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ABSTRACT: Molecular editing such as insertion, deletion, and single atom exchange in highly functionalized compounds is an
aspirational goal for all chemists. Here, we disclose a photoredox protocol for the replacement of a single fluorine atom with
hydrogen in electron-deficient trifluoromethylarenes including complex drug molecules. A robustness screening experiment shows
that this reductive defluorination tolerates a range of functional groups and heterocycles commonly found in bioactive molecules.
Preliminary studies allude to a catalytic cycle whereby the excited state of the organophotocatalyst is reductively quenched by the
hydrogen atom donor, and returned in its original oxidation state by the trifluoromethylarene.

Fluorine-containing molecules have found applications in
the pharmaceutical and agrochemical sector because of the

thermodynamic and kinetic stability of C−F σ-bonds,1 a
property offering protection against enzymatic metabolism.1

Today, pharmacophores often bear a trifluoromethyl or
difluoromethyl motif in an aromatic system, thereby increasing
the demand for methods to install or interchange these groups
in a late-stage fashion.2 In this context, molecular editing
enabling precision hydrodefluorination (HDF) of trifluorome-
thylarenes into difluoromethylarenes for applications in drug
discovery remains a highly challenging endeavor because the
bond dissociation energy (BDE) of C−F bonds decreases as
fluorine substitution takes place (Scheme 1A).3,4a Pioneering
studies have reported strategies employing boron, silylium or
phosphine adducts,5 and (transition) metals, but uncontrolled
defluorination could not be avoided for many of these
processes.6 Jui and co-workers demonstrated that hydro-
fluorination is accomplished with cesium formate and the
Miyake phenoxazine photocatalyst under blue light activation
(Scheme 1B).7a This protocol is applicable to unactivated
trifluoromethylarenes adorned with electron-donating groups.
Despite these significant advances in the field, HDF of highly
activated trifluoromethylarenes featuring electron-withdrawing
groups to access difluoromethylarenes has not been accom-
plished. This is unexpected because most tri- and difluor-
omethylated drugs feature the CF3 or CF2H group on electron-
poor arenes due to their higher resistance to oxidation and
defluorination in comparison with electron-rich counterparts.8

Mechanistic studies reported in 1997 by Saveánt and
Thieb́ault provided useful information on the electrochemical
reductive cleavage of C−F bonds for 4-cyanofluorotoluenes
1a−c and trifluoromethylbenzene.4a The process involves
fluoride expulsion from a radical anion, followed by reduction
of the resulting neutral radical, and protonation. As expected,
the standard reduction potential for the formation of the
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Scheme 1. Hydrodefluorination of Trifluoromethylarenes in
Drug Discovery
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radical anion decreases from 1a to 1c, although these are
closely spaced (narrow redox window), while the instability of
the radical anion toward fluoride mesolytic cleavage increases.
Facile exhaustive defluorination is observed experimentally, the
challenge at hand for these highly activated substrates (Scheme
2).

Preliminary experiments with 4-(trifluoromethyl)-
benzonitrile 1a showed that no product 1b was formed
applying the protocols of Prakash or Lalic (Table 1, entries 1
and 2).6 Moreover, the conditions applied for known
photoredox defluorination using trifluoromethylarenes led
mainly to recovery of starting material (Table 1, entries 3−
5).7a−c The more electrophilic nature of the difluorinated
benzylic radical derived from electron-deficient 1a compared
to electron-rich substrates encouraged a study examining
hydrogen atom donors (HAD) other than cesium formate.7a

