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INTRODUCTION

Pain is associated with a wide range of injury and disease. 
Worldwide, more than 1.5 billion people suffer from acute or 
chronic pain, as reported by Global Industry Analysts. Global 
Burden of Disease (GBD) study shows that burdens associated 
with chronic pain are increasing in many types of diseases and 
injuries [1]. In addition, pain causes depression and vice versa. 
There is a close relationship between pain and depression. 
Antidepressant medications help relieve pain and depression [2]. 
Numerous approaches for the treatment of chronic pain have 
been investigated, but the management of chronic pain with 
the available pharmacologic therapies is often unsatisfactory. 
New therapeutic approaches for the prevention and treatment of 
chronic pain are needed. 

A large number of studies have shown that ion channels are 
closely connected with chronic pain [3-5]. TWIK-related K+ 

channel-2 (TREK-2) and TWIK-related spinal cord K+ (TRESK) 
channel are members of two-pore domain K+ (K2P) channel. 
These channels are the main contributors to the background 
current in dorsal root ganglion (DRG) neurons [6,7]. TREK-2 is 
involved in mechanical and osmotic pain and in cold allodynia 
[8]. In addition, TREK-2 expressed in IB4-binding C-fiber 
nociceptors limits spontaneous pain [9]. TRESK channels 
activated by the inflammatory mediator (lysophosphatidic acid) 
reduce nociceptive signaling in DRG neurons [10]. TRESK is 
associated with migraine [3,7,11]. Familial migraine with aura 
is associated with a dominant-negative mutation in human 
TRESK channels. A dominant-negative mutation in TRESK 
induces hyperexcitability when expressed in TG neurons [11]. 
TRESK knockdown mice show increased pain and sensitivity 
in response to painful stimuli. Thus, a prominent physiological 
role of TREK-2 and TRESK has been attributed to pain sensation 
[12]. Therefore, an up-regulation of TREK-2 and TRESK channel 

Original Article

Effects of analgesics and antidepressants on TREK-2 and TRESK 
currents 

Hyun Park1, Eun-Jin Kim2, Jaehee Han2, Jongwoo Han1, and Dawon Kang2,*
1Department of Neurosurgery, Gyeongsang National University Hospital, College of Medicine and Institute of Health Sciences, Gyeongsang National 
University, Jinju 52727, 2Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea

ARTICLE INFO

Received February 4, 2016
Revised May 4, 2016
Accepted May 9, 2016

*Correspondence

Dawon Kang
E-mail: dawon@gnu.ac.kr

Key Words

Analgesics
Background potassium channels
Pain

ABSTRACT TWIK-related K+ channel-2 (TREK-2) and TWIK-related spinal cord K+ 
(TRESK) channel are members of two-pore domain K+ channel family. They are well 
expressed and help to set the resting membrane potential in sensory neurons. 
Modulation of TREK-2 and TRESK channels are involved in the pathogenesis of pain, 
and specifi c activators of TREK-2 and TRESK may be benefi cial for the treatment of 
pain symptoms. However, the effect of commonly used analgesics on TREK-2 and 
TRESK channels are not known. Here, we investigated the effect of analgesics on 
TREK-2 and TRESK channels. The effects of analgesics were examined in HEK cells 
transfected with TREK-2 or TRESK. Amitriptyline, citalopram, escitalopram, and 
fluoxetine significantly inhibited TREK-2 and TRESK currents in HEK cells (p<0.05, 
n=10). Acetaminophen, ibuprofen, nabumetone, and bupropion inhibited TRESK, but 
had no eff ect on TREK-2. These results show that all analgesics tested in this study 
inhibit TRESK activity. Further study is needed to identify the mechanisms by which 
the analgesics modulate TREK-2 and TRESK diff erently.
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activities may be a useful strategy in the development of new 
therapies for the treatment of many types of pain. Activators of 
the TREK and TRESK channel are expected to emerge as a novel 
class of analgesic agents [13]. 

