biological replicates. Meanwhile, we merged IFNA and IFNB as 

IFN1, representing type 1 interferons, due to the high Pearson correlation of 0.698 between 

their composite profiles. We also combined IL36A and IL36B as IL36 due to the high 

correlation of 0.938 between their composite profiles.

Data Quality Control

To test the human physiological relevance of data collection, we defined a quality control 

metric as the Pearson correlation between expression levels of cytokine target genes and the 

ligands or receptors in independent human tissue data. We utilized the Cancer Genome Atlas 

(TCGA)18 and Genotype-Tissue Expression (GTEx)19 datasets. Each TCGA and GTEx 

sample measures a bulk tissue’s average expression that contains both producer and receiver 

cells for cytokines.

To measure the overall expression of target genes, we performed a linear regression for each 

pair of cytokine response and tissue expression profile as “tissue expression = A * cytokine 
profile + B,” and computed the cytokine profile’s target score as A / standard error(A) 
using the ordinary least squares65. The target score represents the enrichment of a response 

signature in the tissue expression profile. We then analyzed the Pearson correlation between 

the target score and ligand or receptor expression across tissue samples (Fig. 1e).

TCGA has 33 tumor cohorts, and GTEx has 27 tissue cohorts. For each cytokine profile, we 

utilized the one-sided Wilcoxon test to evaluate whether the correlations with the ligand or 

receptor are higher than zero across both TCGA and GTEx cohorts (false discovery rate < 

0.05 with the Benjamini-Hochberg correction). We only included 1307 profiles that passed 

the threshold in further analysis.

Target Cooperation and Antagonization Analysis between Cytokine Pairs

We compute false discovery rates (FDR) between each cytokine pair to test the statistical 

significance of co-regulating target genes. For each target gene C, there are three types of 

co-regulations from a cytokine pair.

1. cytokine A and B both induce target gene C.

2. cytokine A and B both suppress target gene C.

3. cytokine A (or B) induces target C, but the other cytokine B (or A) represses 

target C.

First, we defined two log2-fold change (logFC) thresholds of cytokine A and B for the FDR 

computation. For type 1 coregulation (Co-Enhance), we computed the FDR (thresA,thresB) 

as

Random Count  logFCA ≥ tℎresA, logFCB ≥ tℎresB /Gene Count logFCA ≥ tℎresA, logFCB ≥ tℎresB .

The gene count derives directly from the data. The random count is equal to
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N * Probability logFCA ≥ tℎresA * Probability logFCB ≥ tℎresB .

N as the total number of genes. We compute both probabilities from the logFC rank of each 

gene. In summary, the FDR computations are as follows:

N * Prob logFCA ≥ tℎresA * Prob logFCB ≥ tℎresB /Gene Count logFCA ≥ tℎresA, logFCB ≥ tℎresB

Similarly, for type 2 coregulation (Co-Repress), we compute the FDR as

N * Prob logFCA ≤ tℎresA * Prob logFCB ≤ tℎresB /Gene Count logFCA ≤ tℎresA, logFCB ≤ tℎresB

For type 3 coregulation (Antagonize), we compute the FDR as

N * Prob logFCA ≥ tℎresA * Prob logFCB ≤ tℎresB /Gene Count logFCA ≥ tℎresA, logFCB ≤ tℎresB

After computing the FDR at each threshold combination (thres_A, thres_B), we adjust FDRs 

into monotonically decreasing values with respect to increasing threshold values, following 

the q-value procedure66. Finally, for the triplet of each cytokine pair and target gene, its 

statistical significance is the FDR (logFC_A, logFC_B) under each coregulation category.

Penalized Linear Model to Predict Cytokine Target Activities

The CytoSig linear model is programmed through a combination of Python 3 and GNU 

Compiler Collection (GCC) 4 C++. We only included 43 cytokines with at least five high­

quality experiments (details in the Methods section Data Quality Control). We utilized a 

linear model to identify each signaling molecule’s signature patterns in an input sample’s 

expression profile. Composite profiles of cytokine response are the explanatory variables, 

and an input sample’s transcriptomic profile is the response variable. The regression 

coefficients represent cytokine target activities. The linear regression with all cytokine 

composite profiles as explanatory variables will reduce a cytokine’s coefficient if other 

cytokines with similar response profiles have more extensive impacts on the sample’s 

transcriptomic pattern67.

The expression values, from either RNASeq or MicroArray, should be transformed by 

log2(x+1). We also recommend quantile-normalization across conditions. Some software 

packages, such as RMA or DESeq, will automatically include all normalizations. We 

recommend input differential profiles between the two conditions. If data is from a sample 

collection without pairs, please mean-centralize the value of each gene across all samples.

Many cytokine profiles are highly similar (Fig. 1f); such signature collinearity will create 

large result variance in a regular linear regression65. Therefore, we utilized the penalized 

ridge regression, which trades off the result bias to reduce the variance. The vector y is the 

input sample’s expression profile. The matrix X contains composite profiles of 43 cytokines. 