Gratifyingly, the reaction of 1a in the presence of 2.5 mol %
fac-Ir(ppy)3, 4-hydroxythiophenol (4-HTP) and a combination
of 2,2,6,6-tetramethylpiperidine (TMP) and 1,2,2,6,6-
pentamethylpiperidine (PMP) in 1,2-dichloroethane (DCE)
under visible light activation (blue LED) gave 1b in 53% with
5:1 selectivity (1b:1c). The fully reduced 4-methylbenzonitrile
product was not detected (Table 1, entry 6). Organo-
photocatalyst 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile
(4-DPA-IPN, 2.5 mol %) was a suitable metal-free replacement
for fac-Ir(ppy)3 affording 1b in 62% yield with similar
selectivity (Table 1, entry 7). Lowering catalyst loading did
not affect the reaction outcome (65% yield, 1b:1c = 5:1)
(Table 1, entry 8). Hydrogen atom donors including thiols
other than 4-HTP, 1,4-cyclohexadiene, the Hantzsch ester,
(Me3Si)3SiH, or CsOCOH were less or not suitable under
otherwise similar reaction conditions (Table 1, entries 9−17).
The photocatalyst, HAD, base, and blue light are essential
components for this transformation to proceed (Table 1,
entries 18−23).
With the optimal reaction conditions in hand, we explored

the generality of this HDF reaction (Scheme 3). 2-
(Trifluoromethyl)benzonitrile gave 2b in 63% yield and
>20:1 selectivity favoring CF2H. Additional functionalities on
the aromatic ring including fluorine, methoxy, or acetamide
were tolerated (3b, 5b, and 7b, 42−88%) with high selectivity
for CF2H (>10:1). Methyl and ethyl 4-(trifluoromethyl)-
benzoate 4a and 8a with a carboxylic ester instead of a cyano
group were transformed into difluoromethylated analogues 4b
and 8b in moderate yields (30% and 40%) and 3:1 selectivity.
When the catalyst loading was increased to 2.5 mol %, the yield

was improved (8b, 63%), but the product resulting from
double reductive defluorination was formed preferentially

Scheme 2. Electrochemical Reductive Cleavage of
Trifluoromethylarenes: Standard Reduction Potentials (V
vs Standard Calomel Electrode (SCE) in DMF) and
Cleavage Rate Constants

aE1/2 (V vs SCE in DMF).4b

Table 1. Experiments for the Hydrodefluorination of 4-
(Trifluoromethyl)benzonitrile 1a

Entry Alterations to conditions
Yielda

(ratio 1b:1c)

1 Mg0 (30 equiv), H2O/AcOH/DMSO 0%
2 Pd(OAc)2 (3 mol %), CuF2 (20 mol %), 2-pyridone

(5 mol %), KOSiMe3 (7.0 equiv), DMF, 45 °C, then
tBuOH (2.0 equiv), 60 °C

0%

3b Miyake Phenoxazine (2 mol %), II (3 equiv), blue
LED, DMSO, 50 °C, 24 h

4% (2:1)

4c fac-Ir(ppy)3 (1.0 mol %), TMP (2.0 equiv), HBPin
(3.0 equiv), blue LED, DCE, rt, 24 h

0%

5d PTH (10 mol %), VI (10 mol %), II (3 equiv), blue
LED, 5% H2O/DMSO, rt, 24 h

0%

6 fac-Ir(ppy)3 (2.5 mol %) 53% (5:1)
7 4-DPA-IPN (2.5 mol %) 62% (5:1)
8 No alteration 65% (5:1)
9 I (6 equiv) instead of III trace
10 II (6 equiv) instead of III trace
11 IV (6 equiv) instead of III 0%
12 V (6 equiv) instead of III 15% (5:1)
13 VI (6 equiv) instead of III 4% (8:1)
14 VII (6 equiv) instead of III 4% (8:1)
15 VIII (6 equiv) instead of III 5% (8:1)
16 IX (6 equiv) instead of III 22% (7:1)
17 X (6 equiv) instead of III 22% (7:1)
18 no PMP 51% (5:1)
19 no TMP 31% (>20:1)
20 no TMP and no PMP 0%
21 no light 0%
22 no 4-HTP 0%
23 no photocatalyst 0%