Non-steroidal anti-inflammatory drugs (NSAIDs), such as 
ibuprofen and nabumetone, are widely used for pain relief. 
In addition to classical analgesics, antidepressants are useful 
therapeutic strategies for pain [13-15]. Amitriptyline, bupropion, 
and f luoxetine produced antiallodynic effects in chronic 
constriction injured mice [16]. Of antidepressants, tricyclic 
antidepressants (TCAs) are the most established drugs in the 
treatment of chronic pain [17,18], but selective serotonin reuptake 
inhibitors (SSRIs) or selective norepinephrine reuptake inhibitors 
(SNRIs) are also effective against pain [18,19]. 

A better understanding of the relationships between these 
drugs and the changes they induce in TREK-2 and TRESK 
channels should help to identify more effective treatments for 
pain. This study was performed to identify the effect of analgesics 
that are currently used in clinics on TREK-2 and TRESK 
channels. 

METHODS

Chemicals 

All of the chemicals used in this study were purchased from 
Sigma Chemical Company (St. Louis, MO, USA) unless otherwise 
specified. Stock solutions of escitalopram (20 mM), fluoxetine 
(100 mM), and ibuprofen (100 mM) were prepared in dimethyl 
sulfoxide (DMSO) and then diluted in experimental solution to a 
working concentration. Acetaminophen (500 mM) was dissolved 
in ethanol. Amitriptyline (100 mM), bupropion (100 mM), 
citalopram (10 mM), and nabumetone (100 mM) were dissolved 
in distilled water. When DMSO or ethanol was used as a solvent, 
a solution containing an equivalent concentration was used as a 
control. 

Transfection 

HEK293 cells were seeded at a density of 2×105 cells per 35 mm 
dish 24 h prior to transfection in Dulbecco’s modified Eagle’s 
medium (DMEM) containing 10% FBS. HEK293 cells were 
co-transfected with DNA fragments encoding mouse TRESK 
(NM_207261) or rat TREK-2 (NM_023096) and green fluorescent 
protein (GFP) in pcDNA3.1 using LipofectAMINE2000 and 
OPTI-MEM I Reduced Serum Medium (Life technologies, Grand 
Island, NY, USA). Green f luorescence from cells expressing 
GFP was detected with the aid of a Nikon microscope equipped 
with a mercury lamp light source. Cells were used 2~3 days after 
transfection.

Electrophysiological studies

Electrophysiological recording was performed using a patch 
clamp amplifier (Axopatch 200, Axon Instruments, Union 
City, CA, USA). Pipette tip resistances were 4~6 M. Whole-
cell current was recorded in response to a voltage ramp (–120 to 
+60 mV; 865 ms duration) from a holding potential of –80 mV 
in physiological solution containing 5 mM KCl. Currents were 
filtered at 2 kHz, and the currents measured at +60 mV were 
obtained and analyzed. Bath solution contained (mM): 135 NaCl, 
5 KCl, 1 CaCl2, 1 MgCl2, 5 glucose and 10 HEPES (pH 7.4), and 
pipette solutions contained (mM): 150 KCl, 1 MgCl2, 5 EGTA and 
10 HEPES (pH 7.3). The pH was adjusted to desired values with 
HCl or NaOH. All experiments were performed at ~25oC. 

Statistical analysis

Differences among groups were analyzed using one-way 
ANOVA test (SPSS18 software, SPSS, Chicago, IL, USA). Data 
are represented as mean±SD. A p<0.05 was considered as the 
criterion for significance.

RESULTS

Comparison of effect of analgesics on TREK-2 and 
TRESK overexpressed in HEK-293 cells 

Application of the NSAIDs (ibuprofen and nabumetone) 
and acetaminophen to TREK-2 and TRESK channels that were 
overexpressed in HEK-293 cells produced different effect in 
TREK-2 and TRESK currents. As shown in Fig. 1, acetaminophen 
(100 M), ibuprofen (100 M), and nabumetone (100 M) 
inhibited TRESK by 27±7%, 21±9%, and 32±11%, respectively, 
but they did not affect TREK-2. The IC50 for inhibition of TRESK 
by acetaminophen, ibuprofen, and nabumetone was 220±26 M, 
889±10 M, and 557±35 M.