The parameter λ is the penalty. The ridge regression aims to minimize the objective function 

(y – Xβ)T(y – Xβ) + λ * βTβ. The coefficient βrepresents signaling activities.
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To optimize parameters, we evaluated two types of model performance:

1, Prediction performance evaluates how the fitted model of cytokine activities predicts a 

sample’s gene expression profile. We use the five-fold cross-validation (CV) R2 ratio as the 

prediction performance metrics.

2, Inference performance evaluates whether coefficients on cytokine covariates of the fitted 

model represent the actual cytokine activities in a sample. We used the correlation between 

model coefficients and the ligand or receptor expression across samples as the inference 

performance metrics for each cytokine.

Typically, the training of ridge regression models only evaluates the prediction performance 

through cross-validation to determine the optimal penalization factor and coefficients65. 

However, we also evaluated the inference performance because the goal of CytoSig model 

is to infer cytokine signaling activities. The collinearity among cytokine response profiles 

may not affect the prediction performance but will induce significant variance on model 

coefficients65, thus undermining the inference performance. The penalty factor in the ridge 

model will reduce the model variance at the cost of lowering prediction performance. Thus, 

we aim to find a penalty factor as a trade-off between two performance aspects.

On average, the CV R2 metric reaches its maximal point at a low penalty factor and 

deteriorate while the penalty factor is increasing (Extended Data Fig. 5a, b). In contrast, 

the inference performance, measured as correlation values, monotonically increases with 

increasing penalties (Extended Data Fig. 5c, d). Therefore, we select a value of 10000, 

which is the minimal lambda to achieve 80% best inference performance and 70% best 

prediction performance. Such a penalty will control both result variance and bias in the ridge 

regression.

We also evaluated XG Boost, a popular machine learning algorithm68 (Extended Data Fig. 

5). The XG boost with tree learners outperformed ridge regression in prediction but does 

not provide any coefficients on cytokine covariates for the inference purpose due to the tree 

structure of learners. The prediction performance of XG boost with linear learners quickly 

deteriorates to zero with increasing penalties although it has a high inference performance. 

Ridge regression is the only method with reasonable performance in both prediction and 

inference metrics.

We utilized a permutation test to estimate ridge coefficients’ standard errors after shuffling 

gene identities 1000 times. The z-scores (coefficient - random_average_coefficient) / 

standard_deviation on each cytokine represent its target activity.

T-cell activation and TGFB1 treatment assay

Human primary T cells are sourced from Hong Kong Red Cross Transfusion Service. 

Peripheral blood mononuclear cells (PBMC) were isolated from healthy donors using the 

Ficoll Paque Plus (GE healthcare # 17-1440-03) via density gradient centrifugation. CD8 

T cells were purified from fresh PBMC by magnetic negative selection using the human 

CD8 T cell isolation kit (Miltenyi Biotec, Cat# 130-096-495). Isolated cells were stimulated 
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with the human T cell TransAct (Miltenyi Biotec, Cat# 130-111-160) in the presence or 

absence of human recombinant TGFB1 (R&D systems, 240-B-002) at 5 ng/mL for 72 hours. 

Cells were cultured in MACS GMP medium, which is TexMACS GMP medium (Miltenyi 

Biotec, Cat# 170-076-309) supplemented with 10% inactivated fetal bovine serum (Gibco, 

10082147), 50uM 2-mercaptoethanol (Gibco, 21985023), 10 mM N-Acetyl L-cysteine and 

1% Penicillin-Streptomycin (P/S, Gibco, 15140122) at 1E6 cells/mL.

Mice CD8 T cells were isolated from splenocytes of one 8-week male C57BL/6J mouse 

using the CD8a T cell isolation kit (Miltenyi Biotec, Cat# 130-104-075) by magnetic 

negative selection. Isolated CD8+ T cells were stimulated with plate-bound anti-mouse CD3 

(Biolegend, Cat# 100202, clone 17A2) at 5 ug/mL (1:100 dilution) and soluble anti-mouse 

CD28 (Biolegend Cat# 102102, clone 37.51) at 2 ug/mL (1:250 dilution) in the presence 

or absence of human recombinant TGFB1 (R&D systems, 240-B-002) at 5 ng/mL for 

72 hours. Cells were cultured in complete RPMI 1640 medium, which is RPMI 1640 

Medium (Gibco, 11875119) supplemented with 10% inactivated fetal bovine serum (Gibco, 

10082147), 20 mM HEPES (Gibo, 15630080), 1 mM sodium pyruvate (Gibco, 11360070), 

50uM 2-mercaptoethanol (Gibco, 21985023), 2 mM L-glutamine (Gibco, 25030024), and 

1% Penicillin-Streptomycin (P/S, Gibco, 15140122) at 1E6 cells/mL.

Human inadequate whole blood was collected with informed consent and protocols 

approved by the ethics committee at the University of Hong Kong and the Hong Kong 

Red Cross Blood Transfusion Service. Animal experiments were approved by the committee 

of the Use of Live Animals in Teaching and Research at the University of Hong Kong 

(HKU) and performed strictly according to the animal protocol 5310–20. C57BL/6J mice 

were purchased from the Laboratory Animal Unit (LAU) of HKU.

