cancers

Article

Machine Learning for Prediction of Survival Outcomes with
Immune-Checkpoint Inhibitors in Urothelial Cancer

Ahmad Y. Abuhelwa 1*{, Ganessan Kichenadasse 123, Ross A. McKinnon 1, Andrew Rowland 1,

Ashley M. Hopkins !

check for

updates
Citation: Abuhelwa, A.Y.;
Kichenadasse, G.; McKinnon, R.A.;
Rowland, A.; Hopkins, A.M.; Sorich,
M.J. Machine Learning for Prediction
of Survival Outcomes with
Immune-Checkpoint Inhibitors in
Urothelial Cancer. Cancers 2021, 13,
2001. https://doi.org/10.3390/
cancers13092001

Academic Editor: Constantin

N. Baxevanis

Received: 25 March 2021
Accepted: 19 April 2021
Published: 21 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Michael J. Sorich !

1 College of Medicine and Public Health, Flinders University, Adelaide 5000, Australia;
ganessan.kichenadasse@flinders.edu.au (G.K.); ross.mckinnon@flinders.edu.au (R.A.M.);
andrew.rowland@flinders.edu.au (A.R.); ashley.hopkins@flinders.edu.au (A.M.H.);
michael.sorich@flinders.edu.au (M.].S.)

Department of Medical Oncology, Flinders Centre for Innovation in Cancer/Flinders Medical Centre,
Adelaide 5000, Australia

Cancer Clinical Network, Commission for Excellence and Innovation in Health, Adelaide 5000, Australia
*  Correspondence: ahmad.abuhelwa@flinders.edu.au; Tel.: +61-(8)-8201-3273

Simple Summary: Machine learning (ML) is a form of artificial intelligence that could be used to
enhance the efficiency of developing accurate prediction models for survival outcomes with cancer
medicines, which is critical in informing disease prognosis and care planning. We used data from two
recent clinical trials to develop and validate ML-based clinical prediction models of the overall and
progression-free survival rates in patients with urothelial cancer initiating the immune checkpoint
inhibitor (ICI) atezolizumab. We demonstrated that ML can efficiently develop an accurate prediction
model of survival, enable an accurate prognostic risk classification, and provide realistic expectations
of treatment outcomes in patients undergoing urothelial cancer-initiating ICIs therapy.

Abstract: Machine learning (ML) may enhance the efficiency of developing accurate prediction
models for survival, which is critical in informing disease prognosis and care planning. This study
aimed to develop an ML prediction model for survival outcomes in patients with urothelial cancer-
initiating atezolizumab and to compare model performances when built using an expert-selected
(curated) versus an all-in list (uncurated) of variables. Gradient-boosted machine (GBM), random
forest, Cox-boosted, and penalised, generalised linear models (GLM) were evaluated for predicting
overall survival (OS) and progression-free survival (PFS) outcomes. C-statistic (c) was utilised to
evaluate model performance. The atezolizumab cohort in IMvigor210 was used for model training,
and IMvigor211 was used for external model validation. The curated list consisted of 23 pretreatment
factors, while the all-in list consisted of 75. Using the best-performing model, patients were stratified
into risk tertiles. Kaplan—Meier analysis was used to estimate survival probabilities. On external
validation, the curated list GBM model provided slightly higher OS discrimination (c = 0.71) than
that of the random forest (c = 0.70), CoxBoost (c = 0.70), and GLM (c = 0.69) models. All models were
equivalent in predicting PFS (c = 0.62). Expansion to the uncurated list was associated with worse OS
discrimination (GBM c = 0.70; random forest ¢ = 0.69; CoxBoost ¢ = 0.69, and GLM ¢ = 0.69). In the
atezolizumab IMvigor211 cohort, the curated list GBM model discriminated 1-year OS probabilities
for the low-, intermediate-, and high-risk groups at 66%, 40%, and 12%, respectively. The ML model
discriminated urothelial-cancer patients with distinctly different survival risks, with the GBM applied
to a curated list attaining the highest performance. Expansion to an all-in approach may harm model
performance.

Keywords: machine learning; survival outcomes; immune checkpoint inhibitors; gradient boosting;
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1. Introduction

Urothelial cancer is an aggressive malignancy associated with about 200,000 global
deaths annually and a 5-year survival rate of about 5% in the metastatic setting [1,2].
Immune-checkpoint inhibitors (ICIs) targeting the programmed death-1 (PD-1) pathway,
such as atezolizumab and pembrolizumab, are an important emerging treatment option for
metastatic urothelial cancer. Nonetheless, there is substantial heterogeneity in response to
ICIs, and identifying individuals upfront that are most likely to respond to this treatment
is a clinical priority [3].

