
Citation: Lee, G.H. Special Issue

“Advanced Nanomaterials for

Bioimaging”. Nanomaterials 2022, 12,

2496. https://doi.org/10.3390/

nano12142496

Received: 13 July 2022

Accepted: 19 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Editorial

Special Issue “Advanced Nanomaterials for Bioimaging”
Gang Ho Lee

Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea;
ghlee@mail.knu.ac.kr; Tel.: +82-53-950-5340

Bioimaging currently plays a critical role in medical diagnosis [1–3]. Various imag-
ing modalities are available for this purpose, such as magnetic resonance imaging (MRI),
X-ray computed tomography (CT), ultrasound imaging, fluorescence imaging (FI), positron
emission tomography (PET), and single-photon emission computed tomography (SPECT).
Molecular imaging agents are a requisite for FI [4,5], PET [6], and SPECT [6], but they are
also commonly used for MRI [7] and CT [8] in order to improve imaging sensitivity and
resolution. Currently, most commercial imaging agents are molecular agents [6–8]. How-
ever, nanomaterials such as nanoparticles, nanorods, core-shell nanoparticles, and hybrid
nanoparticles have been extensively investigated as imaging agents owing to their unique
and advanced properties [9,10], which are highly advantageous for disease diagnosis and
treatment [11,12].

This Special Issue focuses on various nanomaterials that are useful for imaging, drug
delivery, and therapy. Nanoparticles possess several advantages over small molecules: they
have advanced imaging properties, easy surface functionalization for tumor-targeted drug
delivery, and longer blood circulation times. Nanoparticles also have higher metal ion con-
centrations than small molecules at the same number density, a property that makes them
highly favorable CT contrast agents [13–16]. Gadolinium-containing nanoparticles exhibit
higher longitudinal water proton spin relaxivities (r1) than Gd(III)-chelates do, and hence
are useful high-performance T1 MRI contrast agents [10,11,13,14]. Fatima et al. reviewed
recent advances in gadolinium-based contrast agents for bioimaging [17]. Gadolinium-
based nanoparticles are useful as T1 MRI contrast agents because of the high and pure
spin of Gd3+ (s = 7/2) and the high density of Gd3+ per nanoparticle; these lead to high
r1 values, as well as r2/r1 ratios close to 1 (where r2 is the transverse water proton spin
relaxivity). In addition, owing to the strong X-ray attenuation property of gadolinium,
these nanoparticles are useful as CT contrast agents [13–15]. Dual T1 MRI-FI is also possi-
ble, by doping fluorescent europium or terbium metal ions into or conjugating dyes with
gadolinium-based nanoparticles [17]. Holmium- and terbium-containing nanoparticles
can be used as T2 MRI contrast agents owing to their appreciable magnetic moments
at room temperature, a behavior that arises from the 4f-electron spin-orbital motions of
these elements. Liu et al. prepared polyethylenimine (Mn = 1200 amu)-coated ultrasmall
holmium oxide nanoparticles (average particle diameter: 2.05 nm) and measured their
cytotoxicity and water proton spin relaxivities [18]. Notably, the nanoparticles exhibited an
r2 value of 13.1 s−1 mM−1 with a negligible r1 value of 0.1 s−1 mM−1, which results in very
large r2/r1 ratios and makes them efficient T2 MRI contrast agents. These nanoparticles
exclusively induce T2 relaxations, with negligible induction of T1 relaxations, and can thus
act as efficient T2 MRI contrast agents. Shanti et al. proved this phenomenon in vivo by
successfully administering polyacrylic acid-coated terbium(III) and holmium(III) oxide
nanoparticles to mice in 3.0 and 9.4 T MR fields [19]. They observed appreciable T2 contrasts
in the livers and kidneys of the mice after injection, with enhanced T2 contrasts at 9.4 T.

FI is a highly sensitive bioimaging modality that is useful for cell imaging and skin-
deep in vivo imaging due to its low penetration depth (<1 cm) [2,3]. Compared with organic
dyes and quantum dots [4,5], terbium- and europium-containing nanomaterials possess
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larger Stokes shifts and show less background noise in biological samples; thus, they are
extremely useful for disease detection at very low concentrations. Gómez-Morales and
coworkers synthesized luminescent citrate-functionalized terbium-substituted carbonated
apatite nanomaterials and applied them to cellular uptake imaging [20]. The luminescence
properties of these nanoparticles allowed visualization of their intracellular cytoplasmic
uptake after 12 h of treatment through flow cytometry and fluorescence confocal microscopy
(green fluorescence was observed) when incubated with A375 cells.

Nanomaterials that combine imaging and therapy can be utilized in cancer thera-
nostics. Such nanomaterials can be prepared by using nanoparticles with both imaging
and therapeutic properties (such as gadolinium-containing nanomaterials [21]), or by syn-
thesizing hybrid nanomaterials. Tian et al. prepared multifunctional magnetoplasmonic
Au-MnO hybrid nanocomposites for cancer theranostics. MnO exhibited promising con-
trast enhancement in T1 MR imaging with good relaxivity (r1 = 1.2 mM−1 s−1), and Au
produced sufficient heat (62 ◦C at 200 µg/mL) to ablate cancerous cells upon 808 nm laser
irradiation (photothermal therapy), inducing cell toxicity and apoptosis [22].

Soft polymer nanomaterials are ideal drug delivery vehicles. They can also carry
imaging materials to diagnose diseases. Zerrillo et al. synthesized poly(lactide-co-glycolide)
(PLGA) nanoparticles and grafted them with hyaluronic acid (HA), which can bind to
specific receptors in various cells, in order to improve site specificity and drug dose delivery
in osteoarthritis nanotherapy [23]. They further encapsulated the nanoparticles with a near-
infrared (NIR) dye and gold (20 nm). With the NIR dye and gold acting as contrast agents,
the encapsulated HA-PLGA nanoparticles were successfully visualized on micro-CT by
optical imaging in vivo in mouse knees and ex vivo in human cartilage explants.

This Special Issue covers a broad spectrum of nanomaterials that can be used for
bioimaging. Surface modification of nanomaterials with hydrophilic ligands is essential for
bioimaging applications, while further functionalization of surface-modified nanomateri-
als with drugs and cancer-targeting ligands will make them invaluable cancer-targeting
theranostic agents.
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