BMP6 and IL1B in-vitro treatment combinations

NCI-H1299 (ATCC #CRL-5803) and A549 (ATCC #CCL-185) cells were purchased 

from American Type Culture Collection (ATCC). NCI-H1299 cells are cultured in high 

glucose DMEM medium (Gibco) supplemented with 10% Fetal Bovine Serum (FBS, Gibco 

BRL) and 100IU/mL penicillin/streptomycin (P/S). Human A549 cells are cultured in 

F12-K medium (ATCC, 30–2004) supplemented with 10% FBS and 100IU/mL penicillin/

streptomycin (P/S).

NCI-H1299 and A549 cells were seeded in 6-well-plate at the density of 2E5 cells/well. On 

the next day, cells were treated with human recombinant IL1B (R&D systems, 201-LB-005, 

10 ng/mL) alone or in combination with human recombinant BMP6 (R&D systems, 507­

BP-020, 10 ng/mL) for 12 hours. In an alternative sequential treatment schedule, cells were 

pre-treated with IL1B first for 12 hours, then BMP6 or Media control for another 12 hours. 

Reconstitution buffers of the IL1B (PBS containing 0.1% BSA) and BMP6 (4 mM HCl 

containing 0.1% BSA) were used as negative controls.

Flow cytometry

For the evaluation of intracellular markers on A549 and H1299 cells, the following 

antibodies were used at indicated dilutions:
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PE anti-human PRF1 (Biolegend, 353303, clone B-D48, 1:50 dilution),

PE anti-mouse PRF1 (Biolegend, 154305, clone S16009A, 1:50 dilution),

PE anti-human GZMA (Biolegend, 507206, clone CB9, 1:50 dilution),

PE anti-mouse GZMA (Biolegend, 149703, clone 3G8.5, 1:100 dilution),

FITC anti-human/mouse GZMB (Biolegend, 515403, clone GB11, 1:50 dilution),

APC anti-human/mouse MCP-1 (CCL2, Biolegend, 505909, clone 2H5, 1:200 dilution),

FITC anti-human CXCL8 (Biolegend, 511406, clone E8N1, 1:50 dilution).

Cells were fixed before permeabilization per the manufacturer’s instructions of wash buffer 

(Biolegend, 421002), and followed by intracellular staining with the antibodies. Flow 

cytometry was performed on ACEA NovoCyte Quanteon and raw data was analyzed using 

Flowjo software (Version 10.7).

To determine the gating threshold to detect marker positive cells, we used the forward scatter 

height (FSC-H) and side scatter height (SSC-H) for dead cell and debris removal. FSC-H/

width and SSC-H/width are used to select single cells. We include unstained cells to define 

the threshold that separates positive populations from negative control cells (Extended Data 

Fig. 2d and Extended Data Fig. 4c).

CXCL8 and CCL2 detection by Enzyme-linked immunosorbent assay (ELISA)

A549 cells were seeded in 6-well-plate at the density of 2E5 cells/well. On the next day, 

cells were treated with human recombinant IL1B (R&D systems, 201-LB-005, 10 ng/mL), 

human recombinant BMP6 (R&D systems, 507-BP-020, 10 ng/mL), and combinations of 

IL1B and BMP6 for 24h. Reconstitution buffers of the IL1B (PBS containing 0.1% BSA) 

and BMP6 (4 mM HCl containing 0.1% BSA) were used as negative controls.

The amount of released CCL2 and CXCL8 from tumor cells in the supernatants was 

measured by ELISA assay using human CCL2 DuoSet ELISA kit (R&D systems, DY279) 

and human CCL2 DuoSet ELISA kit (R&D systems, DY208). Optical density (OD) value 

was determined using a microplate reader (TECAN, Infinite 200) at 450 nm wavelength with 

the correction wavelength set at 570 nm.

Upon treatment combinations of IL1B and BMP6 after 24 hours, supernatants from different 

conditions were 200X diluted and measured. The experiment was repeated independently 

in three batches. In each batch, a standard curve was created to measure the relationship 

between fluorescence values and seven 2X concentration dilutions from 2000pg/ml and 

1000pg/ml for CXCL8 and CCL2, respectively. The In(concentration + 1) and fluorescence 

values follow a linear relationship. We fitted a linear regression model to convert the 

fluorescence measurements to concentrations.
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Anti-TGFB Animal Studies

XOMA068 (pan-TGF-β1,2,3), XOMA089 (TGF-β1,2 selective), and anti-KLH (control) 

antibodies, supplied by XOMA Corp (Berkeley, CA), were all fully human IgG2(κ) 

antibodies generated by phage display and affinity maturation in our previous study69. 