Clinical prediction models of survival outcomes integrating clinicopathological predic-
tors using data from large cohorts of patients may enable improved decision making and
identify patients with different therapeutic prognoses [4]. While some prediction models
for urothelial cancer exist in the literature [5-7], these models were developed using tradi-
tional statistical approaches (e.g., Cox regression), assessed a small number of predictors,
and have insufficient evidence for clinical use, as predictors can differ significantly between
cancer types or subtypes and treatments [8-10].

Machine learning (ML), a form of artificial intelligence, is an emerging alternative
that may efficiently develop accurate clinical prediction models that can deal with high-
dimensional data, and identify complex relationships between variables and outcomes that
may be unidentifiable with traditional statistical approaches [11-13]. There were several
recent breakthroughs demonstrating how using ML to rapidly interrogate complex data
delivers a more efficient use of healthcare resources, including the detection of COVID-19
infection by ML interrogation of CT and X-ray images [14,15]. With respect to cancer, there
are several ML-based algorithms that can process time-to-event survival outcome data, so
identifying a suitable best-performing learning algorithm is critical to developing accurate
prediction models of survival. To our knowledge, no study assessed ML-based algorithms’
ability to predict survival outcomes with immunotherapy in urothelial cancer. Furthermore,
it is unclear whether developing ML prediction models using an all-in list (uncurated) of
variables augments the discrimination performance of prediction models when compared
to that of models developed with an expert preselected list (curated) (i.e., the traditional
approach of selecting variables based on clinical knowledge and prior evidence). Therefore,
the aims of this study were to develop and externally validate ML prediction models
of survival outcomes for patients with urothelial-cancer-initiating atezolizumab and to
compare the performance of ML models built with an expert-selected list (curated) versus
an all-in list (uncurated) of variables.

2. Methods
2.1. Study Cohort

Individual participant data (IPD) from IMvigor210 (ClinicalTrials.gov Identifier:
NCT02108652, data cut-off 4 July 2016) were used for model development (training
set). IPD from the randomised atezolizumab arm of IMvigor211 (ClinicalTrials.gov Iden-
tifier: NCT02302807, data cut-off 13 March 2017) were used for external model val-
idation (testing set). IMvigor210 was a single-arm Phase II trial in patients with lo-
cally advanced or metastatic urothelial cancer receiving atezolizumab 1200 mg IV every
3 weeks [2,16]. IMvigor211 was a Phase III trial in platinum-treated locally advanced
or metastatic urothelial-cancer patients randomised to atezolizumab (1200 mg IV every
3 weeks) or chemotherapy (docetaxel (75 mg/m? IV every 3 weeks), paclitaxel (175 mg/m?
IV every 3 weeks), or vinflunine (320 mg/m? IV every 3 weeks) [17]. Data were ac-
cessed according to the Hoffmann-La Roche policy and made available through Vivli, Inc.
(www.vivli.org).

IMvigor210 and IMvigor211 were conducted in accordance with the Guidelines for
Good Clinical Practice and the Declaration of Helsinki [18]. Each participant signed
and dated a written informed consent form before study enrolment [2,16,17]. Secondary
analysis of deidentified IPD was classified as minimal-risk research and was confirmed as
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exempt from review by the Southern Adelaide Local Health Network, Office for Research
and Ethics.

2.2. Predictors and Outcomes

The primary predicted outcome was overall survival (OS), with progression-free
survival (PFS) as a secondary outcome. Primary study definitions of PFS were used, i.e.,
the independent review facility-assessed disease as per Response Evaluation Criteria in
Solid Tumours (RECIST version 1.1) in IMvigor210, and the investigator-assessed disease
as per RECIST (version 1.1) in IMvigor211.