aCombined yields of 1b and 1c determined by 19F NMR using 4-
fluoroanisole as internal standard; the ratio of 1b:1c is given in
parentheses. bReaction carried out on 14a. cConditions of ref 7c with
no alkene. dConditions of ref 7b with no alkene. PTH = 10-phenyl-
10H-phenothiazine. BDE values for arylthiols from ref 9.
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(8b:8c = 1:2). Unprotected sulfonamide 6b was within reach
with excellent selectivity.
Complex molecules of biological relevance were examined

next. Bicalutamide, a drug used to treat prostate cancer,
underwent reductive defluorination affording 9b isolated in
43% yield and 10:1 CF2H/CH2F selectivity.10 The doubly
trifluoromethylated cannabinoid receptor agonist BAY 59-3074
10a reacted exclusively at the arene. An analogue of
Enobosarm featuring three trifluoromethylaryl groups served
the purpose to investigate a more complex case of “arene
versus arene” chemoselectivity.11 Hydrodefluorination oc-
curred with excellent CF2H/CH2F selectivity (>20:1) at a
single site, leaving the 3,5-bis-trifluoromethylarene motif
untouched (11b, 53%); this result corroborates a control

experiment that demonstrated that 3,5-bis-trifluoromethylben-
zene was unreactive under our reaction conditions. Bendro-
flumethiazide 12a, a drug used for mild heart failure and
hypertension via vasodilation,12 was also subjected to C−F
bond reduction. Our protocol, slightly modified in order to
solubilize the starting material (solvent mixture of DCE/
DMSO), gave CF2H-bendroflumethiazide 12b in 56% yield
although with decreased selectivity (CF2H/CH2F ratio = 4:1).
This result is significant because sulfonamides and/or amines
can coordinate some metals, rendering late-stage cross-
coupling strategies toward aryl−CF2H bond construction
more challenging.13 Enzalutamide, a hormonal therapy drug
used to treat prostate cancer, also underwent HDF. This
reaction yielded with excellent selectivity the difluoromethy-
lated analogue 13b isolated in 40% yield. The usefulness of this
HDF protocol was further illustrated with the synthesis of 14b,
a molecule with strong androgen receptor binding affinity in
vivo.14 This biologically relevant compound was previously
prepared in eight steps.15 With our protocol, 14b was obtained
in two steps; the precursor 14a was prepared in one step from
commercially available materials,16 and HDF gave 14b isolated
in 60% yield. Alternative photoredox HDF protocols were not
effective.17

Given the relevance of this novel HDF methodology for
drug discovery, we conducted a robustness screening experi-
ment to gain further information on its tolerance to various
pharmacophores and functionalities (Scheme 4).18 Common
functional groups compatibility was investigated with para-
substituted toluenes A, revealing tolerance to bromine, amine,
alcohol, carboxylic acid, and aldehyde functionalities. Next, a
range of 2-pyridines B, 5-pyrimidines C, 3-pyridazines D, and
2-pyrazines E were subjected to screening. While 2-pyridines
and 5-pyrimidines were broadly tolerated, 3-pyridazines and 2-
pyrazines more often prevented hydrodefluorination. Isoxa-
zoles G and pyrazoles H with various substitution patterns
were well accepted. In addition, fused heteroarenes such as
pyrazolopyridines F, benzooxazoles I, benzothiazoles J,
indazoles K, and benzimidazoles L did not hamper the HDF
of 1a, a benefit considering the frequency of these motifs in
modern pharmaceutical drugs.19 Many of the heterocycles
investigated in this study could deactivate transition-metal
catalysts by coordination,20,21 and the HDF offers an
alternative to these methods.
Continuous-flow chemistry was considered to scale-up the