Briefly, fully human antibody phage display libraries were used to discover a number 

of antibodies that bind and neutralize various combinations of TGFβ1, 2, or 3. The 

primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; 

therefore, an antibody that displayed potent TGFβ 1, 2 inhibition but more modest affinity 

versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further 

screening. This process yielded the high-affinity pan-isoform neutralizing clone. Antibodies 

were diluted in 10mM histidine, 142 mM L-arginine, pH6.0 buffer “vehicle” for in vivo 
studies.

Animal studies were conducted under protocol LC-070, approved by the Animal Care and 

Use Committee of the National Cancer Institute (NCI), Bethesda, MD. The animals are on 

a 12:12 light: dark cycle. The ambient temperature is 72F +/− 2F, and the humidity is kept 

between 30–70%. 40,000 4T1 mouse mammary tumor cells were surgically implanted into 

four mammary fat pads of 8 week old female BALB/c mice. From day one after surgery, 

mice were treated with anti-TGFB antibodies at 5mg/kg intraperitoneally three times per 

week for two weeks. Tumors were surgically resected on day 13 when they reached 0.8–1cm 

in diameter and were snap-frozen for molecular analysis. The NCI ethics committee requires 

that animals must be euthanized at the time of observation if the tumor size is approaching 

20 mm, in any dimension. None of the tumors in our experiment exceeded this limitation.

RNA was isolated from tumor samples using the RNeasy method (Qiagen) according to 

the manufacturer’s instructions following tissue lysis with a Precellys 24 Homogenizer 

(Bertin Instruments). Tumor RNA that passed quality control (RIN>7) was sequenced on 

HighSeq2500 using Illumina TruSeq v4 chemistry, generating 50–100 million pass-filtered 

reads per sample. There are 6 mice in the XOMA089 group, 7 mice in the XOMA068 group 

and anti-KLH group. No data points were excluded from the analysis.

Identification of Signaling Signatures in COVID-19 Severe Symptoms

For each single-cell dataset, we computed the cytokine activities for individual cells using 

the CytoSig model and got the mean value for each cell type in each patient. Then, for 

each cell type, we compared activities between different patient groups using the two-sided 

Wilcoxon rank-sum test and converted the p-values to false discovery rates (FDR) by the 

Benjamini-Hochberg correction. FDR 0.05 is the threshold for the result significance.

For the COVID-19 study on bronchoalveolar lavage45 and peripheral blood46 samples, 

we performed comparisons between severe and mild patients, and between disease 

(severe+mild) and healthy individuals. Our analysis only reported results identified in both 

comparisons with FDR less than 0.05. We made an exception for the analysis of neutrophils. 

Among neutrophils from peripheral blood, a few cytokines’ signaling differences between 

severe and mild patients achieved a statistical significance of FDR 0.051. We believe these 

results are still significant, thus reported them in our analysis.
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We used the original coordinates of two-dimensional embedding from each publication 

(plotted in Fig. 6b, d). The bronchoalveolar lavage study45 utilized t-SNE (t-distributed 

stochastic neighbor embedding) that projects the single-cell RNASeq profiles in two 

dimensions with distances between dots representing the profile similarities. The peripheral 

blood study46 utilized the UMAP (Uniform Manifold Approximation and Projection), a 

dimension reduction approach.

Statistics & Reproducibility

All comparisons between two groups utilized the two-sided Wilcoxon rank-sum test, a non­

parametric test without any assumptions on the data distribution. Similarly, all comparisons 

between group values and zero used the non-parametric Wilcoxon signed-rank test. No data 

were excluded from any analyses.

No statistical method was used to predetermine sample size. Instead, we selected a fixed 

sample size in the following experiments. In the in-vitro validation of TGFB1’s inhibitory 

role (Fig. 2e) and BMP6’s anti-inflammatory role (Extended Data Fig. 4), we utilized a 

sample size of three, the minimum number to achieve statistical significance of p-value <= 

0.05 in the two-sided Wilcoxon rank-sum test. All cell-culture replicates lead to reproducible 

successful results (Fig. 2e and Extended Data Fig. 4b, d). In the TGF-beta blocking 

in-vivo experiment (Fig. 4d), we used a minimal mouse number of six, suggested by a 

previous study to detect differential expression events through RNA-Seq70. Our recent study 

demonstrated that four tumors (smaller than our sample size 6) per condition would be 

sufficient to detect differentially expressed genes between conditions71.

Mouse identities were randomized before in-vivo experiments. Randomizations were not 

performed for in-vitro cell cultures because all conditions were derived from a homogeneous 

cell-line population. Blinding is not performed in our experiments because the robust 

phenotype of our results is based on strictly objective measurements by equipment instead 

of any human estimations. The outcome assessments include flow cytometry in Fig. 2e 

and Extended Data Fig. 4a–c, ELISA assay plate reader in Extended Data Fig. 4d, and RNA­

sequencing in Fig. 4d. None of these measurements involve human subjective perception.
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Extended Data

Extended Data Fig. 1. Curation of Human Cytokine Response Data
a, The histogram of experimental cell-type models among collected treatment profiles. 