Antidepressants used in this study, except bupropion, inhibited 
both TREK-2 and TRESK currents. Amitriptyline (a TCA, 30 
M) inhibited TREK-2 and TRESK currents by 71±10% and 
54±16%, respectively. The inhibitory effects of amitriptyline were 
higher on TREK-2 current than on TRESK current. The IC50 
for inhibition of TREK-2 and TRESK by amitriptyline was 16±4 
M and 26±5 M, respectively (Fig. 2A). Bupropion, a specific 
dopamine reuptake inhibitor, had no effect on TREK-2, but 
inhibited TRESK currents by 30±17%. The IC50 for inhibition of 
TRESK by bupropion was 160±17 M (Fig. 2B). Bar graphs show 
the effect of amitriptyline and bupropion on TREK-2 and TRESK. 
Also, SSRIs (fluoxetine, citalopram, and escitalopram) inhibited 
both TREK-2 and TRESK currents. Citalopram, escitalopram, 
and fluoxetine inhibited TREK-2 currents by 49±10%, 55±12%, 
and 71±8% at the concentration of 100 M (Fig. 3A). Citalopram, 
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escitalopram, and fluoxetine also inhibited TRESK currents by 
30±6%, 72±7%, and 92±10%, respectively (Fig. 3B). The IC50 for 
inhibition of TREK-2 by citalopram, escitalopram, and fluoxetine 
was 110±9 M, 102±9 M, and 31±7 M, respectively. The 
IC50 for inhibition of TRESK by citalopram, escitalopram, and 
fluoxetine was 168±11 M, 49±7 M, and 17±5 M, respectively. 
The inhibitory effect of escitalopram and fluoxetine was higher 
on TRESK current than on TREK-2 current. The inhibitory effect 
of citalopram on TREK-2 was similar to that on TRESK. The 
currents recorded from GFP-transfected cells were ~10 pA/pF. All 
drugs had no effect on the currents (data not shown).

DISCUSSION

This study reports the effects of therapeutic compounds for 
pain on TREK-2 and TRESK currents. We hypothesized that 
analgesics commonly used in clinics may activate TREK-2 and 
TRESK, because a loss-of function in TREK-2 and TRESK 
induces depolarization and results in pain [7-10]. However, the 
most of analgesics tested in this study inhibited TREK-2 and 
TRESK currents. These compounds included amitriptyline, 
citalopram, escitalopram, and f luoxetine. Acetaminophen, 
bupropion, ibuprofen, and nabumetone showed different effect on 
TREK-2 and TRESK; they inhibited TRESK currents, but had no 
effect on TREK-2. 
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Fig. 2. Inhibition of TREK-2 and TRESK 

currents by amitriptyline. (A and B) 
Effect of amitriptyline and bupropion 
on TREK-2 and TRESK currents. Dose-
response curves of amitriptyline and 
bupropion are shown on the right of 
representative current traces. The bar 
graphs show the effect of amitriptyline 
and bupropion on TREK-2 and TRESK 
channels. Data represent the mean±SD 
of five repeated experiments. *p<0.05 
compared to the corresponding control. 
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Fig. 1. Comparison of effect of anal-

gesics on TREK-2 and TRESK. Whole-
cell currents were recorded in 5 mM 
KCl, and the current levels at +60 mV 
were determined and analyzed. (A) No 
effect of acetaminophen, ibuprofen, 
and nabumetone on TREK-2 currents. 
(B) Inhibitory effect of acetaminophen, 
ibuprofen, and nabumetone on TRESK 
currents. Dose-response curves of 
analgesics are shown on the right of 
representative current traces. The bar 
graphs show the effect of analgesics 
on TREK-2 and TRESK currents. Data 
represent the mean±SD of five repeated 
experiments. *p<0.05 compared to the 
corresponding control.