Two lists of pretreatment variables were used to build the ML models: an expert
preselected list (curated) and an all-in list (uncurated). The curated list included clinico-
pathological pretreatment factors (i.e., before the initiation of treatment) that were selected
on the basis of biological plausibility, prior prognostic evidence, expert oncologist medical
opinion, and being in line with prediction model guidelines for a minimum of 10 events
per predictor variable [19]. The uncurated list included all pretreatment individual patient
factors, subject to (1) being available in both training and validation data (<10% missing),
(2) available data definitions or reports for checking standardisation accuracy in a rea-
sonable timeframe, and (3) within the top 15 most frequent comorbidities or concomitant
medicines (i.e., an intention of the all-in approach was to speed up the model-building pro-
cess rather than become stuck on needing an expert cancer researcher for data formatting
and checking). Variables with missing values were imputed using approximate multiple
imputation from the distribution of each variable conditional on all other variables as
implemented in the transcan function from Hmisc package in R [20].

The curated list included 23 variables: (1) demographic factors (age, sex, race, body-
mass index, and smoking status), (2) laboratory factors (levels of haemoglobin, albumin,
white blood cells, C-reactive protein, neutrophil /lymphocyte ratio (NLR), platelet count,
alkaline phosphatase, lactate dehydrogenase, and programmed death ligand 1 (PD-L1)
expression on immune cells (PD-L1 ICs): PD-L1 IC0O (PD-L1 expression on <1%), PD-L1 IC1
(PD-L1 expression on >1% but <5%), and PD-L11C2/3 (PD-L1 expression on >5) [2,16]),
(3) disease or treatment factors (Eastern Cooperative Oncology Group Performance Status
(ECOG-PS), disease stage (metastatic/locally advanced), the number of prior treatments,
time since last chemotherapy, time since initial diagnosis, presence of liver metastasis,
count of tumour sites, primary tumour site, and the presence of a urinary-tract infection.

The uncurated list contained 75 variables, composed of the curated-list variables
and: (1) laboratory factors (derived NLR, eosinophil, neutrophils, alanine transaminase,
aspartate aminotransferase, bilirubin, blood urea nitrogen, serum creatinine, estimated
glomerular filtration rate, haemoglobin-to-platelet ratio, lymphocyte-to-monocyte ratio,
platelet-to-lymphocyte ratio, and the total protein, calcium, potassium, sodium, magne-
sium, chloride, phosphate) and (2) disease or treatment factors (the presence of liver, brain,
bone, lung or visceral metastasis, time since metastasis diagnosis, previous cystectomy,
tumour stage at initial diagnosis, histologic characteristics, comorbidities (the presence of
diabetes, hypertension, anaemia, renal failure, dyslipidaemia, fatigue, urinary-tract signs
and symptoms, musculoskeletal pain, gastrointestinal and abdominal pain, generalised
pain, constipation), and concomitant medicine use (opioids, antibiotics, proton-pump
inhibitors, nonsteroidal anti-inflammatory drugs, statins, beta-blockers, calcium channel
blockers, steroids, anticoagulants, anticonvulsant, bone-modulating agents, paracetamol,
laxatives, vitamins, and minerals).

2.3. Machine-Learning Model Development

The patient cohort initiating atezolizumab in IMvigor210 was used for training the
ML models. Four ML-based algorithms were evaluated: (1) gradient-boosted machine
(GBM [21]), (2) random forest (RandomForestSRC [22]), (3) Cox-boosted model (Cox-
Boost [23]), and (4) penalised generalised linear models (GLM [24]). Hyperparameter
tuning for ML algorithms was performed on the curated and uncurated lists by using grid
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search with 5-fold cross-validation with 10 repeats. Models were implemented in the ML
package, mlr [25].

Model performance was externally validated using the independent IMvigor211
atezolizumab-treated patients. Model performance was assessed using the concordance
statistic (c-statistic) [26] and calibration plots of observed versus predicted survival prob-
abilities. The best-performing ML model was used to stratify patients into risk tertiles
(low-, intermediate-, and high-risk prognostic groups). Survival probabilities of the risk
groups were assessed using the Kaplan-Meier method. Relative variable importance in the
best-performing ML model was evaluated using established methodologies [27,28]. All
analyses were conducted in R version 3.6.2.

3. Results
3.1. Study Cohort

The training cohort consisted of 429 patients (239 OS events) who had initiated ate-
zolizumab within IMvigor210. The validation cohort consisted of 467 patients (324 OS
events) randomised to atezolizumab within IMvigor211. Patient characteristics are pre-
sented in Table S1. The median (95% CI) follow-up in IMvigor210 and IMvigor211 was 11
(11-12) and 17 (17-18) months, respectively.