For each cell-type model, we counted the number of differential expression profiles upon 

cytokine treatment in that model as the Profile Count.

b, The count of treatment response profiles for top-20 most frequently used cell models.

c, The histogram of treatment durations among collected treatment profiles. For each 

duration, we counted the number of differential expression profiles upon cytokine treatment 

with that duration as the Profile Count.

d, The count of treatment response profiles for top-20 most frequently used durations.

e, The histogram of experimental doses among collected treatment profiles. For each dose, 

we counted the number of differential expression profiles upon cytokine treatment with that 

dose as the Profile Count.

f, The count of treatment response profiles for top-20 most frequently used doses.

g, The association between cytokine response profiles’ quality and treatment duration. We 

evaluated the quality for each treatment response profile as the correlation of expression 
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levels between target gene scores and its ligand or receptor. Each dot represents one cytokine 

response profile with its treatment duration on the X-axis and median correlation across all 

TCGA or GTEx cohorts on the Y-axis. Activin A has high quality data with long treatment 

durations, while EGF has high quality data with transient treatment duration.

h, The composite profile quality depends on the number of independent experiments 
merged. Four cytokines have more than 100 response profiles passing quality filters. We 

evaluated the quality of composite profiles after down-sampling the number of independent 

experiments merged. The quality metric is the correlation of expression between target 

genes and its ligand (blue) or receptor (yellow). The dots and error bars represent the 

median and standard deviation from 100 randomizations. Black triangle dots represent the 

down-sampling point that achieves 90% of the highest correlation.

i, Similarities among IFNG response signatures from diverse cell models. An average 

response signature was computed for each cell model. Then, average response signatures 

were hierarchically clustered based on Pearson correlations.
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Extended Data Fig. 2. Target Genes in Response to Cytokine Treatments
a, Differential expression of target cytokines (x-axis) regulated by IL4 or BMP6 (y-axis). 
The thick line represents the median value. The bottom and top of the boxes are the 25th and 

75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile 

range. The difference between group values and zero among treatment profiles that passed 

quality controls was tested using the two-sided Wilcoxon signed-rank test, with p-values and 

sample counts labeled.

b, Gene set enrichment among cytokine response targets. The normalized enrichment 

score from the gene set enrichment analysis (GSEA)6 represents the overall enrichment 

of pathway members among target genes from each cytokine’s composite signature.

c, Normalized enrichment scores from panel b among pairs of hallmark categories and 
cytokines.

d, Gating strategy of flow analysis. The forward scatter height (FSC-H) and side scatter 

height (SSC-H) are used for dead cell and cell debris removal. FSC-H width and SSC-H 

Jiang et al. Page 23

Nat Methods. Author manuscript; available in PMC 2022 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



width are used to gate the single cells. We include unstained cells to define the gate 

threshold that separates positive populations and negative control cells.

Extended Data Fig. 3. Co-regulation between Cytokines on Target Genes
a, Target co-regulation between TNFA and other anti-inflammatory cytokines.

b, Target co-regulation between IFNG and other cytokines.
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Extended Data Fig. 4. BMP6 represses CXCL8 and CCL2 induced by IL1B
a, Representative plots of CXCL8 and CCL2 protein levels upon BMP6 and IL1B 
cotreatments in A549 cells. We utilized flow cytometry to measure CXCL8 and CCL2 

intracellular protein levels after 12-hour treatments with IL1B, IL1B+BMP6, and media 

control. The X-axis shows the signal intensity measured by flow cytometry. The Y-axis 

shows the A549 fraction distribution with modal normalization, scaling the maximum Y-axis 

value to 100%. The percentage of cells with signal intensity above the gate threshold 

(vertical line, panel c) is indicated.

b, Summary plots of CXCL8 and CCL2 protein levels upon BMP6 and IL1B treatments. 

In three cell-culture replicates, A549 and H1299 cells were treated either simultaneously 

or sequentially with combinations of BMP6 and IL1B. The mean fraction of cells with an 

intensity above the gate thresholds (defined in panel c) is plotted with standard deviations 

as error bars (n = 3 cell-culture replicates per condition). The two-sided Wilcoxon rank-sum 

test p-values were computed to compare groups.

c, Gating strategy of flow analysis. The forward scatter height (FSC-H) and side scatter 

height (SSC-H) are used for dead cell and cell debris removal. FSC-H width and SSC-H 

width are used to gate the single cells. We include unstained cells to define the gate 

threshold that separates positive populations and negative control cells.

d, CXCL8 and CCL2 soluble protein levels by ELISA in A549 cells. A549 cells were 

treated with BMP6 and IL1B in combinations for 24 hours. The mean soluble cytokine 
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levels were measured by ELISA with standard error of the mean as error bars (n = 3 

independent experiments).

Extended Data Fig. 5. CytoSig model selection
a, Prediction performance measured as the cross-validation (CV) R2 in TCGA cohorts. 