382

http://dx.doi.org/10.4196/kjpp.2016.20.4.379Korean J Physiol Pharmacol 2016;20(4):379-385

Park H et al

The concentrations of compounds used in this study were 
lower than adult dose, as reported by U.S. Food and Drug 
Administration (FDA), but slightly higher than their blood 
concentrations. However, in the case of acetaminophen (15 
g/mL), ibuprofen (20 g/mL), and nabumeton (22.8 g/mL), 
the concentrations were similar to their blood concentrations 
ranging 5 to 20 g/mL [20], 8.4 g/mL when receiving 400 
mg/day ibuprofen [21], and 12~16 mg after administration of 
2000 mg/day nabumetone (U.S. FDA, NDA 19-538/S-023), 
respectively. The dose of ibuprofen can be increased to 1200 
mg/day. The blood concentration of nabumetone is calculated 
with its principal active metabolite 6-methoxy-2-naphthylacetic 
acid (6MNA) detected in the blood after administration of 
nabumetone. The blood concentrations of amitriptyline, 
bupropion, citalopram, escitalopram, and fluoxetine are 0.34 g/
mL, 818±500 ng/mL, 49 ng/mL, 11.6~46.4 ng/mL, and 97±51 
ng/mL after oral administration of 10 mg/day [22], 252 mg/
day [23], 20 mg/day citalopram [24], 5~40 mg/day [25], and 
20 mg/day [26], respectively. Their blood concentrations were 
lower than concentrations used in this study (amitriptyline 
(8.4 g/mL), bupropion (23.9 g/mL), citalopram (32.4 g/mL), 
escitalopram (41.4 g/mL), and fluoxetine (30.9 g/mL)). The 
low blood concentration of antidepressants will not be likely 
to inhibit TRESK and TREK-2 currents in vivo. However, the 
dose can be increased depending on symptom improvement. In 
addition, the concentrations of drugs are different among organs 
(e.g. f luoxetine concentration is different between blood and 
brain; the concentration is higher in brain than in blood [27]). 
Acetaminophen, ibuprofen, and nabumetone have a possibility 
that they affect TRESK in in vivo. 

Acetaminophen and NSAIDs could modulate K+ channels. 
NSAIDs activate the Kv7 channel and large-conductance Ca2+-
activated K+ channel in vascular smooth muscle cells [28,29]. 

In contrast, NSAIDs inhibit the surface expression of Kv1.4 
and Kv1.6 and depolarize membrane potentials in intestinal 
epithelial cells [30]. Acetaminophen protects estramustine-
induced cytotoxicity on cultured fibroblast by blocking inhibition 
of cellular K+ channel ion transport [31]. These drugs affect 
K+ channels expressed in different type of cells differently. 
Acetaminophen, ibuprofen, and nabumetone can be used to 
distinguish TREK-2 and TRESK expressed in sensory neurons. 
Further study will be needed to identify the mechanism by which 
acetaminophen, ibuprofen, and nabumetone modulate TREK-2 
and TRESK current differently. 

Antidepressants, which have analgesic effects, modulate 
many types of K+ channels. Within K2P channel family, TREK-
1 and TASK-3 have been suggested as potential targets for 
antidepressants [32-34]. These channels are inhibited by 
fluoxetine. Our previous study reported that TREK-2 and TRESK 
currents were inhibited by fluoxetine [35,36]. The present study 
demonstrates that TREK-2 and TRESK are also inhibited by 
other antidepressants, such as amitriptyline, citalopram, and 
escitalopram. Bupropion showed different effect on TREK-
2 and TRESK. Bupropion, which inhibits the reuptake of 
norepinephrine and dopamine, improves pain relief [37]. In 
addition, bupropion interacts with nicotinic receptor [38]. 
Bupropion blocks KATP channel as well as TRESK [39]. TREK-
2 and TRESK show different effect in response to some signals. 
Acetylcholine (carbachol) inhibits TREK-2 currents, but activates 
TRESK current [35,40,41]. Aristolochic acid, a traditional 
medicine used in the treatment of pain, activates TREK-2, but 
inhibits TRESK activity [42]. TREK-2 channels are activated by 
low intracellular pH (pHi) and arachidonic acid, and inhibited 
by PKC activation [40,43]. In contrast, TRESK channels are 
inhibited by low pHi and arachidonic acid [44], and human (not 
murin) TRESK is activated by PKC [45]. In this study, we tested 