3.2. Machine-Learning Model Development

The search space and optimal hyperparameter values used for the developed ML
models (both curated and uncurated versions) are presented in Table S2. The discrimination
performance of the developed models on the training data is presented in Table S3 (both
curated and uncurated versions). The top 10 most influential predictors of survival for
each model (curated list versions) are presented in Figure 1, with C-reactive protein,
alkaline phosphatase, neutrophil /lymphocyte ratio, lactate dehydrogenase, and the count
of tumour sites among the most important variables in all constructed models. The top
10 most influential predictors from the developed models using the uncurated list are
presented in Figure S1.

On external validation, the GBM algorithm provided slightly higher OS discrimination
(c = 0.71) than that of random forest (c = 0.70), CoxBoost (¢ = 0.70), and GLM (c = 0.69)
models (curated list versions) (Table 1). All models were equivalent in predicting PFS
(c = 0.62). Expansion to the uncurated list was generally associated with slightly worse
discrimination for the GBM (OS ¢ = 0.70, PFS ¢ = 0.62), random forest (OS c= 0.69, PFS
¢ =0.61), CoxBoost (OS c=0.69, PFS c = 0.61), and GLM (OS ¢ = 0.69, PFS c = 0.61) models
(Table 1).
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Figure 1. Relative importance of top 10 variables for predicting survival using machine-learning models built with the
curated variable list. GLM: generalised linear model with regularisation. ECOG: Eastern Cooperative Oncology Group.
PDL-1-IC: Programmed death-ligand 1 gene expression level on immune cells.

Table 1. Discrimination performance on validation set for overall survival (OS) and progression-free survival (PFS).

0S PFS
Curated list Uncurated list Curated list Uncurated list

Learner C-statistics C-statistics C-statistics C-statistics

Gradient-boosted 0.71 0.70 0.62 0.62
machine

Random forest 0.70 0.69 0.62 0.61
Cox-boosted 0.70 0.69 0.62 0.61
generalised linear 0.69 0.69 0.62 0.61

model

On the basis of these observations, the GBM model built with the curated list was
selected for further evaluation as it provided the highest and most consistent discrimination
performance among the evaluated ML algorithms. On validation, the GBM model (curated-
list version) was observed to be well-calibrated for OS and PFS prediction (Figure S2). The
GBM model (curated-list version) was observed to discriminate 1-year OS probabilities
of 66%, 40%, and 12% for the the low-, intermediate-, and high-risk groups, respectively,
defined from the randomised atezolizumab patients of IMvigor211, while 1-year PFS
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probabilities of 25%, 12%, and 5% were observed for the defined risk groups (Table 2).
Kaplan-Meir plots of OS and PFS probabilities are presented in Figure 2.

Table 2. Effect size and 1-year survival probability for gradient-boosted machine (GBM) stratified prognostic groups on
validation cohort within IMvigor211.

Prognostic Group (O1] PFS
HR (95% CI) 1-year survival HR (95% CI) 1-year PFS probability
(p <0.001) probability (95% CI) (p <0.001) (95% CI)
Low risk 1.00 66% (59-74) 1.00 25% (19-33)
Intermediate risk 2.09 (1.55-2.81) 40% (33-48) 1.54 (1.21-1.98) 12% (7-18)
High risk 5.09 (3.81-6.81) 12% (8-19) 2.38 (1.87-3.04) 5% (3-10)
Prognostic Group = Low risk = Intermediate risk = High risk Prognestic Group = Low risk = Intermediate risk = High risk
100% 100% A

= 75% 75%
= =
% =
8 8
o 50% o 50%
E ®
g &
n 25% 25% 1

0% 0%

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
Months Months

== 154 145 131 112 99 67 39 10 0 == 154 80 63 42 35 24 11 3

== 154 127 98 78 59 34 16 8 1 == 154 56 30 23 16 10 5 1

= 159 76 51 28 19 12 4 2 0 == 159 34 22 11 8 6 2 1

Figure 2. Kaplan—-Meier estimates indicating differences in OS and PFS according to stratified machine-learning prognostic
groups on validation cohort within IMvigor211 using curated-list GBM model.

4. Discussion

In this study, we used data from two large, high-quality clinical trials and evaluated
several ML algorithms in the development of prediction models of survival for patients
with urothelial-cancer-initiating atezolizumab. The GBM algorithm consistently provided
the highest OS validation performance using both the expert-selected (curated) and the
all-in (uncurated) variable lists. However, expansion to the all-in list was associated with
slightly worse discrimination performance compared to that in the expert-selected subset.
The GBM model (curated list) was able to discriminate patients into three prognostic risk
groups with distinct survival outcomes. To our knowledge, this is the first study to use
ML-based approaches to develop and validate a survival-prediction model in patients with
urothelial-cancer-initiating immunotherapy, and the first study to compare the performance
of ML models built with an expert-selected variable list versus an all-in approach.