For each algorithm, median 5-fold CV R2 metrics across all TCGA datasets were shown 

at different penalty values with standard error of the mean (SEM) as error bands. The 

horizontal line indicates 70% of the optimal CV R2 of ridge regression. The vertical line 

marks the lambda value of 10,000, the penalty used in the CytoSig model.

b, Prediction performance measured as the cross-validation (CV) R2 metrics in GTEx 
cohorts, shown as panel a.

c, Inference performance measured as the correlation between model coefficients and 
cytokine expression in TCGA cohorts. For each algorithm, we computed the median 

correlation values between model coefficients and cytokine ligand or receptor expression 

at different penalty values, with SEM as error bands. The vertical line marks the Lambda 

value of 10000, which is the penalty reaching 80% of the optimal correlation. XG Boost 

with tree learner cannot be evaluated for inference performance because its tree structure 

cannot provide coefficients as cytokine response.

d, Inference performance measured as the correlation between model coefficients and 
cytokine expression in GTEx cohorts, shown as panel c.
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Extended Data Fig. 6. CytoSig Predicts Cytokine Activities in Tumors and Cancer Therapy 
Response
a, Receiver Operating Characteristic (ROC) curve of IFNG activity prediction. For each 

dataset from the ICGC, the ROC curve presents false-positive rates against true-positive 

rates at different IFNG activity thresholds.

b, Area under the ROC Curve (AUC) as the prediction accuracy. We computed the ROC 

curves for all cytokines following the procedure in panel e. Each bar represents the 

median AUC among all ICGC cohorts, with standard errors of the mean as error bars 

(n=9 independent datasets). The AUC baseline is 0.5, representing a random prediction. We 

applied the one-sided Wilcoxon signed-rank test to evaluate whether AUC values are higher 

than 0.5 for each signal, and converted p-values to false discovery rates (FDR) through the 

Benjamini-Hochberg correction.

c, IFNG activity predicts overall survival upon Atezolizumab treatment in urothelial 
carcinoma43. The Kaplan-Meier plot presents patient fractions (Y-axis) with different overall 

survival (X-axis) among pre-treatment tumors with high and low IFNG activities predicted 

by CytoSig. The activity cutoff is selected through maximizing the difference between high 

and low groups. The p-value was from the two-sided Wald test using continuous values 

without cutoffs.

d, Signaling activity computed by CytoSig better predicts clinical outcome than other 
metrics. We compared three approaches to compute cytokine activities, including expression 

levels of ligand, receptors, and CytoSig predictions. For IFNG activity, we also utilized a 

geneset signature developed by Merck to predict checkpoint blockade response41, as well as 

the PDL1 expression. The association between activity and survival outcome was computed 

as the Wald test z-score in Cox-PH regression.
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Extended Data Fig. 7. CytoSig Reliably Predicts Cytokine Activity in Single Cells
a, Result for a liver cancer cohort72 (n=11 cell types per boxplot). The thick line represents 

the median value. The bottom and top of the boxes are the 25th and 75th percentiles 

(interquartile range). The whiskers encompass 1.5 times the interquartile range.

b, Result for a COVID-19 peripheral blood cohort46 (n=15 cell types per boxplot). The 

boxplot is defined as panel a.
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Extended Data Fig. 8. Differential signaling activities from COVID-19 samples
The heatmap presents cytokines whose predicted signaling activities are significantly 

different among severe, mild, healthy individuals in a COVID-19 peripheral blood cohort46 

(false discovery rate < 0.05).
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Extended Data Fig. 9. Gene expression of cytokines with differential signaling activities from 
COVID-19 samples
IL1B and IL10 gene expression in diverse cell types. The violin plots present the expression 

of IL1B and IL10 in patient groups, with distributions smoothed by a kernel density 

estimator.
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Extended Data Fig. 10. Potential Therapeutic Targets to Overcome COVID-19 Induced Tissue 
Damage
a, Target genes of cytokines with elevated activities among severe patients. Arrow-headed 

edges indicate up-regulation, and flat-headed edges indicate down-regulation. For each cell 

type, red square nodes represent cytokines with high activity scores among severe patients, 

and blue diamonds represent anti-inflammatory signals with low activities. The network 

only includes targets whose expression values are significantly higher compared between 

severe and mild patients, and between disease and healthy controls.

b, Example of gene expression in different patient groups. The violin plots present gene 

expression distributions in patient groups, smoothed by a kernel density estimator. Examples 

from lavage macrophages45 are in the left, and peripheral blood neutrophils46 are in the 

right. Y axis indicated values from individual cells.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Curation of Human Cytokine Response Data
a, The Framework for Data Curation (FDC). The FDC can automatically process RNA-Seq 

and MicroArray transcriptomic data from public repositories. Then, with FDC’s natural 

language processing functions, curators read the metadata of each sample to annotate 

experimental conditions, including cytokine treatment, cell model, dose, and duration. The 

output is differential log2-fold change (logFC) upon treatment.

b, Two Uses of the CytoSig framework: 1, Query a gene name to view upstream cytokine 

regulators or downstream target genes (if the query is a cytokine); 2, Predict cytokine 

signaling activities through transcriptomic profiles using a linear regression model. (Input: 

the input transcriptomic profile of the sample as the response variable in regression; 