Fig. 3. Inhibition of TREK-2 and TRESK 

currents by SSRIs antidepressants. (A 
and B) Inhibitory effect of citalopram, 
escitalopram, and fluoxetine on TREK-
2 and TRESK currents. Dose-response 
curves of SSRI antidepressants are shown 
on the right of representative current 
traces. The bar graphs show the effects 
of analgesics on TREK-2 and TRESK. Data 
represent the mean±SD of five repeated 
experiments. *p<0.05 compared to the 
corresponding control.
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effects of analgesics and antidepressants on rat TREK-2 and 
mouse TRESK. Species difference could explain the different 
effects of the drugs on TREK-2 and TRESK. In addition, the state 
of phosphorylation is different between TREK-2 and TRESK. 
TRESK is constitutively phosphorylated under resting conditions 
[46]. TREK-2 phosphorylated by PKC shows low channel activity 
[40], whereas TRESK dephosphorylated by calcineurin shows 
high channel activity [41]. These factors may cause different 
effect of acetaminophen, ibuprofen, nabumetone, and bupropion 
on TREK-2 and TRESK. The mechanism that modulates these 
currents will need to be identified to develop specific drugs for 
depression and pain. 

 However, at this point, several questions remain to be 
answered. Are TREK-2 and TRESK inhibitions related to pain? 
What do TREK-2 and TRESK inhibitions by analgesics used in 
clinics indicate? DRG and TG neurons predominantly express 
TREK-2 and TRESK channels among K2P channel family 
[6,47]. Single or a combination of TREK-2 and TRESK has been 
considered as promising therapeutic targets for pain management 
[12]. The blockade of both TREK-2 and TRESK currents in DRG 
and TG neurons would cause cell depolarization and increase cell 
excitability. These agents might result in a reduced effect of pain 
medication. In this study, we could not determine the relationship 
between blockade of TREK-2 and TRESK by analgesics and pain. 
The inhibition of TREK-2 and TRESK channels by analgesics 
should be considered when assessing the various pharmacological 
effects produced by analgesics. People respond differently to 
pain medications because each pain condition is unique. The 
different effects observed among people could result from 
TREK-2 and TRESK inhibitions. Further, TREK-2 and TRESK 
expression could be different among individuals. On the other 
hand, activation of inhibitory interneurons could reduce pain 
transmission [48]. Depolarization of resting membrane potential 
by blockade of TREK-2 and TRESK affect interneurons. To our 
knowledge, however, there is no report about the expression of 
TREK-2 and TRESK in inhibitory interneurons. So far, there 
are no specific modulators of TREK-2 and TRESK channel. Few 
compounds are known to inhibit TREK-2 and TRESK current. 
Our data add to the number of compounds that inhibit TREK-2 
and TRESK currents and provide new tools to identify TREK-2 
and TRESK channels expressed in primary cells, such as TG and 
DRG neurons. 

In conclusion, we found that the drugs with anti-pain effects 
did not activate TREK-2 and TRESK. Our study addresses the 
pharmacological modulation of TREK-2 and TRESK channels 
with special respect to the possible clinical application of 
alleviating or preventing pain. Future studies should take into 
account the therapeutic effect of TREK-2 and TRESK on pain, 
and the mechanism by which analgesics inhibit TREK-2 and 
TRESK currents. 
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