ML was applied to cancer diagnosis and risk assessment, but minimally explored
for predicting personalised survival outcomes with emerging ICIs [12,29-31]. Recently,
Hopkins et al. assessed 24 predictor variables to develop an OS prediction model for
patients with nonsmall-cell lung cancer (n = 797) treated with atezolizumab, and model-
validation performance using the random-forest approach (c = 0.77) was found to be
superior to the GLM (0.76) and ctree (c = 0.69) models [4]. Comparatively, our study
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evaluated a wider range of ML algorithms and externally validated them using a large
independent cohort of patients.

In addition to comparing ML algorithms in a new cancer-treatment modality, this
study demonstrates that ML is proficient at identifying important predictors of treatment
outcomes with ICIs in urothelial cancer. In this analysis, ML identified C-reactive protein,
alkaline phosphatase, neutrophil /lymphocyte ratio, lactate dehydrogenase, and the count
of tumour sites among the most important variables in all constructed models, in agree-
ment with previous research assessing atezolizumab therapeutic outcomes in nonsmall-cell
lung cancer [4,32,33]. Further, the developed model may be able to facilitate accurate
risk stratification based on individual patient characteristics. For example, on external
validation in the atezolizumab arm of IMvigor211, the GBM model had prediction per-
formance consistent with a strongly performing model (c = 0.71) [8,34], and it was able to
discriminate patients into low-, intermediate-, and high-risk groups with estimated 1-year
OS probabilities of 66%, 40%, and 12%, respectively. This demonstrates the potential of ML
prediction models to inform treatment decisions and provide more realistic expectations
for treatment outcomes with patients initiating ICls.

Expansion to the all-in (uncurated) variable-list approach resulted in slightly worse
prediction performance. The slight deterioration in performance may have been due
to the presence of noninformative variables that ultimately cause model overfitting or
uncertainty [35]. While the all-in (dump-and-play) approach has the potential to enable
biostatisticians to begin model building without expert input, the time required for artificial
intelligence to tune and fit the model was substantially longer than the time required to
tune the model using the curated list with fewer variables. Ultimately, it was our experience
that reducing the variable list with expert help both improved model performance and
saved time from a computational perspective.

A strength of this analysis was the completeness and quality of the large contempo-
rary immunotherapy dataset that was used to train and then externally validate model
discrimination and calibration performance. In addition, we studied two outcomes, OS
and PFS, and we were able to confirm the insights about ML performance for each out-
come. Regarding the all-in list, it is possible that some variables were not collected in
the IMvigor210 and IMvigor211 trials, and the nature of clinical-trial inclusion criteria
can limit the generalisability of data distributions when compared to routine care. As
the model developed and validated in this study used data from the IMvigor210 and
IMvigor211 trials, the training and validation cohorts were restricted to patients with
urothelial-cancer-initiating atezolizumab monotherapy. Confirming the performance of
ML prediction models for other ICIs, ICI combination therapy, anticancer-medicine classes,
lines of therapy, and cancer types is an important future direction.

5. Conclusions

Using two large, contemporary clinical trials, we demonstrated that the GBM algo-
rithm, applied to an expert-selected variable list, attained the highest validation perfor-
mance for OS prediction. This model was further demonstrated capable of discriminating
urothelial-cancer patients initiating atezolizumab with distinctly different survival out-
comes. Using an all-in list of variables as opposed to an expertly selected list may harm
discrimination performance.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ cancers13092001/s1, Figure S1: Relative importance of the top 10 variables for predicting
survival using the uncurated variable list. GBM: gradient boosted machine, GLM: generalized
linear model with regularization, Figure S2: Calibration plots (Kaplan-Meier observed versus model
predicted probabilities) of overall survival (OS) and progression free survival (PFS) on validation
data using the GBM model constructed using curated variables list, Table S1: Pre-treatment patient
characteristics by atezolizumab study cohort, Table S2: Hyperparameter tuning of machine learning
algorithms on overall survival data using the primary and extended lists, Table S3: Discrimination
performance on IMvigor210 training cohort for overall survival and progression free survival.
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