Signature: The average response signature of cytokines as explanatory covariates; Activity: 

the regression coefficients reflecting signaling activities.)

c, Count of treatment response profiles with biological replicates for different molecule 
types.

d, Example correlation between the expression of IL10 target genes and its ligand or 
receptor. Each dot represents a TCGA lung adenocarcinoma sample (n=513). The X-axis 

shows the expression of IL10 or receptor (IL10RA + IL10RB). The Y-axis presents 

the expression scores of IL10 targets from a monocyte treatment experiment. Pearson 

correlation (r) indicates the human physiological relevance of the current data.
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e, Distribution of target score correlations. Correlations were computed using all cytokine 

response profiles and TCGA or GTEx expression matrices. Distributions of correlations are 

shown by violin plots, smoothed by a kernel density estimator, for both real and randomized 

data through gene label permutations. The p-value, calculated with the one-sided Wilcoxon 

signed-rank test, represents the statistical significance of correlations being higher than zero. 

(n = 112 ligands and n = 111 receptors).

f, Similarity of signaling response profiles. We created a composite signature for each 

cytokine that consisted of the median logFC across all experiments and then calculated 

pairwise correlations between composite signatures for the hierarchical clustering. Red 

branches highlight the clusters of similar cytokines discussed in the manuscript.
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Fig. 2: Cross-Regulation Hierarchies within Cytokines
a, Differential expression of target cytokines (x-axis) in response to primary cytokines 
(y-axis). Each dot represents a treatment profile. Blue solid points are profiles that pass 

quality controls, with numbers labeled on the top of box-plots. The thick line represents 

the median value. The bottom and top of the boxes are the 25th and 75th percentiles 

(interquartile range). The whiskers encompass 1.5 times the interquartile range. The p-value, 

testing whether group values are different from zero, was calculated through the two-sided 

Wilcoxon signed-rank test.

b, Inter-cytokine regulation hierarchy. Between each pair of regulators (X-axis) and targets 

(Y-axis), the log2-fold change (logFC) values are the medians among profiles that passed 

our quality controls. The plot only includes regulators and targets with at least one logFC 
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larger than two. The upper heatmap includes target ligands, and the lower part includes 

target receptors with ligands in brackets. The NFKB and interferon transcriptional groups 

are labeled with boxes.

c, Differential logFC values of GZMA, GZMB, and PRF1 upon TGFB1 treatment, shown 

by violin plots, smoothed by a kernel density estimator. Each dot represents an independent 

profile. The p-value, testing whether the T-cell group values are different from zero, was 

calculated through the two-sided Wilcoxon signed-rank test (n = 11 independent treatment 

profiles for each gene).

d, Perforin intracellular levels measured by flow cytometry upon TGFB1 treatments in 
human primary CD8 T cells. The X-axis shows the signal intensity. The Y-axis shows the 

T-cell fraction with modal normalization, scaling the maximum Y-axis to 100%. Vertical line 

indicates percentage of T cells with signal intensity above the gate threshold (defined in 

Extended Data Fig. 2d).

e, Granzyme and Perforin protein levels upon TGF-beta treatments in human and mouse 
CD8 T cells. The mean percentage of T cells with an intensity above the gate threshold is 

shown, with standard deviations as error bars (n = 3 cell-culture replicates per condition). 

The two-sided Wilcoxon rank-sum test was used to compare groups.
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Fig. 3: Antagonizing Interactions between Cytokines on Target Genes
a, Co-regulation between IL1B and other cytokines on target genes. Each dot represents 

a target gene. The X and Y axes show the median log2-fold change (logFC). Blue (co­

enhance) represents targets with significant positive values on both axes (false discovery rate 

< 0.05). Green (co-repress) represents targets with significant negative values on both axes. 

Orange (antagonize) represents targets with a significant positive score from one signal and 

a negative one from the other. Selected antagonized targets are labeled.

b, Fractions of cytokine co-regulation type. For each cytokine pair and their targets, we 

counted the fractions of significant co-regulation in the three categories illustrated in panel a.

c, Antagonistic relationships among cytokines on target genes. Each flat-end edge indicates 

that the first cytokine represses targets of the second one. The edge width is proportional to 

the number of antagonized targets. The node pie chart represents the in and out degrees.

d, Antagonizing regulatory relationships between cytokines and anti-inflammatory signals. 

The heatmap presents the number of target genes induced by a cytokine (row) but repressed 

by an anti-inflammatory signal (column). The similarities are shown with the hierarchical 

clustering trees with Pearson correlation as the distance metric.
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Fig. 4: CytoSig Predicts Cytokine Activities in Human Diseases
a, IL1B activities in blood predict anti-IL1B therapy response in arthritis. Each dot 

represents a blood sample35. The X-axis shows patients with similar therapy responses. 