HDF of 1a (Scheme 5).22 The first reactions were performed
in a microflow system made of a perfluoroalkoxyalkane
capillary (internal diameter = 0.5 mm; internal volume = 2.0
mL) on a scale similar to batch (0.2 mmol); 1b was obtained
in 69% yield with 5:1 selectivity (CF2H/CH2F), within a 15
min residence time (tR) at a flow rate of 0.133 μL/min.
Additionally, 13b (0.2 mmol) was isolated in 25% yield with
10:1 selectivity after a 7.5 min tR at a flow rate of 0.266 μL/
min. Starting with 2.5 g of 1a (14.6 mmol), 1.4 g of 1b (5:1)
was produced in a 15 min tR at a flow rate of 0.133 μL/min.
Various experiments were performed to gain preliminary

insight on the mechanism of this transformation (Scheme 6).
A radical scavenger experiment performed with TEMPO led

to the formation of adduct 15 (Scheme 6A). When the
reaction of 1a was carried out in the presence of styrene and 4-
HTP, 16 was obtained in 56% yield (Scheme 6A). These data
are consistent with the formation of a benzylic radical species
formed by mesolytic C−F bond cleavage of a radical anion.
Deuterium was incorporated in the product (40% yield, H/D

Scheme 3. Scope of HDF

aYields and CF2H/CH2F ratio determined by quantitative 19F NMR
spectroscopy using 4-fluoroanisole as internal standard. Yields of
isolated products (RCF2H only) are given in parentheses. b2.5 mol %
4-DPA-IPN. cSolvent is DCE/DMSO (19:1, v/v, c = 0.025 M).
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ratio of 3:2) when d2-4-HTP was used instead of 4-HTP,
indicating that 4-HTP is a plausible HAD in this reaction
(Scheme 6A). Stern−Volmer luminescence quenching experi-
ments provided additional information (Scheme 6B). We
found that the combination of 4-HTP and TMP (1:1)
quenches *PCn; this is in contrast to TMP, PMP, CsOCOHor
(TMS)3SiH. The inability of 1a to quench the excited state of

the photocatalyst *PCn advocates against an oxidative
quenching cycle whereby the radical anion 17 would result
from SET involving *PCn/PCn+1(−1.28 V).23 These prelimi-
nary findings led us to propose the reductive quenching cycle
shown in Scheme 6C as a plausible mechanistic pathway.
Irradiation with light affords the excited state catalyst *PC.
Under basic conditions, deprotonation of 4-HTP leads to a
thiolate A capable of reductive quenching of *PC, a process
yielding the corresponding thiyl radical B,24 and the reduced
photocatalyst (PCn/PCn−1= −1.52 V).23 In this scenario, the
substrate acts as the oxidant to return the photocatalyst to its
native oxidation state with release of the radical anion species
that undergoes mesolytic cleavage of fluoride.25 This latter
process leads to the C-centered difluorobenzylic radical 18
which is trapped by 4-HTP affording 1b.
In conclusion, the reductive defluorination of electron-poor

trifluoromethylarenes is accomplished under basic conditions

Scheme 4. Additive-Based Screeninga

aAll reactions were performed on 2.5 μmol scale in a 96-well plate
suited for photoredox chemistry. Crude mixtures were analyzed by
GC-FID/MS.16

Scheme 5. Photoredox Hydrodefluorination under
Continuous-Flow Conditionsa

aYields of isolated products.

Scheme 6. (A) Mechanistic Experiments;a (B) Stern−
Volmer Luminescence Quenching Studies; (C) Proposed
Reaction Mechanism

aYields determined by quantitative 19F NMR using 4-fluoroanisole as
internal standard.
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with 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile as the
organophotocatalyst,26 4-hydroxythiophenol as the HAD, and
blue light. This operationally simple protocol tolerates a wide
range of functional groups and heteroarenes frequently seen in
medicinal chemistry programs, and allows the direct
conversion of complex trifluoromethylated drugs into their
difluoromethyl analogues. Mechanistic studies allude to a
catalytic cycle whereby the photocatalyst is reduced by the
HAD and returned in its native oxidation state by the
trifluoromethylarene that acts as oxidant.
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