The Y-axis shows the IL1B activities predicted by CytoSig at an early time point, shown by 

violin plots smoothed by a kernel density estimator. Spearman correlation between clinical 

response in patient groups and the median IL1B activity with a two-sided t-test p-value is 

indicated.

b, IFN1 activity in blood correlates with antibody titer upon IFNA vaccine in systemic 
lupus. Each dot represents a blood sample. The X-axis presents the titer of IFNA antibody 

post immunization36. The Y-axis presents the IFN1 differential activity predicted by 

CytoSig. Spearman correlation between X and Y axes with a two-sided t-test p-value is 

indicated (n=36).

c, Predicted activity change upon anti-cytokine therapies. Each dot represents an anti­

cytokine therapy study in inflammatory diseases, with targets on the X-axis. Grey labels 

represent mouse model studies for cytokines without clinical data. The Y-axis presents the 

average differential activity between post- and pre-treatments. The accuracy is computed as 

the fraction of cytokines with median activity reduction smaller than one, with p-value from 

the two-sided Wilcoxon signed-rank test.

d, TGFB activity changes upon neutralizing antibody treatments. The first antibody inhibits 

all TGFB isoforms (123, 7 mice) and the second antibody inhibits only TGFB1 and 2 (12, 6 

mice). The anti-TGFB3 profile (123/12) was the differential profile between the pan-TGFB 

and the TGFB1,2 specific groups. The TGFB1 and TGFB3 activities predicted by CytoSig 

were shown by bar plots, with two-sided p-values from the permutation test with 10,000 

randomizations.
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e, VEGF activities in pre-treatment tumors predict anti-VEGF therapy response, in 

Sunitinib38 and Bevacizumab clinical studies39. The Kaplan-Meier plot presents patient 

fractions (Y-axis) with survival length (X-axis, progression-free or overall) among pre­

treatment tumors with high and low VEGFA activities predicted by CytoSig. The activity 

cutoff is selected through maximizing the difference between high and low groups. The 

p-value was from the one-sided Wald test using continuous values without cutoffs.
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Fig. 5: CytoSig Predicts Cytokine Activity in Single-Cell RNASeq Data
a, Single-cell signaling activities for STAT1-group cytokines among CD8 T cells using 
data from a COVID-19 study45. For each single-cell (dot), the X-axis shows the STAT1 

transcription factor (TF) activities. The Y-axis presents the average signaling activities 

among interferons and IL27. The color brightness indicates the local dot density. The 

p-value was calculated through the two-sided Wilcoxon rank-sum test, comparing cytokine 

activities of single cells with positive (n=1323) and negative (n=117) STAT1 activities.

b, Receiver operating characteristic (ROC) curves for CD8 T cell effector cytokines. The 

ROC curve presents false positive rates against true positive rates of TF activity prediction at 

different cytokine activity thresholds using the data in panel a. The diagonal line represents 

random expectation.

c, Accuracy of single-cell cytokine activities prediction. The area under the ROC curve 

(AUC) for each cell type was computed for each TF and its cytokine families, using the 

COVID-19 single-cell dataset analyzed in panel a and b. Each dot represents a cell type 

(n=12 cell types per boxplot). The thick line represents the median value. The bottom 

and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers 

encompass 1.5 times the interquartile range.

d, Accuracy of single-cell cytokine activities prediction among many single-cell datasets. 

Each dot presents the median AUC among all cell types (Y-axis) in a single cell dataset. The 

results were shown for all cytokine and TF combinations using box plots as panel c (n=10 

cytokine-TF combinations per boxplot).
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Fig. 6: Signaling Features underlying the COVID-19 Symptom Difference
a, Sample source sites. We analyzed single-cell RNASeq datasets from the broncho-alveolar 

lavage and peripheral blood samples from COVID-19 patients.

b, IL10 activities in Macrophage from lavage. Each dot presents a single cell from the 

COVID-19 study with t-SNE (t-distributed stochastic neighbor embedding) coordinates 

computed as the original publication45. The color represents the predicted IL10 activity. The 

circles highlight the cluster of macrophages.

c, Enrichment of IL10 activities among severe patients in lavage macrophage. The violin 

plots present IL10 activity distributions in different patient groups, smoothed by a kernel 

density estimator. The color legend is available at the bottom of panel b. The two-sided 

Wilcoxon rank-sum p-value is computed to compare severe (n=6 patients) and mild (n=3 

patients) group activities.

d, IFN1 activities in CD8 T cells from blood. The IFN1 activities in CD8+ T cells (circles) 

are shown as panel b, with UMAP (Uniform Manifold Approximation and Projection) 

coordinates from the original publication46.

e, Depletion of IFN1 activities among severe patients in peripheral blood CD8 T cells. The 

two-sided Wilcoxon rank-sum p-value is computed to compare severe (n=14 patients) and 

mild (n=13 patients) group activities within each cell type.
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f, Differential signaling activities in macrophage from lavage. The heatmap presents 

cytokines whose predicted signaling activities are significantly different between severe, 

mild, healthy individuals.

g, Summary of signaling activities in COVID-19. The heatmap includes cell types with 

significant differences in signaling activities among severe, mild, and healthy individuals. 

Each cell shows the median value across all individuals in each group. Only cytokines with 

at least three significant values in at least three cell types are included.
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